Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27159 dokumen yang sesuai dengan query
cover
Muhammad Faiz Amir Aththufail
"Tingkat mortalitas merupakan salah satu indikator dalam kemajuan bidang kesehatan dan untuk membantu mengidentifikasi kelompok masyarakat yang diutamakan menerima program kesehatan serta pembangunan khusus. Tingkat mortalitas juga dapat digunakan untuk menunjukkan tingkat kesejahteraan dan kualitas hidup suatu negara. Selain itu tingkat mortalitas juga berperan dalam penetapan harga premi (pricing) dan perhitungan cadangan manfaat (valuation) untuk polis asuransi, produk anuitas, serta berperan dalam manajemen risiko aktuaria dan program pensiun. Mengingat tingkat mortalitas merupakan variabel acak yang berubah dari waktu ke waktu dan nilainya berada pada interval (0,1), maka diperlukan suatu model untuk dapat meramalkan tingkat mortalitas di masa depan. Salah satu model yang memiliki potensi untuk dapat memodelkan dan meramalkan tingkat mortalitas adalah model Beta Autoregressive Moving Average (βARMA). Model βARMA merupakan pengembangan dari regresi beta di mana error modelnya mengikuti proses Autoregressive Moving Average (ARMA). Pada penelitian ini akan dibahas mengenai implementasi model βARMA dalam memodelkan dan juga meramalkan tingkat mortalitas. Data yang digunakan adalah data tingkat mortalitas tahunan Indonesia dari tahun 1960 hingga 2020 dengan trend menurun dan data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul dari Januari 2000 hingga Desember 2017 yang bersifat stasioner. Model βARMA terbaik untuk kedua data dipilih berdasarkan nilai Akaike’s Information Criterion (AIC) terkecil kemudian dilakukan peramalan untuk enam periode selanjutnya. Keakuratan peramalan diukur berdasarkan Root Mean Square Error (RMSE). Pada data tingkat mortalitas tahunan Indonesia, diperoleh nilai RMSE sebesar 0.0001, sementara pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, diperoleh nilai RMSE sebesar 0.0226.

The mortality rate is one of the indicators of progress in the health sector and to help identify groups of people who are prioritized to receive special health and development programs. The mortality rate can also be used to indicate the level of welfare and quality of life of a country. In addition, the mortality rate also plays a role in pricing premiums and calculating the benefit reserve (valuation) for insurance policies and annuity products, as well as playing a role in actuarial risk management and pension programs. Considering that the mortality rate is a random variable that changes from time to time and the value is in the interval (0,1), a model is needed to be able to forecast the mortality rate in the future. One model that has the potential to be able to model and forecast mortality rates is the Beta Autoregressive Moving Average (βARMA) model. The βARMA model is a development of beta regression where the error model follows the Autoregressive Moving Average (ARMA) process. In this study, we will discuss the implementation of the βARMA model in modeling and forecasting mortality rates. The data used are Indonesia's annual mortality rate data from 1960 to 2020 with a decreasing trend and the monthly mortality rate data due to work accidents in Rio Grande do Sul from January 2000 to December 2017 which is stationary. The best βARMA model for both data is selected based on the smallest Akaike's Information Criterion (AIC) value then a forecast is made for the next six periods. Forecasting accuracy is measured based on Root Mean Square Error (RMSE). In Indonesia's annual mortality rate data, the RMSE value is 0.0001, while in the monthly mortality rate data due to work accidents in Rio Grande do Sul, the RMSE value is 0.0226."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Clarissa Nethania
"Tingkat mortalitas merupakan komponen penting dalam analisis kesehatan masyarakat yang diperlukan oleh banyak institusi seperti pemerintah, organisasi kesehatan, hingga perusahaan asuransi. Akan tetapi, data tingkat mortalitas merupakan data yang terus berubah seiring berjalannya waktu sehingga dibutuhkan peramalan tingkat mortalitas. Untuk melakukan peramalan tingkat mortalitas, diperlukan kesesuaian dari berbagai metode dan model untuk dapat memaksimalkan tingkat akurasi dari nilai hasil ramalan. Untuk mencapai hal tersebut, skripsi ini melakukan simulasi peramalan dengan model Cairns-Blake-Dowd (CBD) yang diaplikasikan terhadap data Tingkat Mortalitas Indonesia untuk jenis kelamin laki-laki yang bersifat tahunan. Model CBD sendiri memiliki dua parameter yang diestimasi menggunakan metode Least Square. Lalu, dikarenakan sifat parameter yang merupakan deret waktu multivariat, akan digunakan metode peramalan berupa Vector Autoregressive Integrated Moving Average (VARIMA). Hasil ramalan tersebut kemudian disubstitusikan kembali ke dalam model CBD untuk mendapatkan nilai tingkat mortalitas pada tahun-tahun berikutnya. Dalam menentukan akurasi hasil peramalan dari metode VARIMA dan estimasi parameter dari metode Least Square tersebut, digunakan metode Mean Squared Error (MSE).

