Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75344 dokumen yang sesuai dengan query
cover
Lengkong, Virnaria C.M.
"Kondisi perbankan di Indonesia dari tahun ke tahun mengalami peningkatan yang cukup tinggi setelah mengalami krisis ekonomi pada tahun 1997 Pada tahun 2004, tercatat persetujuan kredit baru di seluruh bank umum sebanyak Rp 31 1,63 triliun dimana jumlah ini meningkat 32,59% dari tahun 2003 yang mencapai Rp.235,04 triliun. Sehingga perbankan Indonesia dituntut untuk melakukan pengelolaan usaha dengan prinsip kehatihatian. Salah satu pengelolaan yang dilakukan perbankan adalah pengelolaan risiko Salah satu risiko vital yang butuh pengelolaan yang intcnsif adalah risiko kredit.
PT. Bank XYZ merupakan bank yang sudah menerapkan pengelolaan risiko kredit dengan menggunakan infrastruktur internal rating dalam pengukuran risiko kreditnya. Salah satu melode perhitungan risiko kredit dengan menggunakan sistem internal rating adalah Macro Simulation Approach. Dengan menggunakan pendekatan Macro Simulation, PT. Bank XYZ dapat melihat pengaruh faktor ekonomi makro terhadap probability of default debiturnya. Sehingga tidak semata-mata risiko dilihat pada kondisi keuangan debiturnya saja. Adapun faktor ekonomi makro yang diamati mencakup PDB, IHSG, inflasi, SBI, Kurs USD dan Kurs WY, dimana beberapa diantara faktor ekonomi tersebut mempengaruhi pergerakan credit rating debitur sektor manufaktur PT. Bank XYZ. Sebagai contoh, SBI mempengaruhi probabilitas credit rating BF menjadi E2, D2 menjadi D3, dan D3 menjadi E2.
Dengan pendekatan Macro Sinurlation Approach dapat diketahui probabilitas credit rating yang telah disesuaikan dengan pengaruh faktor ekonomi makro. Hasilnya adalah berupa matriks transisi conditional. Kemudian untuk mengetahui risiko kredit dilakukan pcrhitungan VaR krcdit) dengan menggunakan hasil probability of default kredit rating matriks transisi conditional (Macro Simmulation Approach). Sehingga jumlah maksimal kerugian yang dapat dialarni olch PT Bartk XYZ dari krcdit sektor manufaktur dengan tingkat keyakinan 95% adalah sebesar Rp.52 303 767 (dengan asumsi distribusi normal) atau Rp 181 105 913 495 (dengan asumsi distribusi tidak normal) Nilai diatas merupakan 0.0089% (dengan asumsi distribusi normal) atau 31.15% (dengan asumsi distribusi tidak normal) dari total kcseluruhan baki debet kredit sektor manufaktur. Dengan demikian PT. Bank XYZ diwajihkan untuk menyediakan pencadangan modal untuk meng-cover risiko krcdit sektor manufaktur sebesar 8% x 31,15% = 2,49% dari total baki debet pinjamannva.

After crisis at 1997. economic condition especially banking in Indonesia has been significantly grown. Year 2004, new credit approval for all banks achieved Rp. 311.63 billion. which is growth 32,59% from year 2003 for Rp. 235 04 billion. Subject to its growth. Indonesian banking should realized the risk especially credit risk that should be managed well.
PT. Bank XYZ has already established credit risk management with internal rating system in credit risk measurement One of credit risk measurement method using internal rating is Macro Simulation Approach. With Macro Simulation Approach. PT. Bank XYZ can observe the influence of macro economic factors aligned with probability of default of each company. The macro economic factors such as Gross Domestic Product (PDB), Indonesian Stock Price Index (1HSG). inflation. Government T-bills (SBI). USD Foreign Exchange (Kurs USD) and JPY Foreign Exchange (Kurs JPY) had effect on credit rating movement for credit manufacture at PT. Bank XYZ. For example. SBI had effect on probability of credit rating BI become E2, D2 become D3 and D3 become E2.
