Pengawasan bawah air sangat penting untuk memantau ekosistem laut, melindungi infrastruktur kritis, dan memastikan keamanan maritim dengan pendeteksian anomali, pelacakan aktivitas bawah air, dan perlindungan area sensitif. Namun, Kendaraan Bawah Air yang Dioperasikan dari Jarak Jauh (ROV) memiliki beberapa tantangan, salah satunya adalah arus bawah air sehingga diperlukan pengendali yang kuat untuk menjaga stabilitas. Skripsi ini memodelkan hubungan antara input dari RPM motor dengan pitch rate dan yaw rate sebagai output. Model Sistem Dinamis didapat dengan menggunakan data-data yang diperoleh selama uji lapangan di salah satu kolam uji coba di kota Bandung. Sebanyak 57,788 titik data dikumpulkan selama lima menit dan diolah menggunakan aplikasi MATLAB dengan memanfaatkan jaringan neural LSTM. Hasilnya menunjukkan bahwa dari Model Sistem Dinamis pitch rate didapatkan hasil simulasi terbaik dengan hyperparameter di dua layer LSTM, 900 Hidden Units, 1700 Epochs, 100 mini-batch size, 0.001 Initial Learning Rate, 0.8 Gradient Threshold, dan rasio training : testing sebesar 55:45, Selain itu, didapatkan nilai Root Mean Square Error (RMSE) training dan testing sebesar 0.041248 dan 0.2517. Pada Model Sistem Dinamis yaw rate didapatkan hasil simulasi terbaik dengan hyperparameter di dua layer LSTM, 950 Hidden Units, 2000 Epochs, 120 mini-batch size, 0.0005 Initial Learning Rate, 0.8 Gradient Threshold, dan rasio training : testing sebesar 55:45 dengan perolehan nilai RMSE training dan testing sebesar 0.030847 dan 0.70734. Dari simulasi yang telah dilakukan, penulis berhipotesis bahwa hasil simulasi telah cukup optimal untukĀ digunakan dalam pemodelan Sistem Dinamis pada Kendaraan Bawah Air yang Dioperasikan Jarak Jauh.