Mortality rate is a crucial component in the analysis of public health which is required by various institutions such as the government, health organizations, and insurance companies. However, mortality rate data is constantly changing over time, necessitating the forecasting of mortality rates. Therefore, to forecast mortality rates, the alignment of various methods and models is necessary to maximize the accuracy of the forecasted values. To achieve this, this thesis will conduct a forecasting simulation using the Cairns-Blake-Dowd (CBD) model applied to Indonesian Mortality Rate data for males on an annual basis. The CBD model itself has two parameters to be estimated using the Least Square method. Then, due to the nature of the parameters as a multivariate time series, the Vector Autoregressive Integrated Moving Average (VARIMA) forecasting method will be employed. The forecasted results will be substituted back into the CBD model to obtain mortality rate values for the upcoming years. In determining the accuracy of the forecasting results from VARIMA and estimation from Least Square, the Mean Squared Error (MSE) method will be utilized."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Filbert Jose Chaivier
"Model Kumaraswamy Autoregressive Moving Average (KARMA) merupakan suatu model runtun waktu yang digunakan untuk data runtun waktu yang terbatas pada interval tertentu (a,b) dan diasumsikan mengikuti distribusi Kumaraswamy. Distribusi Kumaraswamy adalah distribusi yang memiliki dua shape parameter, yaitu dan yang menyebabkan distribusi ini memiliki keanekaragaman bentuk grafik fungsi densitas probabilitas seperti unimodal, fungsi naik, fungsi turun, dan fungsi konstan. Pada praktiknya, distribusi ini sering diaplikasikan pada berbagai bidang seperti bidang hidrologi, kesehatan, ekonomi, dan lain-lain. Model KARMA dibentuk dari regresi Kumaraswamy dengan asumsi error model mengikuti proses ARMA. Pada model KARMA, median variabel respon dihubungkan dengan variabel-variabel prediktor (regresor) menggunakan sebuah fungsi penghubung yang monoton, kontinu, dan dapat diturunkan. Metode estimasi parameter model KARMA adalah Conditional Maximum Likelihood Estimation (CMLE) karena dalam proses estimasi diperlukan distribusi bersyarat dari periode sebelumnya. Model KARMA selanjutnya diaplikasikan pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, Brazil dari Januari 2000 hingga Desember 2017 karena data tingkat mortalitas merupakan data yang terbatas pada interval (0,1). Model KARMA terbaik untuk data dipilih berdasarkan nilai Akaike’s Information Criterion (AIC) terkecil kemudian dilakukan peramalan untuk enam periode selanjutnya. Pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, digunakan model terbaik KARMA(3,3) dengan nilai MAPE sebesar 19.0988%.

The Kumaraswamy Autoregressive Moving Average (KARMA) model is a time-series model used for time-series data that is limited to a certain interval (a,b) and is assumed to follow the Kumaraswamy distribution. The Kumaraswamy distribution is a distribution that has two shape parameters, namely and which causes this distribution to have a diverse of graphic forms of probability density functions such as unimodal, increasing functions, decreasing functions, and constant functions. In practice, this distribution is often applied to various fields such as hydrology, health, economics, and other fields. The KARMA model is formed from Kumaraswamy regression assuming the error model follows the ARMA process. In the KARMA model, the median of response variable is linked to the predictor variables (regressor) using a monotonous, continuous, and derivable connecting function. The method used for parameter estimation in KARMA model is Conditional Maximum Likelihood Estimation (CMLE) because a conditional distribution of previous periods is required in the estimation process. The KARMA model will then be applied to monthly mortality rates due to occupational accidents in Rio Grande do Sul, Brazil from January 2000 to December 2017 data because mortality rate data is bounded to the interval (0.1). The best KARMA model for the data was selected based on Akaike's smallest Information Criterion (AIC) values and then forecasted for the next six periods. In the data on the monthly mortality rate due to work accidents in Rio Grande do Sul, a MAPE value of 19.0988% was obtained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shantika Martha
"ABSTRAK
Pergerakan tingkat bunga merupakan salah satu faktor yang perlu diperhatikan dalam berinvestasi. Untuk menentukan nilai tingkat bunga pada waktu tertentu sebaiknya investor memiliki pengetahuan tentang pergerakan tingkat bunga. Pergerakan tingkat bunga dapat direpresentasikan oleh model tingkat bunga dalam bentuk persamaan diferensial stokastik. Model tingkat bunga pada tesis ini adalah model CARMA (2,1) dengan . Dalam implementasi, digunakan 2 buah data tingkat bunga harian zero-coupon bond dengan masa jatuh tempo 5 tahun yaitu periode 2 Maret 2009 sampai dengan 26 Februari 2010 yang bersifat tidak stasioner dan data periode 1 Agustus 2011 sampai dengan 31 Oktober 2011 yang bersifat stasioner. Estimasi parameter model CARMA (2,1) dilakukan dengan cara menggunakan hasil estimasi parameter proses ARMA (2,1) yang ditransformasikan ke dalam proses CARMA (2,1) berdasarkan suatu proposisi. Hasil implementasi menggunakan data yang stasioner menunjukkan bahwa estimasi nilai parameter yang diperoleh dapat merepresentasikan cukup baik pergerakan data historis tingkat bunga yang digunakan.

