Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 116245 dokumen yang sesuai dengan query
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adila Rachmatika
"Kanker payudara (KPD) merupakan salah satu penyakit yang masih banyak terjadi di negara berkembang seperti Indonesia. Di Indonesia sendiri, KPD menempati peringkat pertama terbanyak dari berbagai jenis kanker yang terjadi.  Pendeteksian kanker ini dapat dilakukan sejak dini dengan memeriksa manual apakah terdapat benjolan atau kelainan pada payudara. Jika terasa ada benjolan, maka disarankan untuk diperiksa ke dokter dengan berbagai metode, seperti mammogram, Magnetic Resonance Imaging (MRI), dan USG. Diagnosa citra ini sering terkendala karena tidak setiap rumah sakit memiliki tenaga spesialis radiologi. Maka dari itu, untuk mengatasinya diperlukan bantuan komputer untuk mendiagnosa citra tersebut yang sering disebut computer aided diagnostis (CAD). Algoritma Convolutional Neural Network didasari pada hasil pemeriksaan rutin citra x-ray payudara normal/abnormal yang cenderung menunjukkan perubahan, salah satunya tekstur (konten). Data yang digunakan pada penelitian ini diambil dari website Pilot European Image Processing Archive (PEIPA) yaitu dataset Mammographic Image Analysis Society (MIAS). Sistem dimulai dengan mengenal dan mempelajari data 3 jenis mamografi, yakni mamografi normal (sehat), mamografi benign, dan mamografi malignant. Setelah mempelajari data tersebut, sistem akan mencoba untuk mendeteksi jenis kanker payudara dari data baru yang dimasukkan. Nilai akurasi yang didapatkan adalah 100%, dengan rasio data pembelajaran sebanyak 1247 data (setelah diaugmentasi) dan data pengujian sebanyak 93 data, sehingga disimpulkan bahwa sistem ini baik. Namun nilai ini hanya untuk data MIAS, sehingga masih perlu pengembangan lebih lanjut supaya dapat diterapkan ke data-data yang lain juga.

Breast Cancer (BC) is one of the diseases that still occur a lot in developing countries like Indonesia. In Indonesia alone, BC is the number one most occurrence cancer. This cancer detection can be done early by manual, checking if there is any lump or abnormality in breast. If there are any lump, it is recommended to go check in hospital. There are a lot of methods like Magnetic Resonance Imaging (MRI), and Ultrasonography (USG). This image diagnostics sometimes got constrained by the lack of radiology specialist in some hospital. Therefore, to counter this problem, Computer Aided Diagnostics (CAD) help is needed to detect those images. Convolutional Neural Network algorithm is based on the result of the routine x-ray's check of breast, both normal and abnormal which tend to show some changes, which one of them is texture (content). Data used in this research came from Pilot European Image Processing Archive (PEIPA) website, Mammographic Image Analysis Society (MIAS) database. The system start by recognizing and learning 3 types of mammograph data, normal (healthy), benign and malignant. Then, system will try to detect and classify breast cancer type from the new input data. The accuracy score is 100%, with a ratio of 1247 datas for learning (after augmented) and 93 datas for testing, so it can be concluded that this system is good. But this score is achieved only for MIAS data, it still need further improvement  so it can be applied to another data."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Naufal Hisyam
