Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143109 dokumen yang sesuai dengan query
cover
Gustian Jaya
"Studi oksidasi parsial metana ini dilakukan untuk mempelajari karakterisasi dan kinerja katalis Cu3(PW12040)2 (CuPW) dan Cu (II) zeolit alam yang diaktifkan (Cu-Z). Kedua katalis tersebut dipreparasi dengan metode pertukaran ion. Percobaan ini menggunakan reaktor unggun tetap dengan melihat pengaruh suhu (400-700°C), rasio umpan CH4/O2, dan rasio berat katalis terhadap laju alit umpan (W/F) pada tekanan atmosferik.
Hasil karakterisasi menunjukkan bahwa CuPW mempunyai luas permukaan (3,38 m²/gram) yang jauh lebih kecil dari Cu-Z (62,67 m²/gram) akan tetapi kandungan Cu (II) di CuPW (4,2%) jauh lebih besar dari Cu-Z (0,5%).
Kekuatan adsorpsi Cu-Z terhadap metana lebih besar dari CuPW yang ditunjukkan oleh suhu desorpsi maksimum metana pada hasil Temperatur Program Desorpsi (TPD) 570 °C untuk Cu-Z dan 420 °C untuk CuPW, dan sebaliknya terhadap oksigen. Sedangkan Cu-Z mempunyai kekuatan asam lebih tinggi dari CuPW, yang ditunjukkan oleh suhu desorpsi maksimum piridin pada hasil TPD 680 °C untuk CuPW dan 780 ° C untuk Cu-Z.
Konversi metana pada katalis CuPW dua kali (2K) Cu-Z pada W/F dan CH4/02 yang sama, meskipun luas permukaan keduanya berbeda. Fenomena ini disebabkan oleh pengaruh berperannya beberapa besaran (luas permukaan, kandungan inti aktif Cu+2 dan keasaman) secara simultan.
Reaksi oksidasi tanpa umpan oksigen menunjukkan bahwa oksigen kisi kedua katalis berperan pada parsial oksidasi ini. Perbedaan kekuatan ikatan oksigen kisi pada kedua katalis memberikan selektivitas yang berbeda terhadap metanol/formaldehida. Cu-Z dengan kekuatan asam yang lebih tinggi dari CuPW mempunyai kapasitas adsorpsi terhadap metana lebih besar, sehingga konsentrasi metana yang besar di permukaan ini meningkatkan konversinya lebih besar dibanding terhadap CuPW.
Pada katalis Cu-Z, selektivitas metanol yang terbesar (sekitar 7,5%) didapat pada 600 °C, CH4/02 = 17,3 dan W/F =-0,2 gr-kat.menit/ml. Selektivitas optimum formaldehid (sekitar 9%) pada W/F = 0,3 gr-kat.menit/ml, CH4/02 = 3, 600 °C. Sedangkan pada katalis" CuPW, metanol tidak terbentuk. Selektivitas formaldehida optimum adalah sekitar 18%, pada 500 °C, CH4/02 = 3 dan W/F = 0,3 grkat.menit/ml."
Depok: Fakultas Teknik Universitas Indonesia, 1996
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Hanif Kustadi
"Three silica supported cobalt-base catalysts were prepared by wet impregnation method, the differences are changing the cobalt loading (1.65 wt.%, 4.78 wt.%, and 7.56 wt.% Co). Co/SiO2 catalysts were made from solution Co(NO3)2.6H2O, NH4OH, and SiO2 Degussa (200 m2.gr.-1) as support.
Magnetic measurement, transmission electronic microscopy (TEM), and chemisorptions method have been used to characterize the reduction and catalytic behavior of a series Co1SiO2 catalysts. Magnetic measurements were performed by Weiss extraction method, these give information both on the degree of reduction and on the metal size when the system is super paramagnetic. TEM would be determined average size and size distribution of particles. Structure sensitivity of organometalic surface of CO adsorption was observed with infra-red spectroscope (IR). H2 adsorption ability of catalysts and prediction of diameter size of cobalt could be calculated with volumetric adsorption method. The test catalytic hydrogenation CO reaction was proceeded under 200°C, 220°C, and 240°C, and the exit gas was analyzed on heated line by gas chromatography (FM and TCD) for measurement products conversion and selectivity.
All catalysts were reduced fully at 650°C, at that condition metal dispersion as active site on surface increases with decreasing cobalt loading, and the highest metal dispersion found 30 %.
The particle size of fully reduced cobalt metal is subject to rise with the increasing of metal loading, that is range of 3.9 nm to 8.7 nm and homogeneities distribution range of 8.7 % to 32 %. The smallest metal particle size is found about 3.9 nm and the highest H2 adsorption ability is 23,6 ml. gr.-1 for 1.65 wt.% Co1SiO2 catalyst.