ABSTRACT
The dynamics of interest rates are cause for concern on investment. To determine the interest rate at a certain time, the investors should have knowledge about the dynamics of interest rates. The dynamics of interest rates can be represented by an interest rate model which is a stochastic differential equation (SDE). The interest rate model used in this thesis is CARMA (2,1) model with . In the implementation, we use two periods of daily interest rate data for zero-coupon bond with five years maturity date. They are non-stationary data for the period from March 2, 2009 to February 26, 2010, and stationary data from August 1, 2011 to October 31, 2011. Estimation of CARMA(2,1) parameters is obtained by applying the parameter estimation of ARMA(2,1) process and then transforming it into CARMA(2,1) process based on a proposition. The results of implementation using stationary data show that the parameters obtained can represent the historical interest rate data quite well."
Universitas Indonesia, 2013
T33107
UI - Tesis Membership  Universitas Indonesia Library
cover
Intan Alifia Izziati
"ABSTRAK

Tingkat mortalitas digunakan dalam menghitung besar premi, anuitas pensiun, cadangan asuransi hidup, dan berbagai produk asuransi jiwa lainnya. Untuk itu perlu dilakukan peramalan tingkat mortalitas untuk masa yang akan datang. Kenaikan tingkat mortalitas dipandang sebagai akibat dari proses penuaan manusia yang didasarkan pada suatu indeks kesehatan, yaitu usia fisiologis. Rantai Markov Waktu Kontinu dengan satu absorbing state digunakan untuk memodelkan proses penuaan. Waktu yang dihabiskan sebelum masuk ke dalam absorbing state didefinisikan sebagai waktu bertahan hidup hingga terjadi kematian dan mengikuti Coxian phase type distribution. Fungsi survival dari distribusi yang digunakan dalam peramalan tingkat mortalitas dapat ditentukan. Penaksiran parameter model diperoleh dengan meminimumkan jumlah kuadrat errors dari fungsi survival. Kemudian dilakukan fitting model untuk melihat hasil peramalan tingkat mortalitas untuk data laki-laki dan perempuan. Hasil simulasi menyatakan bahwa model menunjukkan fit yang memuaskan dan dapat digunakan dalam meramalkan tingkat mortalitas usia tua pada data laki-laki dan semua usia pada data perempuan.