"Turbiditas adalah salah satu ukuran yang sering digunakan untuk menilai kualitas air. Pengukuran turbiditas dapat dijadikan estimasi untuk mengetahui parameter fisis lain seperti zat padat tersuspensi total (TSS) atau parameter biologis seperti konsentrasi mikroorganisme. Beberapa penelitian telah mencoba menerapkan metode computer vision untuk memprediksi nilai turbiditas dari citra sebuah sampel air. Kebanyakan penelitian yang dilakukan masih menggunakan ekstraksi fitur secara manual sehingga diperlukan pengetahuan yang mencukupi terkait pengolahan citra dan pengukuran turbiditas. Pada penelitian ini dibuat sistem instrumentasi prediksi nilai turbiditas air berbasis pengolahan citra ponsel dengan ekstraksi fitur dan regresi oleh model deep convolutional neural network (DCNN). Penggunaan DCNN memungkinkan dilakukannya untuk melakukan ekstraksi fitur secara otomatis. Arsitektur DCNN yang digunakan yaitu ResNet-50 dan DenseNet-121. Efektivitas penerapan transfer learning berupa weight initialization pada DCNN juga ditinjau dalam kasus ini. Sampel yang digunakan pada penelitian ini berupa suspensi formazin dengan berbagai nilai turbiditas untuk pelatihan model dan beberapa sampel air untuk validasi model. Sampel disinari oleh LED di dalam kotak akuisisi yang dibuat untuk menampakkan fitur. Citra dari sampel diakuisisi menggunakan ponsel Samsung S20 FE dari dua sudut berbeda yaitu 0° (turbidimetry) dan 90° (nephelometry) terhadap sampel. Hasil terbaik pada penelitian ini diperoleh oleh Model ResNet-50 dengan transfer learning yang memperoleh MAE sebesar 2.44 untuk sampel formazin dan 7.31 untuk sampel air dengan citra turbidimetry. Hasil penelitian menunjukkan potensi menjanjikan penggunaan DCNN pada kasus regresi nilai turbiditas air untuk dikembangkan lebih lanjut.

Turbidity is a measure that is often used to assess water quality. Turbidity measurements can be used as estimates to determine other physical parameters such as total suspended solids (TSS) or biological parameters such as the concentration of microorganisms. Several studies have tried to apply computer vision methods to predict the turbidity value from images of water samples. Most of the research conducted still uses manual feature extraction, hence sufficient knowledge regarding image processing and turbidity measurements is needed. In this study, an instrumentation system for predicting water turbidity values based on mobile phone images is made. The feature extraction and regression process are done using a deep convolutional neural network (DCNN) model. The use of DCNN allows it to perform feature extraction automatically. The DCNN architecture used is ResNet-50 and DenseNet-121. The effectiveness of implementing transfer learning in the form of weight initialization on DCNN is also reviewed in this study. The samples used in this study were formazine suspensions with various turbidity values for model training and several water samples for model validation. The sample is illuminated by an LED inside an acquisition box to reveal its features. The images of the samples were acquired using a Samsung S20 FE mobile phone from two different angles, namely 0° (turbidimetry) and 90° (nephelometry) to the sample. The best results in this study were obtained by the ResNet-50 model with transfer learning applied which obtained MAE values of 2.44 for formazine samples and 7.31 for water samples using turbidimetry images. The results show the promising potential for further development of DCNN usage in the case of water turbidity values regression."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arif Luqman Hakim
"Badan Meteorologi Klimatologi dan Geofisika (BMKG) memiliki tugas untuk memberikan informasi cuaca termasuk curah hujan. Cuaca merupakan seluruh fenomena yang terjadi di atmosfer bumi. Kondisi cuaca baik hujan atau cerah sangat mempengaruhi aktivitas masyarakat dalam kehidupan sehari-hari, terutama untuk aktivitas di luar ruangan. Kondisi hujan yang terjadi dapat ditentukan dengan adanya curah hujan. BMKG memiliki beberapa jenis alat pengukur curah hujan, dengan jumlah yang belum merata di seluruh wilayah. Harga peralatan itu relative mahal. Solusi yang bisa dilakukan untuk menambah kerapatan pengamatan curah hujan yaitu dengan memanfaatkan sumber yang sudah ada untuk mendapatkan informasi cuaca.