Result of Macro Simulation Approach which already aligned between probability of credit rating and macro economic factors is conditional transition matrix. Then calculation of credit risk with credit VaR (CreditMetrics) has to be conducted by using probability of default in conditional transition matrix (Macro Simulation Approach). Loss maximum amount of credit manufacture at PT. Bank XYZ with 95% confident level (assuming normal distribution) is Rp.52.303.767 or Rp. 183,105.913,495 (assuming actual distribution). This amount is 0 0089% (assuming normal distribution) or 31.15% (assuming actual distribution) from total of exposure of credit manufacture For capital requirement purpose. PT Bank XVZ has to reserve equity for 2.4994, 1% x 31 15% l from total exposure of credit manufacture PT Bank XYI. Using Macro Simulation Approach gives many advantage especially for capital requirement. because it is using internal rating which is gives every customer rating different portion of credit risk and so gives lesser reserve equity.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18498
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Yulian Hadromi
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T25396
UI - Tesis Open  Universitas Indonesia Library
cover
Christoveny
"ABSTRAK
CreditMetrics merupakan salah satu model internal untuk pengukuran risiko kredit. Penggunaan model internal direkomendasikan oleh Basel II dalam rangka menghasilkan pengukuran risiko yang sesuai dengan profil risiko bank dan secara umum dapat menghemat modal yang dibutuhkan bank. Dalam penyusunan matrik transisi digunakan data perkembangan kualitas kredit korporasi Bank XYZ periode bulan April 2007 sampai dengan April 2009. Expected Loss dengan CreditMetrics periode Mei 2009 sampai dengan Februari 2010 rata-rata sebesar Rp.8,4 Milyar atau lebih kecil dari PPA yang wajib dibentuk yang rata-rata sebesar Rp.429 Milyar. Kebutuhan modal dengan Metode CreditMetrics berdasarkan Value at Risk periode Mei 2009 hingga Februari 2010 pada tingkat kepercayaan 99% adalah rata-rata sebesar Rp.496 milyar atau lebih rendah dari kebutuhan modal dengan pendekatan standar Basel I yang sebesar Rp.3.095 milyar. Berdasarkan back testing, tidak terdapat nilai kerugian aktual yang melebihi VaR, sehingga metode CreditMetrics dapat digunakan Bank XYZ dalam pengukuran risiko kredit korporasi.

ABSTRACT
CreditMetrics is one of internal model to measure credit risk. Internal model is recommended by Basel II to measure credit risk since it?s more precisely to describe bank?s risk profile; moreover; it?s required slighter economic capital than standardized approach. Data trends of corporate credit quality from April 2007 to April 2009 are used in transition matrices. Average expected loss by CreditMetrics between May 2009 to February 2010 reached Rp.8,4 billion or less than Allowance for Bad Debt by Rp.429 billion. According to VaR from May 2009 to February 2010 at 99% confidence level, average required Economic Capital by using CreditMetrics is amounted Rp.496 billion or smaller than standardized approach under Basel I at Rp.3.095 billion. Based on back testing, there are not actual losses more than VaRs, furthermore CreditMetrics method can be used to measure corporate credit risk by Bank XYZ.
"
2010
T28260
UI - Tesis Open  Universitas Indonesia Library
cover
cover
Budi Hastuti Setyorini
"Tujuan penelitian ini adalah untuk menentukan matriks perubahan probabilitas transisi rating kredit dengan mempertimbangkan perubahan faktor makro, yaitu: tingkat inflasi, nilai tukar rupiah terhadap USD, dan tingkat suku bunga SBI yang secara signifikan mempengaruhinya, serta menentukan keakuratan metode Macro Simulation Approach dengan backtesting dan Kupiec Test. Unit analisis dalam penelitian ini adalah seluruh debitur kredit korporasi PT Bank BHS selama kurun waktu Oktober 2005 ? Agustus 2008.
Setelah dilakukan penelitian, disimpulkan bahwa perubahan probabilitas transisi rating kredit dengan mempertimbangkan perubahan faktor makro dapat ditentukan melalui matriks conditional. Matriks transisi conditional menunjukkan probabilitas terjadinya transisi kredit dari rating awal menjadi rating akhir sebagai akibat pengaruh faktor makro. Pendekatan Macro Simulation Approach menunjukkan bahwa tidak semua perubahan probabilitas transisi rating kredit dipengaruhi oleh faktor makro. Faktor makro yang mempengaruhi secara signifikan antara lain yaitu:
1. Tingkat inflasi mempengaruhi perubahan probabilitas transisi rating A+ menjadi BB+ dan kestabilan rating AA, AA-, BBB+, serta BB-.
2. Nilai tukar rupiah terhadap USD mempengaruhi perubahan probabilitas transisi rating A menjadi AA+, rating BBB menjadi BBB-, dan kestabilan rating BBB+.
3. Tingkat suku bunga SBI mempengaruhi perubahan probabilitas transisi rating A+ menjadi BB+ dan kestabilan rating AA-, BBB+, serta BB-.
Berdasarkan hasil backtesting dengan tingkat keyakinan 95% dapat disimpulkan bahwa Macro Simulation Approach sebagai metode dalam mengestimasi faktorfaktor makro yang mempengaruhi perubahan probabilitas transisi rating kredit PT. Bank BHS cukup akurat. Sedangkan berdasarkan perhitungan Kupiec Test, diperoleh nilai Likelihood Ratio sebesar 3.7353 dan nilai Chi-square sebesar 3.8415. Angka Likelihood Ratio yang lebih kecil dibandingkan Chi-square menunjukkan bahwa model persamaan regresi dimana probabilitas transisi rating sebagai variabel dependen dan faktor makro sebagai variabel independen cukup akurat. Dengan demikian, dapat disimpulkan bahwa metode Macro Simulation Approach cukup akurat untuk memprediksi perubahan probabilitas transisi rating kredit PT. Bank BHS.

