Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 119077 dokumen yang sesuai dengan query
cover
Nji Raden Poespawati
"ABSTRAK
Sampai saat ini penelitian untuk meningkatkan efisiensi solar cell silikon masih terus dilakukan. Dalam perkembangan penelitian di bidang struktur solar cell juga terus dilakukan, yang terakhir dengan struktur PERL dicapai efisiensi 24,7%. Untuk menghasilkan rancangan struktur solar cell silikon dengan efisiensi di atas 24,7%, maka pada penelitian ini dirancang dan disimulasikan lapisan graded Si1-xGex pada daerah basis solar cell silikon dengan nilai fraksi mol tertentu pada lapisan Si1-xGex.
Landasan perancangan adalah bahwa bahan semikonduktor Si1-xGex ini mempunyai koefisien absorpsi yang besar dan bandgap yang lebih rendah dari silikon pada panjang gelombang > 500 nun, sehingga diharapkan pada daerah deplesi akan terjadi peningkatan carrier generation. Dengan demikian efisiensi dari divaispun akan meningkat. Penggunaan bahan Si1-xGex pada daerah basis ini juga akan meningkatkan arus hubung singkat (short-circuit current) dari solar cell. Peningkatan efisiensi dapat diperlihatkan dengan memperhatikan tiga parameter yang mempengaruhinya, yaitu arcs hubung singkat, tegangan hubung terbuka (open circuit voltage) dan fill factor.
Dari analisa hasil simulasi perancangan dan hasil simulasi implementasi terbukti bahwa kombinasi fraksi mol dan ketebalan lapisan Si1-xGex, yang menghasilkan efisiensi paling tinggi terjadi pada solar cell silikon dengan teknik penumbuhan lapisan Si1-xGex secara bertahap (step graded) sebanyak 3 tahap, yaitu x = 0,3 dan ketebalan lapisan Si1-xGex = 0,0062 gm pada R(2); x sebesar 0,28 dan ketebalan lapisan Si1-xGex = 0,9808 gm pada R(3); sedangkan x = 0,275 dan ketebalan lapisan Si1-xGex = 0,013 gm pada R(4). Fill factor yang dihasilkan adalah lebih besar dari 0,7. Dengan menggunakan kombinasi fraksi mol (x) dan ketebalan lapisan Si1-xGex di atas dapat meningkatkan efisiensi solar cell silikon PSi/nSi1-xGex/n+Si. Semakin banyak tahap penumbuhan lapisan Si1-xGex pada data Pvicell.prm dan data bluepvicell.pnn, semakin balk unjuk kerja solar cell silikon PSi/nSi1-xGex/n+Si pada kedua data tersebut.

ABSTRACT
Nowadays researches for increasing silicon solar cell efficiency still continuously done. Concerning the research development in field of solar cell structure is constantly also made. The last structure is PERL (passivated emitter rear locally diffused) structure, which produces the 24.7% efficiency. For the design of having more than 24.7% efficiency silicon solar cell structure, the graded Si1-xGex layer on base silicon solar cell with certain fraction mole of Si1-xGex layer it designed and simulated at this research.
This Si1-xGex semiconductor material has the absorption coefficient higher than silicon and the band-gap is lower than silicon at wavelength > 500 nm, so it is hoped at the depletion region will occur a generous carrier generation. Thus the device efficiency also increases. Utilization of Si1-xGex material at this base region will also enhance the short-circuit current of the solar cell. Efficiency enhancement can be shown by three parameters, which affects it, namely short-circuit current, open circuit voltage and fill factor.