Penelitian ini akan memanfaatkan CCTV yang tersebar di wilayah Jakarta untuk diolah sehingga menghasilkan informasi kondisi hujan. Metode yang digunakan yaitu melakukan image processing menggunakan metode Convolutional Neural Network (CNN). Gambar CCTV akan diambil dari internet secara otomatis dengan metode crawling untuk mendapatkan data citra digital. Gambar yang telah tersedia selanjutnya akan dilakukan proses pelatihan dan pengujian model untuk mendapatkan model dengan akurasi terbaik.
Hasil dari model ini akan digunakan untuk deteksi hujan pada citra digital CCTV. Proses deteksi hujan akan dilakukan secara otomatis dan real time. Hasil proses deteksi hujan akan ditampilkan ke dalam peta sesuai dengan lokasi terpasangnya CCTV. Penelitian ini telah membuat model CNN untuk deteksi hujan secara otomatis dengan akurasi training 98,8% dan akurasi testing sebesar 96,4% serta telah dilakukan evaluasi dengan data pengamatan BMKG sehingga memiliki akurasi evaluasi sebesar 96,7%.

Meteorology Climatology and Geophysics Agency (BMKG) has the duty to provide weather information including rainfall. Weather is a whole phenomenon that occurs in the Earth's atmosphere. Rainy or sunny weather conditions greatly affect community activities in daily life, especially for outdoor activities. Rainfall conditions that occur can be determined by the presence of rainfall. BMKG has several types of rainfall gauges, with a number that has not been evenly distributed throughout the region. The price of the equipment is relatively expensive. The solution that can be done to increase the density of rainfall observations is to utilize existing sources to obtain weather information.
This research will utilize CCTV that is spread in the Jakarta area to be processed so as to produce information on rain conditions. The method used is to do image processing using the Convolutional Neural Network (CNN) method. CCTV images will be taken from the internet automatically by the crawling method to get digital image data. The available images will then be carried out a training process and model testing to get the model with the best accuracy. The results of this model will be used for rain detection on digital CCTV images. The rain detection process will be done automatically and in real time.
The results of the rain detection process will be displayed on the map according to the location of the installed CCTV. This research has made a CNN model for automatic rain detection with 98.8% training accuracy and 96.4% testing accuracy and has been evaluated with BMKG observation data so that it has an evaluation accuracy of 96.7%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T55081
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Novian Rahman Hakim
"Kanker payudara adalah salah satu kanker paling umum terjadi di kalangan wanita dan tingkat kelangsungan hidupnya cenderung rendah ketika stadiumnya ditemukan sudah tinggi. Untuk meningkatkan kelangsungan hidup kanker payudara, deteksi dini sangat penting. Ada dua cara untuk mendeteksi kanker payudara: diagnosis dini dan skrining. Untuk membuat diagnosa yang akurat pada stadium awal kanker payudara, munculnya massa dan mikro-kalsifikasi pada citra mamografi merupakan dua indikator penting. Beberapa Computer-Aided Detection (CADe) telah dikembangkan untuk mendukung ahli radiologi karena pendeteksian mikro-kalsifikasi penting dalam menegakkan diagnosis dan perawatan yang direkomendasikan berikutnya. Sebagian besar sistem CADe yang ada saat ini mulai menggunakan Convolutional Neural Network (CNN) untuk mengimplementasikan deteksi mikro-kalsifikasi pada mammogram dan hasil kuantitatifnya sangat memuaskan, rata-rata tingkat akurasinya lebih dari 90%. Penelitian ini melakukan pendekatan otomatis untuk mendeteksi lokasi setiap mikro-kalsifikasi pada citra mammogram yang lengkap dan secara sederhana. Total lebih dari 350 gambar dari dataset INbreast digunakan dalam studi penelitian ini serta implementasi menggunakan data lokal Rumah Sakit (RS) sebanyak 23 citra. Proses ini dapat membantu ahli radiologi untuk melakukan diagnosis dini dan meningkatkan akurasi deteksi wilayah mikro-kalsifikasi. Performa sistem yang diusulkan diukur berdasarkan nilai error Mean Squared Logarithmic Error (MSLE) sebagai teknik untuk mengetahui perbedaan antara nilai yang diprediksi oleh model yang diusulkan dan nilai sebenarnya, didapat nilai loss terbaik yang diperoleh adalah 0,05. Hasil validasi daring mendapatkan nilai sensitivitas sebesar 88.14%, presisi 91.6% dan akurasi sebesar 90.3%. Hasil implementasi pada data lokal RS menunjukkan model CADe dapat mendeteksi mikro-kalsifikasi dengan cukup baik.