The purpose of the research is to define the changes matrix of credit ratings transition probability by taking into accounts the following macro factor changes: inflation rates, IDR/USD exchange rates, and the SBI rates, each of which play significant role, and to measure the accuracy of the Macro Simulation Approach through means of Backtesting and Kupiec Test. The analytical units used in the research are the entire corporate credit debtors of PT Bank BHS during Oktober 2005 - Agustus 2008.
Having conducted the research, it is concluded that the changes in credit ratings transition probability in consideration with macro factor changes can be measured by conditional matrix. The conditional transitional matrix demonstrated that the probability of transition from early rating into final rating is affected by changes in macro factor. Whereas the Macro Simulation Approach showed us that not all the changes in credit ratings transition probability are affected by macro factors. While, the macro factors affecting significantly are:
1. Inflation rates influenced the changes in probability of transition from A+ ratings to BB+ ratings and the stability of AA, AA-, BBB-, and BB- ratings.
2. IDR/USD exchange rates influenced the changes in probability of transition from A ratings to AA+ ratings, BBB ratings to BBB-, and the stability of BBB+ ratings.
3. SBI rates influenced the changes in probability of transition from A+ ratings to BB+ ratings and the stability of AA-, BBB+, and BB- ratings.
Based on the results of the backtesting with 95% confidence level, it is concluded that the Macro Simulation Approach as the method used to estimate the macro factors affecting the changes in probability of PT BHS? credit ratings transition is considerably accurate. Meanwhile, through Kupiec Test, a Likelihood Ratio of 3.7353 and a Chi-square of 3.8415 is achieved. Smaller Likelihood Ratio as compared to Chi-square implies a regression equation model of which the ratings transition probability as dependent variable and macro factors as independent variables are considerably accurate. As such, it is concluded the Macro Simulation Approach is considerably accurate to predict the changes in PT BHS? credit ratings transition probability."
Depok: Universitas Indonesia, 2009
T26375
UI - Tesis Open  Universitas Indonesia Library
cover
Olof, Robert
"Karya akhir ini mempunyai tiga tujuan yaitu PT. XYZ dapat mengukur berapa besar probability of default dari Kendaraan Bermotor yang dibiayainya, PT. XYZ dapat mengukur kerugian yang dapat diperkirakan dan kerugian yang tidak dapat diperkirakan dari portofolio pembiayaan kendaraan bermotor serta dapat mengetahui besamya economic capital yang harus disediakan untuk rneng-cover risiko kerugian yang tidak dapat diperkirakan sehingga manajemen PT. XYZ dapat membuat suatu keputusan yang tepat untuk minimalisasi risiko yang akan timbul, dan model CreditRisk+ yang digunakan diharapkan dapat diterapkan untuk jenis kredit lain seperti Kredit Kepemilikan Rumah, Personal Loan dengan ciri yang hampir sama dengan Kredit Kepemilikan Kendaraan, sehingga dapat mengalokasikan secara lebih optimal seluruh sumber daya yang dimiliki.
Penerapan CreditRisk+ dilakukan untuk mengukur risiko kredit di lembaga pembiayaan PT. XYZ dengan batasan sebagai berikut. Pertama, obyek penelitian adalah kendaraan bermotor yang dibiayai pada PT. XYZ yang merupakan salah satu lembaga pembiayaan khusus kendaraan bermotor di Indonesia. Kedua, data yang digunakan adalah data bulanan portofolio kendaraan bermotor pada tahun 2003, 2004 dan 2005 dengan nilai eksposur antara Rp 500 ribu hingga Rp 250 juta. Ketiga, kredit dinyatakan default apabila tunggakan kewajibannya telah melebihi 90 hari.
Hasil pengukuran risiko kredit dengan menggunakan CreditRisk+ dengan asumsi tingkat keyakinan 99% dan probability of default dihitung dengan Poisson Model menunjukkan sebagai berikut:
1. Pengukuran risiko kredit dengan memakai pendekatan CreditRisk+ model yang dikeluarkan oleh Credit Suisse First Boston dapat digunakan untuk mengukur risiko kredit dari portofolio pembiayaan kendaraan bermotor PT. XYZ kepada konsumennya, hal ini karena pengukuran risiko kredit dengan metode ini sangat sederhana karena lebih memfokuskan kepada keadaan default atau non default dan tidak'mesnpersoalkan faktor-faktor penyebab terjadinya default. Selain itu model ini tidak mempertimbangkan terjadinya migrasi kualitas kredit.
2. Hasil pengukuran risiko kredit dengan menggunakan model CreditRrsk+ untuk portofolio pembiayaan kendaraan bermotor PT. XYZ sepanjang masa observasi tahun 2003 hingga tahun 2005 menunjukkan bahwa poterisi kerugian yang diperk.irakan (expected loss) dan risiko kredit (ditunjukkan oleh VaR atau Unexpected Loss) mempunyai kecenderungan yang meningkat. VaR or Unexpected Loss di bulan Januari 2003 sebesar Rp 31,256,000,000 dan meningkat lebih dari dua kali Iipatnya yaitu sebesar Rp 65,699,000,000 di bulan Desember 2005. Dengan adanya kecenderungan peningkatan risiko ini diharapkan pengelolaan atas portofolio pembiayaan kendaraan bermotor PT. XYZ kepada nasabahnya dapat lebih bail( dan efektif, terutama dalam mengantisipasi bertambahnya pembiayaan yang bermasalah.