From the analysis of the design and implementation of the simulation's result, it is shown that combination of fraction mol and thickness of Si1-xGex layer, which produce the highest efficiency at pSilnSi,_5Gejn+Si silicon solar cell is grown by using step graded Si1-xGex layer technique. This technique has 3 steps, they are x = 0.3 and thickness of Si1-xGex layer = 0.0062 p.m at R(2), x = 0.28 and thickness of Si1-xGex layer 0.9808 gm for R(3), while x = 0.275 and thickness of Si1-xGex layer = 0.013 gm at R. The Fill factor, is also higher than 0.7. By using the above combinations of fraction mole (x) and Si1-xGex Iayer thickness, the efficiency of PSi/nSi1-xGex/n+Si silicon solar cell can be increased. The more step of Si1-xGex layer growth in Pvcell.prm and bluepvcell.prm data, the higher performance of PSi/nSi1-xGex/n+Si silicon solar cell can be improved at those both data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
D561
UI - Disertasi Membership  Universitas Indonesia Library
cover
Arief Udhiarto
"Salah satu karakteristik penting bahan semikonduktor untuk aplikasi solar sel yang menentukan tingginya tingkat efisiensi adalah kofisien absorpsi (a) bahan terhadap cahaya. Setiap semikonduktor menyerap cahaya dengan koefisien yang berbeda-beda. Satu bahan semikonduktor juga memiliki daya absorpsi yang berbeda terhadap cahaya yang memiliki panjang gelombang berbeda. Cahaya biru memilik intensitas paling besar dibandingkan dengan cahaya lain [1]. Pada tesis ini dilakukan sebuah perancangan dan simulasi divais silikon solar sel untuk mengoptimalkan peran cahaya biru, yaitu dengan cara menempatkan pusat persambungan pn pada kedalaman 0,7 µm, dan menambahkan sebuah lapisan tipis dengan doping konsentrasi tinggi pada masing-masing permukaan emiter dan basis serta dengan membentuk struktur permukaan dengan pola piramida tegak dengan ketinggian 4 µm dan sudut kemiringan sebesar 65°. Dari simulasi menggunakan perangkat lunak PCID58 didapatkan konsentrasi doping untuk tipe-p sebesar 2,64 x 10zo cm3 dan untuk tipe-n sebesar 2,9 x 10Z0 cm3. Pasivated emitter diberikan pada bagian emiter untuk mengurangi rekombinasi permukaan [2]. Dan simulasi dan analisa rancangan, berhasil diperoleh sebuah rancangan divais silikon solar sel dengan efisiensi 15,17%, berdaya keluaran basis maksimum sebesar 2,055 W, dengan arus basis short-circuit sebesar -3,356 A dan tegangan basis open-circuit sebesar 0,5676 V. Dengan mengasumsikan bahwa perhitungan efesiensi yang dilakukan oleh Allen Jiun-Hua Gou adalah benar, maka tingkat efisiensi dari rancangan solar sel akan menjadi lebih besar dari 20,55% dengan ketebalan sel sebesar 30 pm. Se!uruh simulasi dilakukan terhadap rancangan solar sel dengan luas permukaan 100 cm2.