ABSTRACT


Mortality rates are used in calculating premiums, pension annuities, life insurance reserves, and other life insurance products. Therefore, it is necessary to forecast the mortality rate for the future time. Increasing in mortality rates are seen as a result of the aging process based on a health index called physiological age. Continuous Time Markov Chain with one absorbing state is used to model the aging process. The time spent before entering the absorbing state is defined as the survival time until death occurs and under the Coxian phase type distribution. The survival function can be determined from this distribution and used in forecasting mortality rates. The parameters estimation is obtained by minimizing sum squares of errors from the survival function. Then model fitting are performed to see the result of forecasting mortality rates for man and woman data. Simulation results indicate that the model show satisfactory fit and can be used in forecasting old age mortality for man and all age for woman.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Al Kafi
"Populasi di Indonesia selalu mengalami perubahan dari tahun ke tahun karena peningkatan dan penurunan tingkat mortalitas yang berkelanjutan. Teori untuk meramalkan dan menganalisis tingkat mortalitas telah menarik minat perusahaan-perusahaan asuransi jiwa. Jika informasi tentang tingkat mortalitas nasabah untuk beberapa tahun kedepan dapat diperoleh di masa sekarang, maka perencanaan keuangan dan kebijakan dalam menentukan besarnya premi yang harus dibayarkan oleh nasabah kepada perusahaan asuransi tersebut akan lebih baik dan terarah. Tesis ini mengusulkan model Cairns-Blake-Dowd (CBD) untuk meramalkan tingkat mortalitas penduduk di Indonesia berdasarkan jenis kelamin. Model CBD memuat dua parameter yang bergantung waktu. Tahap pertama adalah menggunakan metode Least Square untuk mengestimasi nilai dari parameter-parameter pada model CBD. Pada tahap kedua, nilai dari parameter-parameter yang diperoleh dari tahap pertama diproyeksikan untuk empat periode kedepan menggunakan metode Holts Linear Trend. Kemudian nilai proyeksi dari parameter-parameter yang diperoleh dari tahap kedua digunakan untuk menghitung nilai ramalan dari tingkat mortalitas untuk empat periode kedepan menggunakan model CBD. Keakuratan dari hasil simulasi numerik yang dilakukan pada tahap pertama dan kedua diverifikasi oleh Mean Absolute Error (MAE).

The population of Indonesia always changes from year to year due to continuous increase and decrease in mortality rates. The theory of predicting and analyzing mortality rates has attracted the interest of life insurance companies. If information about the mortality rates of a customer for the next few periods can be obtained in the present, then the financial planning and policy in determining the amount of premium that must be paid by a customer to the insurance company are expected to be better and more directed. This thesis proposes the Cairns-Blake-Dowd (CBD) model to forecast the mortality rates of Indonesia population based on gender. The CBD model contains two time-dependent parameters. The first stage is to use the Least Square method to estimate these parameters. In the second stage, the parameters obtained from the first stage are projected for the next four periods using Holts Linear Trend method. Then the projection parameters obtained from the second stage are used to calculate the mortality rates for the next four periods using the CBD model. The accuracy of the numerical simulation results carried out in the first and second stages is verified by the Mean Absolute Error (MAE)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Arman Haqqi Anna Zili
"Jika informasi mengenai tingkat mortalitas untuk beberapa periode ke depan bisa didapatkan di masa sekarang maka perencanaan keuangan dan kebijakan yang akan diambil diharapkan dapat lebih baik dan terarah. Dalam penelitian ini, model yang digunakan untuk menghitung tingkat mortalitas adalah model Lee-Carter. Kemudian tingkat mortalitas pada masa mendatang akan diramalkan menggunakan bantuan metode ARIMA Auto Regressive Integrated Moving Average . Proses peramalan akan diimplementasikan menggunakan perangkat lunak R. Hasil akhir peramalan akan disajikan dalam bentuk tabel dan grafik.

If information about the mortality rate for some future periods can be obtained in the present then the financial planning and policy to be taken are expected to be better and directed. The model used to calculate the mortality rate in this paper is the Lee Carter model. Then future mortality rates will be forecast with the use of the ARIMA Auto Regressive Integrated Moving Average method. Meanwhile, the forecasting process will be implemented using software R. The final result of forecasting will be presented in tabular and graphical form."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49536
UI - Tesis Membership  Universitas Indonesia Library
cover
Fitri Yulianti
"Gas merupakan sumber energi yang sangat besar potensinya di Indonesia. Penelitian ini memodelkan tingkat produksi gas dari tiga perusahaan besar dan juga tingkat produksi Indonesia secara keseluruhan kemudian memprediksi tingkat produksi gas pada periode yang akan datang. Dalam hal ini digunakan analisis deret waktu ARIMA dan data dari periode Januari 2005 ? Desember 2011. Hasilnya model ARIMA yang sesuai untuk meramalkan tingkat produksi Total E&P Indonesia adalah ARIMA (4,2,1) dengan MAPE 4.854 %, Pertamina adalah ARIMA (2,2,2) dengan MAPE 5.864%, dan Conoco Phillips Grissik sesuai dengan ARIMA (4,2,1) dengan MAPE 6.207%. Sedangkan model ARIMA peramalan tingkat produksi gas di Indonesia adalah ARIMA (4,2,1) dengan MAPE 3.607 %.