3. Dori perhitungan economic capital terlihat bahwa kecukupan modal yang dibutuhkan atas portofolio penyaluran pembiayaan yang dilakukan oleh PT. XYZ kepada konsumennya sepanjang tahun 2003 berada pada range Rp 16,237,303,325 - Rp 21,775,587,804. Pada sepanjang tahun 2004 berada pada range Rp 21,910,884,312 - Rp 25,522,689,160 dan pada sepanjang tahun 2005 berada pada range Rp 23,040,855,020 - Rp 25,493,208,151. Apabila setiap nilai ini dibandingkan dengan modal PT. XYZ per Desember setiap tahunnya, maka dapat disimpulkan bahwa modal PT. XYZ masih cukup untuk menanggung adanya risiko kredit yang diakibatkan oleh unexpected credit default losses. Dengan melihat kebutuhan economic capital yang relatif kecil, sekitar 3% - 7% dari jumlah modal atas portofolio pembiayaan kendaraan bermotor sepanjang tahun 2003 - 2005, maka dapat disarankan untuk meningkatkan atau mengoptimisasikan portofolionya
4. Pengujian dengan metode Likelihood Ratio pada tingkat kepercayaan 95% menunjukkan bahwa selama periode pengarnatan, jumlah kejadian yang merugikan PT. XYZ dengan tingkat kerugian yang melebihi nilai VaR kredit masih di bawah ambang Batas jumlah kerugian yang dapat ditolerir, yang berarti bahwa metode pengukuran risiko dengan CreditRisk+ dapat diterima dan cukup akurat untuk mengukur risiko kredit portofolio pembiayaan PT. XYZ kepada konsumen.

This final research report has three purposes: able to measure probability of default from automobile financing portfolio of PT. XYZ, able to measure expected loss and unexpected loss, and also capable to estimate the level of economic capital to be reserved for covering unexpected loss so that PT. XYZ management can make right decision to minimize the risk, and CreditRisk+ model with the similar characteristic has expected to be applicable for other type of credit such as housing loans and personal loans, so PT XYZ resource allocation can be more optimal.
The application of CreditRisk+ was conducted to measure credit risk at automobile consumer financing company of PT. XYZ, with definition as follows. First, research object is automotive financed by PT. XYZ representing one of specialist on automotive financing company in Indonesia. Second, data used was monthly data of automobile consumer financing company in year 2003, 2004, and 2005 with exposure value between Rp 500 thousand until Rp 250 million. Third, credit was considered default if its obliged amount outstanding exceeded 90 days.
The result of credit risk measurement using CreditRisk+ with 99% confidence level and probability of default counted with Poisson Model show as follows:
1. Credit risk measurement result using CreditRisk+ model for automobile financing portfolio of PT. XYZ during observation period of year 2003 to 2005 showed that expected loss and credit risk (represented by VaR or Unexpected Loss) showed increasing trends. VaR or Unexpected Loss showed increasing trend from Rp 31,256,000,000 in January 2003 to Rp 65,699,000,000 in December 2005, and more than two-fold increase. With the tendency of increasing loss, we can hope for better and more effective for automobile financing of PT. XYZ lending portfolio management in the future, especially in anticipating the growing non-performing lending portfolios.
2. Economic capital assessment showed that capital adequacy needed to cover PT. XYZ's lending portfolio to consumer through 2003 was between Rp 16,237,303,325 - Rp 21,775,587,804, through 2004 was between Rp 21,910,884,312 - Rp 25,522,689,160 and through 2005 was between Rp 23,040,855,020 - Rp 25,493,208,151. This assessment showed that PT. XYZ capital as of December every year, was still more than adequate to cover the credit risk caused by unexpected credit default losses. This relatively small economic capital requirement, about 3 to 7 percent of automobile financing portfolio of PT. XYZ during the year of 2003 to 2005, suggested opportunity for increased and more optimized PT. XYZ's portfolio.
3. By comparing actual loss with VaR during observation period (January 2003 - December 2005), obviously that actual loss per month still below VaR, this mean that the loss risk automobile financing portfolio of PT. XYZ to consumer still able in covering by PT. XYZ.
4. Model validation using Likelihood Ratio test with 95% confidence level showed that during evaluation period, the frequency of events that may jeopardize PT. XYZ with the loss level exceeding credit VaR was still under the tolerable loss level limit. It is then safe to conclude that CreditRisk+ is acceptable and quite accurate method for measuring credit risk on automobile financing of PT. XYZ's lending portfolio to consumer.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18276
UI - Tesis Membership  Universitas Indonesia Library
cover
Yusup Ansori
"Risiko kegiatan usaha perbankan semakin kompleks sejalan dengan pesatnya perkembangan lingkungan ekstemal dan internal di dalam dunia perbankan. Untuk itu agar mampu beradaptasi dalam lingkungan bisnis perbankan, bank dituntut untuk mencrapkan manajemen risiko. Sesuai dengan Amendment terhadap Basle Capital Accord (BCA) 1988 yang dikeluarkan oleh The Basle Committee on Banking Supervision pada bulan Januari 1996, perbankan diharapkan untuk memasukkan unsur risiko pasar dalam perhitungan Capital Adequacy Ratio (CAR).
