Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13988 dokumen yang sesuai dengan query
cover
cover
Universitas Indonesia, 1993
S27912
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ordeshook, Peter C.
New York, NY: Routledge, 1992
320.0151 ORD p
Buku Teks SO  Universitas Indonesia Library
cover
Duncan, Otis Dudley
Illinois : The Free Press of Glencoe, 1961
311 DUN s
Buku Teks SO  Universitas Indonesia Library
cover
Rappaz, Michel
New York : Springer-Verlag, 2003
620.11 RAP n (1);620.11 RAP n (2)
Buku Teks SO  Universitas Indonesia Library
cover
McAllister, James W.
Ithaca : Cornell University Press, 1996
501 MCA b
Buku Teks SO  Universitas Indonesia Library
cover
"This volume, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy."
Berlin: Springer-Verlag, 2012
e20410667
eBooks  Universitas Indonesia Library
cover
Tubagus Dhafin Rukmanda
"ABSTRAK
PATCHY-SAN adalah sebuah framework untuk sembarang graf yang diajukan oleh Niepert pada tahun 2016. Pada penelitian ini diajukan modifikasi arsitektur dari convolutional neural network CNNs pada PATCHY-SAN menggunakan beberapa representasi dari graf seperti B^i,L^i,N^i dengan B,L,N, berturut-turut adalah matriks betweeness, matriks Laplacian and matriks normalisasi Laplacian dengan i=1,2,3,4,5. Dilakukan beberapa percobaan dari model CNNs dengan 3 layer dan 2 layer. Penelitian ini menggunakan dropout atau batch normalization untuk mengurangi permasalahan internal covariate shift sebagai regularisasi. Berdasarkan percobaan tersebut disimpulkan, penambahan layer, penggunaan dropout dan batch normalization dapat meningkatkan dan juga menurunkan prediksi akurasi, hal ini tergantung dari dataset dan arsitektur CNNs. Representasi graf yang digunakan dalam penelitian ini masih belum bagus untuk membuat PATCHY-SAN learning, karena peningkatan akurasi hanya sebesar - 9 dari benchmark 50 .

ABSTRACT
PATCHY SAN is a framework for learning Convolutional Neural Network CNNs for arbitrary graph proposed by Niepert in 2016. In this paper we propose to modified architecture of Convolutional Neural Network in PATCHY SAN by using some representation of graph such as B i,L i,N i, with B, L, N, is betweeness matrix, Laplacian matrix and normalize Laplacian matrix with i 1,2,3,4,5. We do some experiment of model with 3 convolutional layer and 2 convolutional layer. This research use dropout and batch normalization to reduce internal covariate shift problem as regularizer. In conclusion adding more convolution layer, and use dropout and batch normalization can increase and reduce accuracy, it depend on the architecture of CNNs. Graph representation used in this research still not good to make PATCHY SAN learning, because the accuration increase by 9 from benchmark 50 ."
2017
S70160
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haris Hamzah
"Diabetes mellitus tipe-2 (T2DM) merupakan penyakit metabolisme kronis yang sering diderita oleh orang dewasa. T2DM ditandai dengan menurunnya insulin dalam tubuh. Enzim dipeptidil peptidase-4 (DPP-4) dapat mengkatalisasi penurunan hormon peptida inkretin, terutama peptide-1 seperti hormon gastric inhibitory peptide (GIP) dan glucagon-like peptide-1 (GLP-1), yang mengakibatkan penurunan sintesis insulin. Inhibitor DPP-4 adalah target obat yang menjanjikan untuk T2DM, karena dapat memblokir kerja enzim DPP-4 dengan menghambat kerja hormon GLP-1 dan GIP. Penelitian ini menggunakan data inhibitor DPP-4 yang akan diekstraksi ciri menggunakan metode Extended-Connectivity Fingerprint (ECFP) dan Functional-Class Fingerprints (FCFP). Hasil ekstraksi ciri tersebut digunakan sebagai vektor masukan untuk metode deep neural network (DNN) untuk memprediksi inhibitor DPP-4 ke dalam senyawa aktif dan tidak aktif. Selain itu, metode CatBoost diusulkan sebagai metode pemilihan fitur terhadap hasil ekstraksi ciri metode ECFP dan FCFP. Dalam penelitian ini akan membandingkan performa metode DNN dengan menggunakan pemilihan fitur metode CatBoost dan tanpa menggunakan pemilihan fitur metode CatBoost. Hasil dari penelitian ini menunjukkan bahwa metode DNN menggunakan ekstraksi ciri ECFP_6 dengan proporsi pemilihan fitur sebesar 90% memiliki nilai sensitivitas, spesifisitas, akurasi, dan MCC berturut-turut adalah 0.927,0.881,0.906, dan 0.810.

