Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17479 dokumen yang sesuai dengan query
cover
Laird, John, 1954-
Boston: Kluwer, 1986
006.3 LAI u
Buku Teks SO  Universitas Indonesia Library
cover
McCorduck, Pamela
New York: McGraw-Hill Book, 1985
001.64 MCC u
Buku Teks SO  Universitas Indonesia Library
cover
Arvalinno
"

Kecerdasan buatan atau Artificial Intelligence (AI) banyak berkembang dalam sektor-sektor seperti: speech recognition, computer vision, Natural Language Processing, dll. Salah satu sektor penting yang banyak dikembangkan oleh peneliti adalah Speech Emotion Recognition atau pengenalan emosi berdasarkan suara manusia. Penelitian ini semakin berkembang karena timbul sebuah tantangan bagi manusia untuk memiliki interaksi mesin dan manusia yang lebih natural yaitu suatu mesin yang dapat merespon emosi manusia dengan memberikan balasan yang tepat juga. Perancangan Speech Emotion Recognition pada penelitian ini menggunakan dataset berupa fitur ekstraksi audio MFCC, Spectrogram, Mel Spectrogram, Chromagram, dan Tonnetz serta memanfaatkan metode Transfer Learning VGG-16 dalam pelatihan modelnya. Dataset yang digunakan diperoleh dari pemotongan audio dari beberapa film berbahasa Indonesia dan kemudian audio yang diperoleh diekstraksi fitur dalam kelima bentuk fitur yang disebut sebelumnya. Hasil akurasi model paling baik dalam penelitian ini adalah model transfer learning VGG-16 dengan dataset Mel Spectrogram yaitu dengan nilai akurasi 56.2%. Dalam pengujian model dalam pengenalan setiap emosi, f1-score terbaik diperoleh model transfer learning VGG-16 dengan dataset Mel Spectrogram dengan f1-score yaitu 55.5%. Skala mel yang diterapkan pada ekstraksi fitur mel spectrogram berpengaruh terhadap baiknya kemampuan model dalam mengenali emosi manusia.


Artificial Intelligence has been used in many sectors, such as speech recognition, computer vision, Natural Language Processing, etc. There was one more important sector that has been developed well by the scientists which are Speech Emotion Recognition. This research is developing because of the new challenge by human to have a better natural interaction between machines and humans where machines can respond to human’s emotions and give proper feedback. In this research, to create the speech emotion recognition system, audio feature extraction such as MFCC, Spectrogram, Mel Spectrogram, Chromagram, and Tonnetz were used as input, and using VGG-16 Transfer Learning Method for the model training. The datasets were collected from the trimming of audio from several Indonesian movies, the trimmed audio will be extracted to the 5 features mentioned before. The best model accuracy is VGG-16 with Mel Spectrogram dataset which has reached 56.2% of accuracy. In terms of recognizing the emotion, the best f1-score is reached by the model VGG-16 with Mel Spectrogram dataset which has 55.5% of f1-score. Mel scale that is applied to the feature extraction of mel spectrogram affected the model’s ability to recognize human emotion.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rice, John G.
New York: John Wiley & Sons, 1981
001.642 RIC b
Buku Teks SO  Universitas Indonesia Library
cover
Mikail Fauzan Athallah
"Penelitian ini menyelidiki integrasi Unreal Engine 5 dengan teknologi AI canggih, OpenAI dan ElevenLabs, untuk meningkatkan interaksi manusia-komputer melalui pembuatan gerakan berbasis aturan pada agen virtual. Penggunaan Unreal Engine 5 memungkinkan penciptaan lingkungan virtual beresolusi tinggi, yang sangat penting untuk interaksi agen yang realistis. Pengembangan sistem berbasis aturan sederhana yang mensintesis gerakan berdasarkan aturan yang telah ditentukan yang selaras dengan input yang diucapkan, dinilai dengan model lainnya. Sebuah studi komparatif, yang terinspirasi oleh Tantangan GENEA 2022, dilakukan untuk menilai efektivitas sistem yang diusulkan. Studi ini melibatkan studi pengguna di mana para partisipan menilai kemiripan manusia dan kesesuaian gerakan yang dihasilkan oleh sistem dengan model berbasis aturan, sistem model acak, model ground truth, dan model idle. Studi ini menggunakan model agen virtual yang sama untuk memastikan kondisi visual dan auditori yang konsisten di semua skenario pengujian. Temuan ini menunjukkan bahwa pembuatan gerakan berbasis aturan secara signifikan meningkatkan kealamian dan kontekstualitas interaksi agen virtual dibandingkan dengan 3 metode generasi gerakan lainnya. Hal ini mendukung potensi pendekatan terstruktur dalam menghasilkan interaksi yang lebih menarik dan realistis dalam lingkungan virtual. Penelitian ini diharapkan dapat memberikan kontribusi pada bidang desain agen virtual, dengan menekankan pentingnya mengintegrasikan teknik-teknik berbasis AI yang canggih untuk meningkatkan kualitas interaksi manusia-komputer.