Risiko pasar didefinisikan sebagai risiko yang timbul karena adanya pergerakan variabel pasar (adverse movement) dari portofolio yang dimiliki oleh bank, yang dapat merugikan bank. Dalam penelitian ini komponen risiko pasar yang dijadikan objek penelitian adalah risiko nilai tukar.
Sesuai dengan BCA tahun 1996, pengukuran risiko yang dihadapi bank dapat dilakukan dengan standardized approach ataupun menggunakan internal model. Untuk internal model Basle Accord mensyaratkan penggunaan Value at Risk (VaR) dalam penerapannya. VaR mengukur maksimum potensi kerugian yang diyakini akan terjadi pada kurun waktu tertentu, dengan tingkat keyakinan tertentu dan pada kondisi pasar yang normal.
Latar belakang penulisan karya akhir dengan judul Analisis Perbandingan Pengukuran Risiko Pasar Posisi Devisa Neto dengan Pendekatan Metode Standar dan Model Internal (VaR - Metode Varian Kovarian) adalah karena sejak diberlakukannya Peraturan Bank Indonesia No.5/121PBI12003 bank wajib menghitung penyediakan modal minimum untuk mengcover risiko pasar dengan metode standar, yang salah satu faktor risikonya adalah risiko nilai tukar. Penyediaan modal khusus risiko nilai tukar dengan metode standar diperhilungkan sebesar 8% dari Posisi Devisa Neto bank. Perniasalahan yang timbul adalah bahwa penyediaan modal minimum bagi setiap bank diwajibkan menggunakan tarif yang sama yaitu 8%. Hal ini dapat mengakibatkan besarnya penyediaan modal (capital charge) dimaksud tidak tepat dibandingkan dengan kebutuhannya (terlalu besar atau bahkan terlampau sedikit). Dari sisi pengelolaan asset dan kewajiban (Assets and Liabilities Management) hal ini dapat merugikan bank, karena dapat mengakibatkan idle fund, atau sebaliknya justru membebani solvabilitas bank akibat kerugian yang tidak terantisipasi.
Mengingat dalam BCA tahun 1996 perhitungan modal minimum risiko pasar dapat dimungkinkan dilakukan dengan model internal dengan pendekatan Value at Risk (VaR), dengan demikian timbul pertanyaan manakah dari kedua metode tersebut yang lebih efisien sehingga idle fluid yang timbul akibat peneadangan modal dan beban solvabilitas bank dimaksud dapat diminimalisir.
Tujuan penulisan ini adalah untuk mengetahui seberapa efisien pengukuran risiko pasar khususnya nilai tukar dapat diestimasi oleh kedua metode tersebut dan manakah dari kedua metode dimaksud yang lebih balk untuk diterapkan dalam perhitungan modal minimum yang harus disediakan bank untuk mengcover potensi kerugian bank akibat fluktuasi nilai tukar.
Perhitungan capital charge dengan metode standar dilakukan sesuai ketentuan Bank Indonesia dimaksud, sedang perhitungan dengan model internal dilakukan dengan cara perhitungan Value at Risk dengan metode Varian Kovarian. Data yang menjadi bahan analisis adalah posisi nilai tukar PT Bank ABC yang terdiri dari 5 (lima) mats uang asing, yaitu GBP, EUR, USD, JPY dan SGD. Sementara periode yang digunakan dalam analisis ini adalah dari 1 Oktober 2003 sampai dengan 31 Oktober 2005, yaitu 508 hail. Khusus dalam perhitungan VaR , Confident level yang dipergunakan adalah 95% dan holding period selama 1 hari.
Berdasarkan hasil uji nonnalitas, dapat diketahui bahwa seluruh data series return setiap mata uang asing tersebut adalah tidak normal, sehingga nilai a yang diperhitungkan dicari dengan teori Cornish Fisher Expansion. Sementara itu, dari basil uji volatilitas data return seluruhnya merupakan heteroscedastic. Oleh karena itu forecasting volatilitas data mempergunakan model ARCH/GARCH.
Hasil perhitungan capital charge untuk portfolio mata uang PT Bank ABC dengan metode standar sebesar Rp2.951 juta jauh lebih besar dibanding jika menggunakan model internal (VaR) yaitu sebesar Rp297 juta. Sementara dan hasil pengujianvaliditas model internal VaR dengan Kupiec Test, metode Total Number of FaiIure(TNoF) terdapat kesalahan/failure sebanyak 20 (dua puluh) tanggal dan Likelihood Ratio sebesar 1,595 < 3,841 berdasarkan tabel chi square. Sementara itu untuk metode standar tidak dilakukan uji validasi karena angka 8% untuk perhitungan capital charge bersifat mandatory dari Otoritas Pengawasan Perbankan. Dengan demikian perhitungan capital charge menggunakan model internal jauh lebih efisien dibandingkan dengan penggunaan metode standar.