One of the important parameters from semiconductor material in solar cell application is absorption coefficient material toward the light. Every semiconductor has its own absorption coefficient. A semiconductor material was absorbed differently toward different wavelength of light. Blue light has biggest intensity than others light [1]. In this thesis, we design a silicon solar cell to optimize role of blue light by placing the center of injunction at depth of 0.7 µm, add the thin of n-type at front surface and thin of p-type at rear surface with heavy doping also by applying pyramid structured at surface with depth of 4 µm and angle of 65°. By using software PC1D58 we obtain doping concentration for p-type is 2.64 x 1016 cm 3 and for n-type is 2.9 x 1026 cm-3. Pass: gated emitter is introduced to reduce surface recombination [2]. From simulation and analysis, we have succeed developed a solar cell structure design with efficiency of 15.17%, where the maximum base power out is 2.055 W; the base current short-circuit is -3.356 A and voltage base open-circuit is 0.5676 V. By assuming that calculation of efficiency that recommended by Allen Jiun-Hua Gou is valid, the efficiency of solar cell will be more than 20.55% and the thickness of cell is 30µm. Solar cell was designed with area of 100 cm2."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14742
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisa Nurulianthy
"Energi matahari dapat dimanfaatkan sebagai energi alternatif baik radiasi maupun termalnya untuk memenuhi kebutuhan energi sehari-hari. Salah satu alat yang dapat digunakan adalah hybrid solar cell yang mengonversikan radiasi matahari menjadi listrik menggunakan solar cell dan dikombinasikan dengan modul termoelektrik untuk mengonversikan kalor matahari menjadi daya listrik tambahan untuk meningkatkan efisiensi pemanfaatan energi matahari. Pada penelitian ini dilakukan pengujian terhadap rangkaian seri, parallel, seri-paralel dari susunan modul termoelekrik yang akan memberikan hasil paling optimal dan jarak antara prototype hybrid solar cell terhadap sumber energi sebesar 20cm, 25cm, 30cm, 35 cm, dan 40cm dan kemudian membandingkan besarnya keluaran tegangan dan daya yang dihasilkan dari hybrid solar cell dengan solar cell biasa pada pengujian lapangan. Hasil pengujian menunjukkan bahwa rangkaian seri memberikan daya terbesar dengan jarak optimal 40cm. Pengujian ini juga menunjukkan bahwa hybrid solar cell dapat menghasilkan 8,75% kali lipat daya listrik yang lebih besar daripada solar cell biasa.

Solar energy can be exploited as an alternative energy both the radiation and thermal to fulfill daily energy need. One device that can be used is hybrid solar cell that converts solar radiation into electricity using solar cell and combined with thermoelectric device to convert solar thermal into additional power in order to increase the efficiency of solar energy. This research is doing some tests to series, parallel, series-parallel circuit of thermoelectric devices array that will give the most optimal result and distance between the hybrid solar cell prototype and the energy sources as long as 20cm, 25cm, 30cm, 35cm, and 40 cm, and then compare the voltage and power output of hybrid solar cell with conventional solar cell in field experiment. The experiment result shows that series circuit will give the biggest power with the optimal distance of 40cm. This experiment also shows that hybrid solar cell can produce 8,75% times more of electric power than conventional solar cell."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43227
UI - Skripsi Open  Universitas Indonesia Library
cover
Umar Fitra Ramadhan
"Sel surya merupakan pembangkit listrik berbasis energi terbarukan yaitu Energi Surya, oleh karena itu pengoperasian sel surya sangat tergantung dari intensitas cahaya matahari yang mengenai permukaan sel surya. Kontuinitas intensitas matahari yang mengenai sel surya sering kali terganggu oleh bayang-bayang.Bayang-bayang adalah suatu kondisi yang mengakibatkan berkurangnya radiasi sinar matahari yang dapat diterima oleh sel-sel pada panel surya. Dibanyak kasus sel surya akan tertutup oleh bayangan, baik sebagian atau seluruhnya. Bayangan yang terjadi sering disebabkan oleh awan yang lewat, bangunan tinggi, menara-menara tinggi, pohon, kotoran burung, debu, dan juga bayangan dari satu panel di sisi yang lain.
Skripsi ini akan membahas variasi intensitas matahari serta luas area permukaan sel surya yang terkena bayang-bayang. Bayang-bayang disimulasikan dengan menggunakan naungan yang memiliki tingkat transparansi sebesar 48% dari intensitas matahari yang diterima. Pengukuran gangguan bayang-bayang terhadap penurunan kualitas daya keluaran dilakukan dengan menggunakan panel surya polikristalin pada jam 10.00 hinggan jam 14.00 WIB ketika panjang gelombang cahaya matahari berada pada kisaran (300-800 nm) yang berkaitan dengan daerah spektrum cahaya tampak (visible). Studi ini bersifat eksperimental menghasilkan nilai karakteristik tegangan dan arus keluaran yang bervariasi mengikuti kurva non linear.