This research investigates the integration of Unreal Engine 5 with advanced AI technologies, OpenAI and ElevenLabs, to enhance human-computer interaction through rule-based gesture generation on a virtual agent. Employing Unreal Engine 5 enables the creation of high-fidelity virtual environments, crucial for realistic agent interactions. The development of a simple rule-based system that synthesizes gestures based on predefined rules aligned with spoken inputs, is assessed against different models. A comparative study, inspired by the GENEA Challenge 2022, was conducted to evaluate the effectiveness of the proposed system. This involved a user study where participants rated the human likeness and appropriateness of gestures generated by rule-based, randomized systems, ground truth, and idle. The study utilized the same virtual agent model to ensure consistent visual and auditory conditions across all test scenarios. The findings demonstrated that rule-based gesture generation significantly enhances the perceived naturalness and contextuality of virtual agent interactions compared to the other 3 methods of gesture generation. This supports the potential of structured approaches in producing more engaging and realistic interactions in virtual environments. The research hopes to contribute to the field of virtual agent design, emphasizing the importance of integrating sophisticated AI-driven techniques to improve the quality of human-computer interaction."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Margaretha
"WordNet (Fellbaum, 1998) adalah suatu lexical resource yang kaya akan informas linguistik yang sangat bermanfaat bagi berbagai macam aplikasi, khususnya aplikasiaplikasi yang berhubungan dengan linguistik, pemrosesan bahasa alami, dan kecerdasan buatan. Dewasa ini, WordNet telah dibangun untuk lebih dari 40 bahasa, tetapi WordNet untuk bahasa Indonesia belum tersedia. Oleh karena pengembangan WordNet secara manual membutuhkan sumber daya yang tidak sedikit, penelitian yang dipaparkan dalam laporan tugas akhir ini bermaksud untuk membangun WordNet secara otomatis.
Penelitian ini mencoba untuk membuat synset (synonym set) untuk bahasa Indonesia dengan melakukan pemetaan konsep dwibahasa secara otomatis antara konsep bahasa Inggris yang diambil dari Princeton WordNet dan konsep bahasa Indonesia yang diambil dari Kamus Besar Bahasa Indonesia (KBBI). Tugas lain, yaitu pemetaan kata dwibahasa, diperkenalkan untuk memetakan kata-kata bahasa Inggris ke kata-kata bahasa Indonesia secara otomatis. Kedua pemetaan tersebut dilakukan dengan mengaplikasikan metode Latent Semantic Analysis (Landauer, Foltz, & Laham, 1998) pada korpora paralel berupa teks.
Awalnya, pemetaan kata dwibahasa dimaksudkan untuk melakukan verifikasi proses di balik pemetaan konsep dwibahasa. Namun, hasil pemetaan kata tidak memuaskan karena performa model kemiripan vektor lebih baik dari pada model LSA. Di sisi lain, hasil dari pemetaan konsep dwibahasa, menunjukkan kemampuan LSA untuk menangkap informasi semantik yang terkandung secara implisit dalam suatu korpus parallel. Walaupun LSA belum berhasil mencapai tingkat yang setara dengan pemetaan yang dilakukan manusia, secara umum LSA lebih baik dari pada random baseline.

WordNet (Fellbaum, 1998) is a lexical resource containing rich linguistic knowledge, which is very useful for a wide variety of applications, especially for applications related to linguistics, natural language processing, and artificial intelligence. Recently, WordNets have been built for more than 40 languages, but not yet in Indonesian. Since building a WordNet manually is complex and expensive, the work presented in this thesis considers building an Indonesian WordNet automatically.
This work attempts to construct Indonesian synsets (synonym set) by conducting automatic bilingual concept mapping between English concepts derived from Princeton WordNet and Indonesian concepts derived from Kamus Besar Bahasa Indonesia (KBBI). Another task, namely bilingual term mapping, is introduced to map English terms to their Indonesian analogues automatically. Both mappings are conducted by applying LatentSemantic Analysis (Landauer, Foltz, & Laham, 1998) on parallel corpora of text.
Bilingual term mapping was intended to verify the underlying process of bilingual concept mapping. However, the results are unsatisfactory suggesting that vector model similarity performs better than the LSA model. The results of bilingual concept mapping, on the other hand, show some capability of LSA to capture some semantic information implicit within a parallel corpus. Although LSA is not yet able to attain levels comparable to human judgements, it is generally better than random baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
O`Shea, Tim
Brighton: Harvester Press, 1983
004 OSH l
Buku Teks SO  Universitas Indonesia Library
cover
Martin, James
Englewood Cliffs, NJ: Prentice-Hall, 1985
005.13 MAR f I
Buku Teks SO  Universitas Indonesia Library
cover
Wooldridge, Dean E.
New York: McGraw-Hill, 1963
006.3 WOO m
Buku Teks SO  Universitas Indonesia Library
cover
Los Alatos: Morgan Kaufmann, 1986
006.3 REA
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>