Agar terjadi efisiensi penggunaan dana yang pada akhirnya akan lebih meningkatkan pertumbuhan usaha bank, maka penggunaan model internal (VaR) untuk keperluan penyediaan modal minimum bank terkait dengan risiko pasar perlu dipercepat. Namun apabila ketentuan Bank Indonesia telah dapat memperbolehkan bank menyediakan modal minimum dimaksud dengan perhitungan model internal (VaR) maka baik pihak Bank Indonesia yang akan berperan sebagai validator dan bank sebagai pelaksana penerapan model internal harus bersaina-sama mempersiapkan sumber daya manusia dan teknologi informasi untuk mengantisipasinya.

In line with the growing complexities of the banking activities, the nature of risks in banking industry are rapidly changing and becoming more difficult to,zesist. Taken into account of such risks, banks are increasingly encouraged to apply more prudent risk management Based on Basle Capital Accord which is issued by The Basle Committee on Banking Supervision in January 1996, as Amendment of Basle Capital Accord 1988, banks is expected to sufficiently cover the element of market risk for their calculation of Capital Adequacy Ratio (CAR).
Market risk is defined as a risk of loss on the entire portfolio held by the bank, which arise due to adverse movement of market variables. In our research, the particular component of market risk taken as research object is exchange rate risk.
According to Basle Accord (1996 Amendments), banks may develop and make use of internal systems or employ standardize approach as a basis of their assessment of market risk. In case of applying internal model, Basle Accord requires the bank to adopt Value at Risk (VaR) approach. VaR approach measures potential maximum loss of which may occur in certain holding period, particular level of confidence and normal market condition.
The motivation of the research, entitled "Comparative Analysis of the Measurement Of Market Risk of Foreign Exchange Net Open Position Using Standardized Method and Internal Model (VaR - Variance Covariance Method)", is related with the adoption of Bank Indonesia Regulation No. 51121PBll2003 which required the bank to provide adequate capital to cover market risk by using standardized method, pp rtieularly exchange rate risk as one of risk factors. Applying standardized method, the minimum amount of capital required to cover exchange rate risk is uniformly set at 8% of the Net Open Position posed by particular bank. This unifolnmity may create problems since it may not fairly reflect the actual risk should be covered by the banks (resulting in over/underestimate the calculation of minimum capital required to cover such a risk). From the Asset and Liabilities Management point of view, imprecise calculation of minimum capital may result in potential loss or opportunity profit forgone due to excessive idle fund. By contrast, it could also give extra burden to the bank in case bank's capital is not adequate to cover unanticipated loss.
Meanwhile, based on Basle Accord 1996, minimum capital requirement could be calculated using internal model (adopting VaR approach), it may be queried which method offers better estimate in terms of minimizing idle fund and realistically reflect actual risk.
The aim of this researsch is to measure how efficient market risk calculated using standardized method and internal model with VaR approach and which one of the two methods is better applied by bank to calculate minimum capital to cover potential loss of exchange rate volatility.
The calculation of capital charge using standardized method is based on Bank Indonesia regulation, while VaR (Variance-Covariance method) is adopted for internal model approach. Data used for the analysis are exchange rate position of PT Bank ABC consisted of 5 foreign currencies (GBP, EUR, USD, JPY, and SOD). The period of analysis is from 1 October 2003 to 31 October 2005 (508 days). For the calculation of VaR, 95% level of confidence is applied and holding period is set at one day.
Based on normality test, all of the series reveal non-normality, so the value of a should be calculated using Cornish Fisher Expansion. Meanwhile, our volatility tests showed that the entire data are heteroschedastic. Therefore, volatility forecast is conducted using ARCH 1 GARCH.
Using standardized method, capital charge for the currency portfolio of PT Bank ABC is amounted to Rp2.95 t million much higher compared to internal model (VaR) that is amounted to Rp297 million. The test on validity internal model using Kupiec Test showed that the model is valid because the Total Number of Failure (TNOF) is amounted to 20 failures and Likelihood Ratio is 1,595 < 3,841 list of chi square. Meanwhile for the standardized method is not tested for validity of the method because 8% as capital charge is provided by Banking Supervisory Authority. Therefore by using internal model in capital charge calculation is much more efficient comparing to using standardized method.
Concerning the efficiency in fund management, which in general may prudently boost the bank business, the inception of internal method for calculating market risk should be speed up. However, if Bank Indonesia permits the banks to adopt internal model for their own risk assessments, Bank Indonesia should review the use of such measurement regularly. In addition, it is important for the banking industry to continuously develop their human resources capacity and apply appropriate Information System Technology.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18265
UI - Tesis Membership  Universitas Indonesia Library
cover
Pesiwarissa, Darcel Anadona Indria
"Krisis perbankan tempo lalu ternyata menjadi pelajaran yang berharga bagi kalangan perbankan, termasuk pihak pemegang otoritas perbankan, yakni Bank Indonesia (BI). Hikmah dari kejadian tersebut adaiah semua pihak menjadi mawas diri untuk bekerja lebih baik dan profesional pada masa mendatang. Sebelum krisis, unsur pengawasan tidak dilakukan secara optimal dan para pelaku perbankanpun tidak memperhitungkan berbagai macam faktor risiko bisnis.