The solar cell is a renewable energy, therefore the operation of the solar cell is very dependent on the intensity of the suns light on the surface of the solar cell. The continuity of the suns intensity on the solar cells is often disturbed by the shadows. Shadows are a condition that results in reduced sunlight radiation that can be received by cells in solar panels. In many cases, solar cells will be covered by shadows, either partially or completely. Shadows that occur are often caused by passing clouds, tall buildings, tall towers, trees, bird droppings, dust, and also shadows from one panel on the other.
This thesis will discuss variations in the intensity of the sun and the surface area of solar cells affected by the shadows. The shadows are simulated using a shade that has a transparency level of 48% of the received solar intensity. Measurement of shadow disturbance to the decrease in the quality of output power is done by using polycrystalline solar panels at 10.00 to 14.00 when the wavelength of sunlight is in the range (300-800 nm) associated with the visible light spectrum. This experimental study produces the characteristic values of output voltage and current which vary according to the nonlinear curve.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrew Bastian
"Sel surya perovskite merupakan sel surya yang menggunakan organic-metal halide sebagai lapisan aktif pada sel surya. Pada tahun 2009, sel surya perovskite pertama kali difabrikasi dan mencapai efisiensi sebesar 3,8% dan pada tahun 2014 sudah mencapai 19,3%. Efisiensi tertinggi yang tercatat adalah sebesar 23,3%. Dalam kurun waktu 4-5 tahun sel surya perovskite sudah menunjukkan potensinya yang besar karena sudah hampir dapat menyaingi sel surya berbahan silikon. Biaya fabrikasinya yang murah, stabilitas yang baik, dan proses fabrikasi yang mudah membuat sel surya perovskite sangat menjanjikan untuk bersaing dengan sel surya silikon. Salah satu metode fabrikasi sel surya perovskite adalah dengan menggunakan proses annealing. Proses annealing merupakan proses pemanasan subtrat sampai suhu tertentu sehingga zat pelarut mulai menguap.
Penelitian tentang sel surya perovskite sudah banyak, tetapi belum ada yang membahas secara langsung pengaruh suhu annealing pada struktur sel surya perovskite yang dipakai pada penelitian ini. Oleh karena itu pada penelitian ini akan dilakukan variasi suhu annealing 110ºC, 120ºC, dan 130ºC pada proses deposisi lapisan aktif sel surya perovskite dengan tujuan mencari suhu yang paling tepat terhadap efisiensi sel surya. Hasil dari penelitian ini menyatakan bahwa pada suhu 130ºC, sel surya perovskite mencapai efisiensi tertinggi yaitu sebesar 1,91%.

Perovskite solar cell is a solar cell using organic-inorganic metal halide material as active layer of the solar cell. In 2009, perovskite solar cell is firstly fabricated with efficiency of 3.8% and in 2014 perovskite solar cell has achieved efficiency of 19.3%. Highest efficiency of perovskite solar cell that has been reported is 22.1%. In 4-5 years of development, perovskite solar cell has proved its high potential to become a high efficiency solar cells. Cheap fabrication, good stability and easy fabrication processes make perovskite solar cells very promising to compete with silicon solar cells. One of the fabrication method of perovskite solar cells is by using annealing process. Annealing process is the process of heating the substrate to a certain temperature so that the solvent begins to evaporate.