Breast cancer is one of the most common cancer among women and the survival rate tends to be low when its stage found high when treated. To improve breast cancer survival, early detection is critical. There are two ways of detection for breast cancer: early diagnosis and screening. To make an accurate diagnosis in the early stage of breast cancer, the appearance of masses and micro-calcifications on the mammography image are two important indicators. Several Computer-Aided Detection (CADe) have been developed to support radiologists because the automatic detection of micro-calcification is important for diagnosis and the next recommended treatment. Most of the current CADe systems at this time started using Convolutional Neural Network (CNN) to implement the micro-calcification detection in mammograms and their quantitative results are very satisfying, the average level of accuracy is more than 90%. This research conducts an automated approach to detect the location of any micro-calcification in the mammogram images with the complete image and in a simple way. A total more than 350 images from INbreast dataset were used in this research study and for implementation used 23 images from local hospital data. This process can help as an assistant to the radiologist for early diagnosis and increase the detection accuracy of the microcalcification regions. The proposed system performance is measured according to the error values of Mean Squared Logarithmic Error (MSLE) as the technique to find out the difference between the values predicted by the proposed model and the actual values, the best loss value obtained by the training model was achieved in 0.05. The results for data online validation for sensitivity is 88.14%, precision is 91.6% and accuracy is 90.3%. The CADe model can detect micro-calcification quite well using local hospital data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yumna Pratista Tastaftian
"Speech Emotion Recognition adalah teknologi yang mampu bisa mendeteksi emosi lewat data suara yang diproses oleh sebuah mesin. Media yang sering digunakan untuk menjadi media interaksi antara 2 orang atau lebih yang saat ini sedang digunakan oleh banyak orang adalah Podcast, dan Talkshow. Seiring berkembangya SER, penelitian terakhir menunjukkan bahwa penggunaan metode Deep Learning dapat memberikan hasil yang memuaskan terhadap sistem SER. Pada penelitian ini akan diimplementasikan model Deep Learning yaitu dengan Recurrent Neural Network (RNN) variasi Long Short Term Memory (LSTM) untuk mengenali 4 kelas emosi (marah, netral, sedih, senang). Penelitian ini menguji model yang digunakan untuk mengenali emosi dari fitur akustik pada data secara sekuensial. Skenario training dan testing dilakukan dengan metode one-against-all dan mendapatkan hasil (1) Dataset talkshow mengungguli dataset podcast untuk tipe 1 dan 2 dan untuk semua emosi yang dibandingkan; (2) Untuk dataset podcast pada emosi marah, senang, dan sedih didapatkan akurasi optimal pada dataset tipe 1 yaitu 67.67%, 71.43%, dan 68,29%, sedangkan untuk emosi netral didapatkan akurasi terbaik pada dataset tipe 2 dengan 77.91%; (3) Untuk dataset talkshow pada emosi marah, netral, dan sedih didapatkan akurasi terbaik pada dataset tipe 2 yaitu 78.13%, 92.0%, dan 100%. Dapat disimpulkan bahwa dataset talkshow secara garis besar memberikan hasil yang lebih optimal namun memiliki variasi data yang lebih sedikit dari dataset podcast. Dari sisi panjang data, pada penelitian ini didapatkan akurasi yang lebih optimum pada dataset dengan tipe 2.

