Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1359 dokumen yang sesuai dengan query
cover
Sweden : Forsakringskassan ( Swedish Social Insurance Agency ), 2006,
Majalah, Jurnal, Buletin  Universitas Indonesia Library
cover
Wongkaren, Turro Selrits
"The aim of this thesis is showing the relation between population transition and economy transformation. The methods used in this thesis are bibliographical review and simple nonparametric correlation among the variables. It begins with demographic transition, that is, mortality, fertility, and mobility transition. These transitions affect another two group of transitions, namely transition of population quantity and transition of population quality. Transition of population quantity consists of transitions in population magnitude, population growth, and population composition. Transition of quality consists of transitions in population education and population health. Then, those transitions—and transition of urban population, simultaneously—affect economy transformation, which includes transformation in demand structure, transformation in production structure, and transformation in labor. The process of economy transformation, reciprocally, correlates to income per capita and income distribution as well. Finally, income per capita and income distribution will affect the demographic transition. The analysis uses available empirical data in Indonesia. This thesis shows two conclusions. First, Indonesia economy, so far, is stressed on demand side rather than supply side—which is the population. Second, the efforts to improve our human resources should always pay attention not only to the quality of the population, but also to the quantity of the population."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 1995
S18976
UI - Skripsi Membership  Universitas Indonesia Library
cover
Denpasar : Pusat Penelitian Kependudukan & PSDM Universitas Udayana,
Majalah, Jurnal, Buletin  Universitas Indonesia Library
cover
Sweezy, Alan
California The California Institute of Technology 1973
331 S 460
Buku Teks  Universitas Indonesia Library
cover
Leiden: KITLV Press, 1999
Buku Teks  Universitas Indonesia Library
cover
Jordan, Thomas E.
"This birefs examines mortality among young children in the period from the seventeenth to the nineteenth century. It does so using several types and sources of information from the census unit England and Wales, and from Ireland. The sources of information used in this study include memoirs, diaries, poems, church records and numerical accounts. They offer descriptions of the quality of life and child mortality over the three centuries under study. Additional sources for the nineteenth century are two census-derived numerical indexes of the quality of life. They are the VICQUAL index for England and Wales, and the QUALEIRE index for Ireland. Statistical procedures have been applied to the numbers provided by the sources with the aim to identify effects of and associations between such variables as gender, age, and social background. The briefs examines the results to consider the impact of children?s deaths upon parents and families, and concludes that there are differences and continuities across the centuries."
Dordrecht, Netherlands: Springer, 2012
e20400697
eBooks  Universitas Indonesia Library
cover
Intan Alifia Izziati
"ABSTRAK

Tingkat mortalitas digunakan dalam menghitung besar premi, anuitas pensiun, cadangan asuransi hidup, dan berbagai produk asuransi jiwa lainnya. Untuk itu perlu dilakukan peramalan tingkat mortalitas untuk masa yang akan datang. Kenaikan tingkat mortalitas dipandang sebagai akibat dari proses penuaan manusia yang didasarkan pada suatu indeks kesehatan, yaitu usia fisiologis. Rantai Markov Waktu Kontinu dengan satu absorbing state digunakan untuk memodelkan proses penuaan. Waktu yang dihabiskan sebelum masuk ke dalam absorbing state didefinisikan sebagai waktu bertahan hidup hingga terjadi kematian dan mengikuti Coxian phase type distribution. Fungsi survival dari distribusi yang digunakan dalam peramalan tingkat mortalitas dapat ditentukan. Penaksiran parameter model diperoleh dengan meminimumkan jumlah kuadrat errors dari fungsi survival. Kemudian dilakukan fitting model untuk melihat hasil peramalan tingkat mortalitas untuk data laki-laki dan perempuan. Hasil simulasi menyatakan bahwa model menunjukkan fit yang memuaskan dan dapat digunakan dalam meramalkan tingkat mortalitas usia tua pada data laki-laki dan semua usia pada data perempuan.