Namun setelah itu, BI sebagai koordinator perbankan nasionalpun mulai mengkaji dart menata kembali industri yang telah dihantam badai yang paling dahsyat, yang selama ini belum pernah terjadi dalam sejarah perbankan nasional. Pada awal Januari 2004 BI menerbitkan Arsitektur Perbankan Indonesia (API) yang merupakan sebuah program menyeluruh yang dapat dijadikan pedoman bagi seluruh kalangan perbankan hingga 2010.
Ada delapan pilar API yang mesti dilaksanakan oleh para pelaku bisnis perbankan. Salah satu pilar antara lain menyebutkan tentang perlunya manalemen risiko (risk nianagenrent) bagi kalangan perbankan. Pemberlakuan ketentuan BI No. 5/8/PBI/2003 tentang Penerapan Manajemen Risiko bagi Bank Umum yang mewajibkan bank memasukkan faktor risiko operasional ke dalam perhitungan kewajiban penyediaan modal minimum diharapkan dapat memperkuat sistem pengawasan perbankan secara menyeluruh.
Dalam rangka menerapkan manajcmen risiko operasional secara efektif, maka bank "X" harus mampu mengidentifikasi risiko operasional dan mengukurnya. Hasil identifikasi risiko operasional digambarkan pada LEDB berupa kejadian kerugian (loss event), penyebab kerugian dan dampak dari kejadian kerugian dalam jumlah uang.
Untuk keperluan pengukuran risiko operasional mula-mula dilakukan pengumpulan data kerugian dari LEDB. Selanjutnya data disaring untuk keperluan penelitian dan dianalisis secara statistic. Data kerugian dan data observasi jumlah kejadian kerugian digunakan sebagai dasar pembuatan severity of loss probability model dan frequency of loss probability model.
Kedua model tersebut diuji masing-masing dengan menggunakan uji Kolmogorov-Smirnov dan uji Chi-Square. Berdasarkan uji model tersebut dipilih Exponential distribution dan Poisson distribution.
Selanjutnya, guna pengukuran risiko operasional dilakukan simulasi Monte Carlo. Untuk itu dilakukan penetapan asumsi-asumsi bagi setiap jumlah kerugian dan jumlah kejadian kerugian. Penetapan asumsi tersebut dilakukan terhadap setiap angka kerugian dan jumlah kejadian kerugian. Angka jumlah kerugian diasumsikan mengikuti Exponential distribution, sedangkan angka jumlah kejadian diasumsikan mengikuti Poisson distribution. Setelah itu ditetapkan forecast atau output yang diharapkan.
Hasil simulasi Monte Carlo adalah aggregate loss distribution. Berdasarkan distribusi kerugian hasil simulasi tersebut dilakukan perhitungan OpVaR, yang besarnya adalab Rp. 17.613.014.530,- (95th percentile) dari Rp. 31.151.154.671,- (99th percentile).

Banking crisis in Indonesia has indeed become a worthy lesson for bankers, including Bank Indonesia as monetary authority. The crisis has encouraged related parties to be more prudent and professional in the future. Supervision has not been done properly before banking crisis occurred and business risks have not been wholly considered.
Then, Bank Indonesia began to review and rebuild the banking industry in Indonesia. In the beginning of 2004, Bank Indonesia issued Indonesian Banking Architecture (API), a comprehensive program aimed to be guidance for bankers until 2010.
API introduces 8 pillars which must be accomplished by bankers. One of them states a need for risk management in banking industry. BE regulation No. 5/8/PBI/2003 regarding Risk Management Accomplishment for Banks, requesting banks to consider operational risk in the calculation of minimum capital requirement is expected to strengthen the control system in banking as a whole.
For the purpose of effective operational risk management, bank "X" must be able to identify operational risk and measure it: The identification of this risk is reported in Loss Event Data Base (LEDB).
To measure the risk, data of losses are gathered from LEDB, The data, consisting of loss amounts and frequency of losses are then used to establish severity of loss probability model and frequency of loss probability model. Both models are tested using Kolmogorov-Smimov Test and Chi-Square Test. Based on those tests, Exponential distribution and Poisson distribution are consecutively chosen as Severity of loss probability model and Frequency of loss probability model.
For the purpose of risk measurement, Monte Carlo simulation is done. Before doing this simulation, certain assumptions are established for each loss amount and each loss frequency.
The result of this simulation is aggregate loss distribution. Based on the distribution, Operational Value at Risk (OpVaR) is Rp. 17,613,014,530.00 (95th percentile) and Rp. 31,151,154,671.00 (99th percentile).