Gas is an enormous sourceenergy potential in Indonesia. This study is to model gas production rate of three major companies and the production of Indonesia as a whole and then predict the gas production rate in the next period. For the purpose, the data used are from the period January 2005 - December 2011. The result is the appropriate ARIMA models to forecast the gas production rate of Total E & P Indonesia is ARIMA (4,2,1) with MAPE 4.854%, Pertamina is ARIMA (2,2,2) with MAPE 5.864%, and Conoco Phillips Grissik according to ARIMA (4,2,1) with MAPE 6.207%. While ARIMA model forecasting gas production rate in Indonesia is appropriate ARIMA (4,2,1) with MAPE 3.607%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S45708
UI - Skripsi Open  Universitas Indonesia Library
cover
Nanda Purnomo Aji
"ABSTRAK
Harga premi asuransi jiwa di Indonesia dipengaruhi oleh tabel kematian Indonesia digunakan oleh masing-masing perusahaan asuransi, seperti tabel kematian Indonesia berdasarkan jenis kelamin. Jika informasi tahun mendatang tabel kematian Indonesia berdasarkan jenis kelamin dapat diketahui, informasi tersebut dapat bermanfaat bagi perusahaan asuransi untuk mengatur premi
strategi perhitungan sehingga lebih cocok untuk menghadapi risiko di masa depan. Makalah ini memprediksi tabel angka kematian Indonesia berdasarkan jenis kelamin selama lima periode ke depan dengan menggunakan Lee- Model Carter. Parameter model Lee-Carter diperkirakan dengan menggunakan Least Square metode dan metode Newton Raphson, sedangkan prediksi parameter yang tergantung pada waktu menggunakan metode Double Moving Average. Keakuratan hasil estimasi dan perkiraan
diukur dengan menggunakan Mean Absolute Perscentage Error (MAPE). Dari penelitian ini, Tabel kematian Indonesia berdasarkan jenis kelamin diperoleh untuk periode 2015-2020 sampai
2035-2040.

ABSTRACT
The price of life insurance premiums in Indonesia is influenced by Indonesia's death tables used by each insurance company, such as Indonesia's death tables by sex. If the next year's information on Indonesia's death table based on sex can be known, this information can be useful for insurance companies to manage premiums calculation strategies so that it is more suitable for dealing with risks in the future. This paper predicts Indonesia's mortality table by sex over the next five periods using the Lee-Carter Model. The Lee-Carter model parameters are estimated using the Least Square method and Newton Raphson method, while the parameter predictions that depend on time use the Double Moving Average method. Accuracy of estimation and estimation results measured using Mean Absolute Perscentage Error (MAPE). From this study, Indonesian death tables by sex were obtained for the period 2015-2020
2035-2040.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aldi Rahmansyah Kurnia
"

Seiring dengan meningkatnya taraf hidup dan konsumsi masyarakat di Indonesia, permintaan produk Fast Moving Consumer Goods (FMCG) pun mengalami peningkatan khususnya produk FMCG pada kategori Nutrisi. Hal ini tentunya menjadi potensi keuntungan bagi perusahaan jika bisa memanfaatkan kondisi dengan baik. Untuk mengoptimalkan potensi yang ada, perusahaan perlu memastikan bahwa produknya bisa menjangkau masyarakat luas dengan tepat waktu, hal ini perlu didukung oleh rencana produksi yang baik. Hal utama yang menjadi acuan perusahaan memproduksi sebuah produk adalah peramalan permintaan di waktu yang akan datang. Peramalan akan menjadi acuan perusahaan untuk menentukan seberapa banyak produk yang harus diproduksi dalam kurun waktu tertentu. Peramalan yang baik akan membantu perusahaan untuk meningkatkan keuntungan dan meminimalisasi kerugian yang timbul akibat kesalahan dalam perhitungan produksi. Selain peramalan, perusahaan pun perlu menentukan jumlah safety stock dan reorder point untuk membantu perusahaan dalam memastikan bahwa stok yang dimiliki bisa terus memenuhi permintaan pasar.


Along with the increasing standard of living and public consumption in Indonesia, the demand for Fast Moving Consumer Goods (FMCG) products has also increased, especially for FMCG products in the Nutrition category. This is a great potential profit for the company if it can take the advantages of the conditions properly. To optimize the potential that exists, companies need to ensure that their products can reach the wider community at the right time, this needs to be supported by a good production plan. The main thing that becomes a reference for producing a product is forecasting demand in the future. Forecasting will be a reference for the company to determine how many products must be produced within a certain time. Good forecasting will help companies to increase profits and minimize losses arising from errors in production calculations. In addition to forecasting, companies also need to determine the amount of safety stock and reorder points to help companies ensure that their stock can continue to meet market demand.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>