ABSTRACT


Mortality rates are used in calculating premiums, pension annuities, life insurance reserves, and other life insurance products. Therefore, it is necessary to forecast the mortality rate for the future time. Increasing in mortality rates are seen as a result of the aging process based on a health index called physiological age. Continuous Time Markov Chain with one absorbing state is used to model the aging process. The time spent before entering the absorbing state is defined as the survival time until death occurs and under the Coxian phase type distribution. The survival function can be determined from this distribution and used in forecasting mortality rates. The parameters estimation is obtained by minimizing sum squares of errors from the survival function. Then model fitting are performed to see the result of forecasting mortality rates for man and woman data. Simulation results indicate that the model show satisfactory fit and can be used in forecasting old age mortality for man and all age for woman.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Faiz Amir Aththufail
"Tingkat mortalitas merupakan salah satu indikator dalam kemajuan bidang kesehatan dan untuk membantu mengidentifikasi kelompok masyarakat yang diutamakan menerima program kesehatan serta pembangunan khusus. Tingkat mortalitas juga dapat digunakan untuk menunjukkan tingkat kesejahteraan dan kualitas hidup suatu negara. Selain itu tingkat mortalitas juga berperan dalam penetapan harga premi (pricing) dan perhitungan cadangan manfaat (valuation) untuk polis asuransi, produk anuitas, serta berperan dalam manajemen risiko aktuaria dan program pensiun. Mengingat tingkat mortalitas merupakan variabel acak yang berubah dari waktu ke waktu dan nilainya berada pada interval (0,1), maka diperlukan suatu model untuk dapat meramalkan tingkat mortalitas di masa depan. Salah satu model yang memiliki potensi untuk dapat memodelkan dan meramalkan tingkat mortalitas adalah model Beta Autoregressive Moving Average (βARMA). Model βARMA merupakan pengembangan dari regresi beta di mana error modelnya mengikuti proses Autoregressive Moving Average (ARMA). Pada penelitian ini akan dibahas mengenai implementasi model βARMA dalam memodelkan dan juga meramalkan tingkat mortalitas. Data yang digunakan adalah data tingkat mortalitas tahunan Indonesia dari tahun 1960 hingga 2020 dengan trend menurun dan data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul dari Januari 2000 hingga Desember 2017 yang bersifat stasioner. Model βARMA terbaik untuk kedua data dipilih berdasarkan nilai Akaike’s Information Criterion (AIC) terkecil kemudian dilakukan peramalan untuk enam periode selanjutnya. Keakuratan peramalan diukur berdasarkan Root Mean Square Error (RMSE). Pada data tingkat mortalitas tahunan Indonesia, diperoleh nilai RMSE sebesar 0.0001, sementara pada data tingkat mortalitas bulanan akibat kecelakaan kerja di Rio Grande do Sul, diperoleh nilai RMSE sebesar 0.0226.

The mortality rate is one of the indicators of progress in the health sector and to help identify groups of people who are prioritized to receive special health and development programs. The mortality rate can also be used to indicate the level of welfare and quality of life of a country. In addition, the mortality rate also plays a role in pricing premiums and calculating the benefit reserve (valuation) for insurance policies and annuity products, as well as playing a role in actuarial risk management and pension programs. Considering that the mortality rate is a random variable that changes from time to time and the value is in the interval (0,1), a model is needed to be able to forecast the mortality rate in the future. One model that has the potential to be able to model and forecast mortality rates is the Beta Autoregressive Moving Average (βARMA) model. The βARMA model is a development of beta regression where the error model follows the Autoregressive Moving Average (ARMA) process. In this study, we will discuss the implementation of the βARMA model in modeling and forecasting mortality rates. The data used are Indonesia's annual mortality rate data from 1960 to 2020 with a decreasing trend and the monthly mortality rate data due to work accidents in Rio Grande do Sul from January 2000 to December 2017 which is stationary. The best βARMA model for both data is selected based on the smallest Akaike's Information Criterion (AIC) value then a forecast is made for the next six periods. Forecasting accuracy is measured based on Root Mean Square Error (RMSE). In Indonesia's annual mortality rate data, the RMSE value is 0.0001, while in the monthly mortality rate data due to work accidents in Rio Grande do Sul, the RMSE value is 0.0226."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
London : Hamish Hamilton Ltd
050 PE (1954)
Majalah, Jurnal, Buletin  Universitas Indonesia Library
cover
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>