Diabetes mellitus type-2 (T2DM) is a chronic metabolic disease that often affects adults. T2DM is characterized by a decrease of insulin in the body. The dipeptidyl peptidase-4 (DPP-4) enzyme can catalyze a decrease of incretin peptide hormones, especially peptide-1, such as gastric inhibitory peptide (GIP) hormone and glucagon-like peptide-1 (GLP-1), which results in decreased insulin synthesis. DPP-4 inhibitors are a promising drug target for T2DM because they block the action of the DPP-4 enzyme by inhibiting the activity of the GLP-1 and GIP hormones. This study uses DPP-4 inhibitor data, which will be feature extracted using the Extended-Connectivity Fingerprint (ECFP) and Functional-Class Fingerprints (FCFP) methods. The results of feature extraction are used as input vectors of the deep neural network (DNN) method to predict DPP-4 inhibitors into active and inactive compounds. In addition, the CatBoost method is proposed as a feature selection method for the feature extraction results of the ECFP and FCFP methods. In this study, we will compare the performance of the DNN method using the feature selection of the CatBoost method and without using the feature selection of the CatBoost method. The results of this study indicate that the DNN method using feature extraction ECFP_6 with 90% of the feature selection having sensitivity, specificity, accuracy, and MCC values, respectively, 0.927, 0.881, 0.906, and 0.810."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Afifah Rofi Laeli
"Tuberkulosis (TB) merupakan suatu penyakit menular yang sebagian besar menyerang paru-paru manusia. Penularan penyakit ini terjadi ketika pasien tuberkulosis paru mengeluarkan percikan dahak yang mengandung kuman tuberkulosis ke udara. Penularannya yang mudah menjadikan tuberkulosis sebagai masalah kesehatan masyarakat, baik di Indonesia maupun internasional. Deteksi dini tuberkulosis paru dapat mencegah penularan serta menyembuhkan pasien. Namun, adanya pandemi COVID-19 saat ini dapat menurunkan angka kasus tuberkulosis yang berhasil terdeteksi. Hal ini menunjukkan perlu adanya kemajuan dalam metode pendeteksian penyakit tuberkulosis paru. Kini, perkembangan teknologi dapat dimanfaatkan untuk membantu bidang kesehatan, salah satunya dengan machine learning. Machine learning dapat digunakan untuk mendeteksi adanya suatu penyakit berdasarkan data citra. Dalam penelitian ini, model machine learning, Convolutional Neural Network-Random Forest (CNN-Random Forest) dan Convolutional Neural Network-XGBoost (CNN-XGBoost), diimplementasikan untuk mendeteksi tuberkulosis paru berdasarkan citra radiografi toraks. Selanjutnya, kedua model tersebut dievaluasi dan dibandingkan kinerjanya berdasarkan nilai akurasi dan nilai luas wilayah di bawah kurva ROC, atau biasa disebut dengan area under the curve (AUC). Data yang digunakan sebanyak 6000 yang terdiri dari 3000 citra radiografi toraks tuberkulosis paru dan 3000 citra radiografi toraks normal. Berdasarkan hasil yang diperoleh, model CNN-Random Forest dan CNN-XGBoost memberikan kinerja yang baik dan dapat diterapkan untuk mendeteksi tuberkulosis paru, dimana CNN digunakan untuk mengekstraksi fitur pada citra, kemudian hasil ekstraksi fitur tersebut menjadi input bagi pengklasifikasi Random Forest dan XGBoost. Evaluasi kinerja berdasarkan rata-rata nilai akurasi dan rata-rata nilai AUC pada model CNN-Random Forest memberikan hasil terbaik masing-masing sebesar 98.667% dan 99.933%, sementara pada model CNN-XGBoost memberikan hasil terbaik masing-masing sebesar 98.367% dan 99.866%. Kemudian berdasarkan perbandingan kinerja yang dilakukan, model CNN-Random Forest memberikan kinerja yang lebih baik dalam mendeteksi tuberkulosis paru dibandingkan dengan model CNN-XGBoost.

Tuberculosis (TB) is an infectious disease that in most cases attacks the human lungs. Transmission of this disease occurs when a patient with pulmonary tuberculosis expels phlegm containing tuberculosis germs into the air. Its easy transmission makes tuberculosis a public health problem, both in Indonesia and internationally. Early detection of pulmonary tuberculosis can prevent transmission and cure patients. However, the current COVID-19 pandemic can reduce the number of successfully detected tuberculosis cases. This shows the need for progress in the detection method of pulmonary tuberculosis. Now, technological developments can be used to help the health sector, one of which is machine learning. Machine learning can be used to detect the presence of a disease based on image data. In this study, machine learning models, Convolutional Neural Network-Random Forest (CNN-Random Forest) and Convolutional Neural Network-XGBoost (CNN-XGBoost), were implemented to detect pulmonary tuberculosis based on thorax radiography images. Furthermore, the performances of the two models were evaluated and compared based on the values of accuracy and area under the ROC curve, or commonly called the area under the curve (AUC). The data used were 6000 consisting of 3000 thorax radiography images of pulmonary tuberculosis and 3000 normal thorax radiography images. Based on the results obtained, the CNN-Random Forest and CNN-XGBoost models provided good performances and can be applied to detect pulmonary tuberculosis, where CNN was used to extract features in the image, then the results of the feature extraction became input for the Random Forest and XGBoost classifiers. Performance evaluation based on the average values of accuracy and AUC in the CNN-Random Forest model gave the best results of 98.667% and 99.933%, respectively, while the CNN-XGBoost model gave the best results of 98.367% and 99.866, respectively. Then based on the performance comparison, the CNN-Random Forest model provided a better performance in detecting pulmonary tuberculosis compared to the CNN-XGBoost model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>