There have been many studies on perovskite solar cells, but no one has directly discussed the effect of annealing temperature on the structure of perovskite solar cells used on this research. Therefore in this study, annealing temperature variations of 110ºC, 120ºC, and 130ºC will be carried out in the active layer deposition process of perovskite solar cells in order to find the most optimum temperature for the solar cells efficiency. The results of this study state that at 130ºC, perovskite solar cells reach the highest efficiency of 1.91%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Jodie Abraham Isa
"Sel surya berbahan perovskite adalah sel surya generasi ketiga yang menggunakan lapisan aktif berbahan halida organik-inorganik sebagai lapisan penyerap energi matahari yang lalu akan dikonversi menjadi energi listrik. Selama 10 tahun terakhir, telah tercatat sel surya perovskite yang dikembangkan dan di uji di dalam laboratorium sudah mencapai efisiensi 22,11%. Metode trap passivation adalah metode penambahan lapisan pasif pada lapisan aktif untuk memperbaiki unjuk kerja sel surya perovskite dengan membantu meminimalisir adanya trap state pada elektron yang tereksitasi antar lapisan sel surya perovskite. Oleh karena itu, pada Skripsi ini dilakukan analisis pengaruh dari penambahan konsentrasi lapisan pasif dalam bentuk Tetra-ethyl Orthosilicate (TEOS) untuk membandingkan dengan Sampel tanpa penambahan TEOS, serta untuk meningkatkan unjuk kerja sel surya perovskite. Pada Skripsi ini, sebanyak 4 sel telah difabrikasi dengan konsentrasi TEOS sebesar 0% mol; 0,25% mol; 0,3% mol; dan 0,35% mol. Nilai konsentrasi TEOS paling optimal yang didapat pada percobaan ini adalah 0,25% mol dengan nilai rata- rata Voc sebesar 1,23 V; Isc sebesar 9,25 mA; efisiensi sebesar 3,267 % dan FF sebesar 0,506.

Perovskite solar cell (PSC) is a third-generation solar cell in which the active material is formed using an organic-inorganic halide. PSCs have shown rapid development over the past 10 years with an increase of efficiency up to 22.11%. Trap passivation is a method of adding a passivation layer into the active layer that can be employed to prevent charge trap state caused by the non-uniformity at the active cell interlayer surface which can further improve the performance of perovskite solar cells. Therefore, in this thesis, the researcher applied and analyzed the effect of different concentration levels of a passivation layer in a form of tetraethyl orthosilicate (TEOS); 0%; 0.25%; 0.3%; 0.35%; towards the performance of perovskite solar cells as well as a comparison to the Sample that didn’t employ the TEOS solution. In this research, a best average result is obtained with 0.25% mol of applied TEOS additive into the perovskite active layer with Voc, Isc, efficiency, and FF value of 1.23 V, 9.25 mA, 3.267% and 0.506 respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldo Rahmansyah Sosodoro
"Sel Surya dewasa ini merupakan salah satu Sumber Daya Alternatif yang amat dilirik. Selain itu, ia memiliki perkembangan pesat dengan variasi yang jamak: Monocrystallyne, Polycrystallyne, DSSC dan lain sebagainya dimana masing-masing memiliki jenis Sel Surya tersebut memiliki kualitas serta harga yang bervariasi. Imbas dari hal itu ialah banyaknya Sel Surya yang terdapat di pasaran. Namun banyaknya Sel Surya di pasaran tersebut tidak diimbangi dimana tidak ditemui satu pun perangkat yang mampu mengkarakterisasi Sel Surya-Sel Surya tersebut.
Pada penelitian ini dirancang dan dibangun sebuah Perangkat berbasis Mikrokontroler ATmega16 yang telah mampu untuk melakukan karakterisasi dari Sel Surya yang terdapat di pasaran. Dari karakterisasi Sel Surya, dapat diketahui parameter-parameter dari sel surya mulai dari Tegangan Open Circuit, Arus Short circuit, Fill Factor, Maximum Power Point dan lain-lain. Dari data yang didapat dan dibandingkan dengan datasheet produk, ditemukan bahwa ada perbedaan antara data dari datasheet dengan data dari hasil pengujian. Dilakukan pula percobaan-percobaan dengan variasi Iluminasi yang membuktikan bahwa Iluminasi yang masuk ke perangkat Sel surya akan mempengaruhi besarnya nilai daya yang keluar dari Sel Surya tersebut.