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18322
UI - Tesis Membership  Universitas Indonesia Library
cover
R. Widi Wahyu Prihanto
"Industri perminyakan di Indonesia sudah dimulai sejak tahun 1940-an oleh perusahaan Belanda. Ini bisa dilihat terdapatnya lapangan-lapangan minyak tua yang terdapat pada beberapa daerah di Indonesia. Setelah Indonesia merdeka lapangan-lapangan tersebut dinasionalisasikan oleh pemerintah.
Saat ini bisnis perminyakan didominasi oleh perdagangan yang bertujuan untuk penyediaan Bahan Bakar Minyak (BBM) bagi kebutuhan nasional, maupun kepentingan ekspor bagi yang bertujuan mendapatkan devisa. Dalam melakukan ekspor BBM pendapatan akan sangat tergantung pada harga yang berlaku di pasar, sehingga terdapat risiko ketidakpastian pendapatan hasil ekspor.
Hal ini merupakan suatu risiko pasar yang didefinisikan sebagai risiko yang mungkin timbul karena adanya pergerakan variabel pasar (adverse movement) dari ekspor yang dilakukan dan dapat menimbulkan kerugian terhadap perusahaan. Dalam penelitian ini komponen yang dijadikan obyek penelitian adalah risiko harga BBM.
Pengukuran risiko pasar dapat dilakukan dengan mempergunakan standard approach atau internal model. Penerapan internal model diharuskan mempergunakan pendekatan Value at Risk (VaR). Dalam hal ini VaR dapat mengukur potensi kerugian maksimal yang mungkin terjadi dalam selang waktu tertentu dengan confidence level tertentu serta pada kondisi pasar yang normal.
Pada penelitian yang dilakukan, digunakan pendekatan Riskmetrics dalam mengukur risiko harga dengan metode Exponential Weighted Moving Average (EWMA) sesuai dengan hasil pengujian data yang ada.
Untuk mengetahui mengetahui karakteristik data return telah dilakukan pengujian data dengan Cara :
? Stationerry Test dengan ADF test.
? Uji normalitas data dengan Jarque Bera
? White Heteroscedastic Test
Berdasarkan uji data yang dilakukan, diperoleh bahwa metode yang tepat untuk melakukan forecasting volatilitas return harga tersebut adalah standar normal dan EWMA. Dan hasil perhitungan volatilitas tersebut maka dapat diukur VaR harian dengan tingkat keyakinan 95% dan 99% pada holding period satu hari.
Langkah selanjutnya adalah dilakukan uji validasi model berdasarkan Kupiec Test dengan Total Number of Failure (TNoF) dan Time until First Failure (TUFF). Setelah dilakukan uji validasi pada model deviasi standar dan EWMA maka dapat disimpulkan hasil pengukuran dengan metode tersebut valid. Dapat diartikan bahwa nilai VaR yang dihasilkan dapat menangkap semua pergerakan actual loss selama penelitian.
Berdasarkan pengamatan yang dilakukan selama periode penelitian telah diketahui kerugian maksimum pada ekspor yang dapat terjadi. Hal ini hares menjadi perhatian pihak manajemen perusahaan, karena hares segera diambil langkah-langkah untuk mengantisipasi kerugian yang mungkin terjadi.

Oil industry in Indonesia has begun since 1940's by the Dutch government. It was able to be seen with many old oil fields found at some areas in Indonesia. After Indonesia was free the fields were nationalized by the government.
Currently oil business is dominated by trading which having a goal to supply the Refined Fuel Oil (BBM) for national needs, or for export interest to obtain a foreign exchange. In doing export the BBM, the income will depend on prevailing price in the market, so it was found the income uncertainty risk of the result of export.
In this case the market risk is defined as the risk may arise because any adverse movement from export to be clone and can arise the loss for a company. In this research, we used the research of the price risk of the BBM.
Determination of the market risk can be done by using standard approach or internal model. Applying the internal model is required to use the Value at Risk approach (VaR). In this case VaR can determine the maximal loss potency maybe occurred in several time with certain confidence level and in normal market condition.
Research was carried out by using riskmetrics approach to determine the price risk with the Exponential Weighted Moving Average (EWMA) method in accordance with the result of existing examining of the data.
To know the characteristics of the data return has been carried out examining of the data in a way:
a. Stationery Test with ADF Test.
b. Data Normality Test with Jarque Bera
c. White Heteroscedastic Test
Based on the data test to be done, it was found that the appropriate method to carry out forecasting volatility return the price is normal standard and EWMA. Of the result of calculation of the volatility and it was able to be determined the daily VaR with certainty level 95% and 99% at holding period one day.
The next step is carried out validation test of model based on the Kupicc Test with Total Number of Failure (TNoF) and Time until First Failure (TUFF)_ After being carried out the validation test on standard deviation model and EWMA and can be concluded the result of calculation with the method is valid. It was able to be meant that VaR value which is obtained can handle all actual losses movement during the research.
Based on the observation to be done during the research it was known the maximum loss on export which can be occurred. In this case must be concern for company management, because it must immediately be taken the steps to anticipate the loss maybe occurred.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18549
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>