Speech Emotion Recognition is a technology that is able to detect emotions through voice data that is processed by a machine. Media that is often used to be a medium of interaction between two or more people who are currently being used by many people are Podcasts, and Talkshows. As SER develops, recent research shows that the use of the Deep Learning method can provide satisfactory results on the SER system. In this study a Deep Learning model will be implemented, this study uses Long Short Term Memory (LSTM) as one of the variation of Recurrent Neural Network (RNN) to recognize 4 classes of emotions (angry, neutral, sad, happy). This study examines the model used to recognize emotions from acoustic features in sequential data. Training and testing scenarios are conducted using the one-against-all method and get results (1) The talkshow dataset outperforms the podcast dataset for types 1 and 2 and for all emotions compared; (2) For the podcast dataset on angry, happy, and sad emotions, the optimal accuracy in type 1 dataset is 67.67%, 71.43%, and 68.29%, while for neutral emotions the best accuracy is obtained in type 2 dataset with 77.91%; (3) For the talkshow dataset on angry, neutral, and sad emotions the best accuracy is obtained for type 2 datasets, namely 78.13%, 92.0%, and 100%. It can be concluded that the talkshow dataset in general gives more optimal results but has fewer data variations than the podcast dataset. In terms of data length, this study found more optimum accuracy in dataset with type 2."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elkania Samanta Nagani
"Penyakit mata perlu pendeteksian dan diagnosis yang tepat mengingat peran organ mata yang penting dalam kehidupan. Salah satu cara mendeteksi penyakit mata yang menyebabkan kebutaan adalah melalui ophthalmoscopy, dengan hasil pemeriksaan berupa citra fundus. Penelitian ini menggunakan metode Convolution Neural Network (CNN) dengan arsitektur CO-ResNet. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi data multi-kelas penyakit mata. Preprocessing crop center dan resize digunakan dalam penelitian ini agar ukuran data citra dapat dijadikan input model. Fungsi optimasi untuk meminimalkan loss function ketika melatih model yang digunakan dalam penelitian ini adalah fungsi Adam dengan setting hyperparameter learning rate, epoch, 𝛽1 , dan 𝛽2 . Fungsi loss yang digunakan untuk masalah pengklasifikasian multikelas dalam penelitian ini adalah categorical cross entropy. Hasil penelitian menunjukan nilai yang diperoleh dengan training loss terkecil sebesar 0,4066 dan validation loss terkecil sebesar 0,4950. Sementara itu, nilai training accuracy terbaik sebesar 87% dan validation accuracy terbaik sebesar 79%. Setelah melalui proses training, dilakukan proses testing untuk mengevaluasi kinerja model. Hasil testing terbaik yang didapat dengan nilai testing accuracy sebesar 75,25%, precision sebesar 75,6%, recall sebesar 75,4%, dan F1-score sebesar 75,4%. Secara keseluruhan, metode CO- ResNet bekerja dengan cukup baik dalam mengklasifikasi dan mendeteksi penyakit mata.