Solar Cell nowadays is one of main Alternative power sources. Solar Cell also already has advanced development with many warations in its technology, such as: Monocrystallyne, Polycrstallyne, DSSC and othe. Each type of technology has it own quality and price. It affects the availability of many types of Solar Cells in the market. But the availability of Solar Cells in the market is not compensated by any Instrument that can Characterized every Solar Cells.
In this research, Designed and Developped a Solar Cell Efficiency Characterizing Instrument Based on ATmega16 Microcontroller that can caharacterized Solar Cell that exist in the market. From the Solar Cell's characterization, can be known the parameters of Solar Cell such as Open circuit Voltage, Short Circuit Current, Fill Factor, Maximum Power point, and many more. In this research, founded differences between the data from datasheet of the products and the data from the testing with the Instrument. In this research also conducted experiments with various Light brightness that verifiy that the light brightness that go into the Solar Cell will effecting the quantity of Power that came out from the Solar Cell.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42889
UI - Skripsi Open  Universitas Indonesia Library
cover
Misha Shariva
"Sel surya perovskite berbasis timbal menunjukkan efisiensi dan stabilitas yang tinggi dengan metode sintesis mudah dan murah, namun penggunaan timbal sangat dikhawatirkan karena tingkat toksisitas tinggi dan dapat mencemari lingkungan. Baru-baru ini disintesis bismuth perovskite yang stabil, non-toksik dan dapat disintesis dengan metode sederhana pada temperatur rendah namun persen efisiensinya hanya mencapai 0,19%. Berbagai riset membuktikan bahwa titania anatase dengan persen eksposur (001) yang besar mampu meningkatkan arus listrik, tegangan, meningkatkan injeksi elektron dan memperkecil rekombinasi. Sehingga pada penelitian ini, disintesis TiO2 nanopartikel dengan tingkat pemaparan faset (001) berbeda menggunakan capping agent fluorin dan mendapatkan persentase faset (001) menurut karakterisasi XRD 17% , 18% dan 23% dan menurut karakterisasi raman 12% , 14% dan 25%. Menurut hasil dari karakterisasi dengan UV-DRS seiring dengan penambahan volume HF reflektan dari TiO2 di daerah sinar UV meningkat. Dari hasil perhitungan, didapatkan energi celah pita untuk variasi HF 5 ml, HF 10 ml dan HF 15 ml adalah 3,25 eV; 3,25 eV dan 3,3 eV.

Lead-based perovskite solar cells exhibit high efficiency and stability with an easy and inexpensive synthesis method, but the use of lead is a great concern because of its high toxicity and pollution. Recently bismuth perovskite with stable, non-toxic and simple synthesis low temperature method has been synthesized but the efficiency is only 0,19%. Various studies have shown that anatase titania with a large percentage of exposure (001) facet can increase electric current, voltage, electron injection and reduce recombination. In this study, TiO2 nanoparticle were synthesized with different facet (001) exposure using fluorine as capping agents and obtained (001) facet percentage according to XRD characterization of 17%, 18% and 23% and according to raman characterization of 12%, 14% and 25%. According to UV-DRS characterization along with the addition of the volume of HF reflectant from TiO2 in the UV light region increases. From the calculation results, band gap energy for 5 ml HF variation, 10 ml HF and 15 ml HF is 3.25 eV; 3.25 eV and 3.3 eV."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agung Kurniawan
"Silikon dapat bersifat seperti cermin dan memantulkan ± 30% cahaya yang diterimanya. Dalam aplikasi solar sel ada dua metode yang dapat digunakan untuk mengurangi pemantulan pada permukaan silikon solar sel. Metode yang pertama adalah dengan membentuk tekstur permukaan seperti piramida atau piramida terbalik. Metode kedua adalah dengan membentuk suatu lapisan anti refleksi (antire flection coating).