Eye diseases need proper detection and diagnosis considering the important role of eye organs in life. One way to detect eye diseases that cause blindness is through ophthalmoscopy, with the results of the examination being an image of the fundus. This research uses the Convolution Neural Network (CNN) method with CO-ResNet architecture. The data used in this study were taken from an online database containing data on multi-class eye diseases. Preprocessing crop center and resize are used in this study so that the size of the image data can be used as model input. The optimization function to minimize the loss function when training the model used in this study is the Adam function with the hyperparameters setting are learning rate, epoch, 𝛽1, and 𝛽2. The loss function used for the multiclass classification problem in this study is categorical cross entropy. The results showed that the value obtained with the smallest training loss was 0.4066 and the smallest validation loss was 0.4950. Meanwhile, the best training accuracy value is 87% and the best validation accuracy is 79%. After going through the training process, a testing process is carried out to evaluate the performance of the model. The best testing results were obtained with testing accuracy values of 75.25%, precision of 75.6%, recall of 75.4%, and F1-score of 75.4%. Overall, the CO-ResNet method works quite well in classifying and detecting eye diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diaz Ramadhan
"
Klorofil merupakan sekelompok pigmen amfifilik berwarna hijau yang memainkan peran
penting dalam proses fotosintesis. Ekstraksi dari klorofil secara tradisional kebanyakan akan
melibatkan teknik yang destruktif dan dapat mendegradasi molekul klorofil sehingga akan
mengurangi properti dari fungsionalitas senyawa. Dengan kemajuan teknologi, teknik untuk
ekstraksi klorofil dapat dilakukan dengan metode non-destruktif. Penelitian ini
memanfaatkan perkembangan teknologi tersebut dengan mencoba untuk
mengaplikasikannya untuk memprediksi kandungan klorofil berdasarkan varietas daun
menggunakan citra multispectral pada model ML dengan arsitektur CNN (Convolutional
Neural Network). Penelitian ini dilakukan dengan mencari sampel dari varietas daun untuk
mendapatkan populasi data, sampel-sampel tersebut akan diambil citranya dan diproses
sehingga tercipta suatu dataset yang dapat digunakan. Dataset-dataset ini selanjutnya akan
diberi beberapa perlakuan berbeda dan akan dicabangkan dengan augmentasi yang akan
menjadi varian dataset. Model dari arsitektur CNN yang digunakan berupa AlexNet dan
ResNet-18 yang dilatih untuk mendapatkan model regresi. Analisa dari hasil akan dilakukan
dengan mencari hasil akhir metrik R2 dan RMSE yang akan dibandingkan untuk uji
performa pada tiap dataset dengan model yang digunakan. Berdasarkan model yang telah
dilatih, dataset dengan performa terbaik berupa dataset 6 Channel dengan nilai pada model
AlexNet dengan parameter RMSE sebesar 8.02 pada label latih dan 8.76 pada label validasi,
dengan nilai R2 sebesar 0.84 pada label latih dan 0.79 pada label validasi. Sedangkan pada
model ResNet, dataset 6 Channel masih memiliki nilai performa terbaik pada kedua metrik
parameter. Namun, pada model ResNet, seluruh dataset mengalami penurunan performa
yang jauh dibanding model AlexNet, hal ini dapat disebabkan oleh sampel dataset yang
diambil maupun perlakuan dari dataset yang digunakan pada model ini.

Chlorophyll is a group of green amphiphilic pigments that play an important role in the
process of photosynthesis. Extraction of chlorophyll traditionally mostly involves
destructive techniques and can degrade the chlorophyll molecules, thereby reducing the
functional properties of the compounds. With the advancement of technology, techniques
for chlorophyll extraction can be done with non-destructive methods. This research utilizes
these technological developments by trying to apply them to predict chlorophyll content
based on leaf varieties using multispectral images in the ML model with CNN
(Convolutional Neural Network) architecture. This research is carried out by finding
samples of leaf varieties to obtain population data, these samples will be taken and processed
to create a dataset that can be used. These datasets will then be given several different
treatments and will be branched out with augmentation which will become variant datasets.
The models of the CNN architecture used in the form of AlexNet and ResNet-18 are trained
to obtain a regression model. Analysis of the results will be done by finding the final results
of the R2 and RMSE metrics which will be compared for performance testing on each dataset
with the model used. Based on the models that have been trained, the dataset with the best
performance is the 6 Channel dataset with a value on the AlexNet model with RMSE
parameters of 8.02 on the training label and 8.76 on the validation label, with an R2 value
of 0.84 on the training label and 0.79 on the validation label. While in the ResNet model,
the 6 Channel dataset still has the best performance value on both parameter metrics.
However, in the ResNet model, all datasets experience a significant decrease in performance
compared to the AlexNet model, this can be caused by the dataset samples taken or the
treatment of the datasets used in this model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>