Pada penelitian ini dilakukan perhitungan dan simulasi untuk mencari parameter optimal untuk dual layer antireflection coating. Parameter yang perlu diperhatikan dalam penggunaan antireflection coating adalah indeks refraksi dan ketebalan lapisan. Berdasarkan penelitian yang dilakukan melalui perhitungan dan uji simulasi dengan menggunakan PCID, ketebalan dan indeks refraksi optimal dari dual layer antireflection coating diketahui sebagai berikut: Lapisan atas (pertama) n1 = 1,57 ; d1 = 93 nm - 96 nm, Lapisan bawah (kedua) n2 = 2,46 ; d2 = 56 nm - 58 nm.
Berdasarkan simulasi yang dilakukan, pemantulan minimum dual layer antireflection coating terjadi pada panjang gelombang 400 nm - 1200 nm (dibawah 10 %). Pemantulan paling kecil (0 %) terjadi pada panjang gelombang 800 nm - 850 nm. Peningkatan performa solar sel dapat dilihat pada peningkatan arus short-circuit sebesar 120 mA (±4%) jika dibandingkan dengan solar sel yang menggunakan tekstur permukaan."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S39947
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbi Fadli
"Daerah perkotaan yang dipadati oleh bangunan dan gedung tinggi dapat mempersulit proses pendistribusian energi listrik ke tengah kota. Adanya keengganan masyarakat jika pemukimannya dilewati saluran transmisi atau dibangun gardu induk, serta biaya pembangunan saluran kabel bawah tanah yang lebih besar dari saluran udara menambah tingkat kesulitan tersebut. Apabila penyaluran energi listrik terkendala maka daerah perkotaan akan mengalami krisis energi listrik sehingga mengganggu kehidupan masyarakat. Salah satu solusi dalam mengatasi permasalahan diatas adalah dengan pemasangan solar cell kaca (glasses solar cell) bermaterial thin film (CdTe) pada gedung bertingkat, yang berada ditengah kota dan energi listriknya dipasok oleh jaringan PLN (Perusahaan Listrik Negara). Dalam penelitian ini, solar cell kaca akan dipasang pada gedung “W” yang sudah dibangun, dengan luas area pemasangan solar cell yaitu 6.916 m2. Level transparansi kaca gedung yang menjadi objek penelitian adalah 30%, sehingga pemasangan solar cell kaca dengan tingkat transparansi yang sama, mampu memasok energi listrik maksimum sebesar 339.891 kWh/tahun atau setara 13% kebutuhan energi listrik gedung. Analisa kelayakan secara ekonomi digunakan pada penelitian ini, dimana diperoleh nilai NPV (-)Rp 6.419.969.265, IRR -2,68%, dan Payback Period lebih dari 25 tahun (umur investasi), sehingga secara keekonomian, pemasangan PV thin film dengan transparansi 30% belum layak untuk diterapkan. Penggunaan solar cell kaca berkontribusi mengurangi emisi gas karbon, maksimum 277.691 kg /tahun.

Urban area populated by edifice and storey building can complicate process of electric energy distribution to the middle of city. Citizen reluctance if their settlement passed by transmission network or being built substation, and bigger cost of underground cable than overhead line increases such difficulty level. If there is problem in delivering electric energy, so the city will face electric energy crisis and disrupt society life. One of solution in overcoming that issue is by installation the glasses solar cell with thin film material (CdTe) on storey building, which located in the middle of city and its electric energy supplied by PLN. In this study, glasses solar cell will be installed in existing building “W” with solar cell area about 6,916 m2. Glasses transparency level of study object building is 30%, so by installing same transparency level of solar cell can supply maximum electric energy 339,891 kWh /year or equal to 13% electric energy demand of building. Economic feasibility analysis applied in this study, where NPV is IDR (-) 6,419,969,265, IRR is -2.68% and the payback period is more than 25 years (investment duration), so this technology is not yet feasible to be implemented economically. The usage of glasses solar cell contributes to deduct greenhouse gas emission, maximum 277,691 kg/year."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>