The result of catalytic test at 220°C / 2 MPa / GHSV 2000 h-i was demonstrated that product selectivity for high hydrocarbon (greater than C5) has tendency to rise up to 29.9 %

Telah dilakukan penelitian pembuatan katalis logam cobalt dengan penyangga SiO2 Degussa untuk proses sintesis Fischer-Tropsch dengan metode impregnasi basah. Konsentrasi cobalt yang dibuat divariasikan sebesar 1,65 %, 4,78 %, dan 7,56 % berat. Preparasi dilakukan dengan mereaksikan larutan Co(NO3)z. 6H2O dengan NH4OH, dan SiO2 Degussa sebagai penyangga.
Karakterisasi katalis dilakukan dengan menentukan sifat kemagnetan dengan metode ekstraksi Weiss, data ini digunakan untuk mengukur sifat paramagnetik setelah dereduksi dan mengukur besarnya distribusi butiran. Untuk mengetahui bentuk, ukuran, dan hubungan antar butir partikel dilihat juga dengan metoda mikroskop transmisi elektronik (TEM). Pengamatan sensitivitas struktur permukaan organometalik dari gas CO dengan spektroskop infra-merah (FR). Pengukuran kemampuan katalis mengadsorpsi gas hidrogen pada katalis dan prediksi besar butir partikel logam dilakukan dengan adsoprsi volumetrik gas hidrogen. Uji katalis cobalt pada reaksi sintesis Fischer-Tropsch dilaksanakan di dalam reaktor unggun tetap dengan suhu 200°C sampai 240°C, pengukuran produk hasil proses dianalisis dengan kromatograft gas (GC-FM dan GC-TCD) untuk mengetahui konversi dan selektivitas produk.
Hasil penelitian menunjukkan bahwa ketiga katalis tersebut dapat tereduksi sempurna dengan gas hidrogen pada temperatur 650°C. Pada kondisi tersebut, persen dispersi logam sebagai inti aktif di permukaan katalis semakin besar dengan berkurangnya konsentrasi cobalt, persen dispersi tertinggi diperoleh sebesar 30 %.
Ukuran butiran partikel logam cobalt yang tereduksi sempurna semakin besar dengan bertambahnya konsentrasi cobalt yaitu antara 3,9 nm sampai 8,7 nm dan homogenitas distribusi bervariasi antara 8,7 % sampai 32 %. Ukuran katalis terkecil terukur sebesar 3,9 nm dan daya adsorpsi hidrogen tertinggi diperoleh sebesar 23,6 ml/gram cobalt pada katalis 1,65 % Co1SiO2 .
Hasil uji katalis pada temperatur 240°C / 2 MPa 1 GHSV 2000 h-1 menunjukkan bahwa selektivitas produk berupa hidrokarbon rantai panjang (> C5) cenderung meningkat sampai 29,9 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 1994
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Slamet
"ABSTRAK
Salah satu aplikasi yang cukup potensial dari fenomena fotokatalisis adalah untuk mengkonversi karbon pada senyawa anorganik seperti CO2 menjadi senyawa-senyawa organik yang lebih berguna. Disamping diperolehnya produk senyawa organik yang dapat digunakan untuk keperluan tertentu, transformasi CO2 tersebut dalam kurun waktu tertentu dapat mengurangi laju emisi CO2 di atmosfer, yang akhir-akhir ini menjadi issu lingkungan global karena dipercaya dapat memberikan kontribusi yang signifikan terhadap timbulnya efek rumah kaca (greenhouse effect). Efisiensi reduksi CO2 sangat tergantung pada fotokatalis yang digunakan. Beberapa peneliti telah membuktikan bahwa CO2 dapat direduksi secara fotokatalitik dalam uap air atau Iarutan dengan TiO2, akan tetapi efisiensinya masih sangat rendah. Studi ini difokuskan pada pengembangan fotokatalis yang efektif untuk proses reduksi CO2 menjadi metanol.
Fotokatalis TiO2 serbuk dengan berbagai komposisi kristal anatase dan rutile dibuat dengan cara menghidrolisis TiCk yang dilanjutkan dengan kalsinasi pada berbagai temperatur. Modifikasi katalis TiO2 film dilakukan dengan menambahkan polyethilene glycol atau silika, menggunakan metode sol-gel dan dip-coating. Fotokatalis tembaga-titania dibuat dengan metode impregnasi-termodifikasi menggunakan TiO2 Degussa P25 clan larutan tembaga nitrat, serta metode pencampuran fisik menggunakan serbuk TiO2 Degussa P25. CuO, Cu2O, dan Cu. Katalis-katalis yang telah dibuat kemudian dikarakterisasi dengan XRD, DRS, SEM/EDX/Mapping, AAS, dan BET. Uji kinerja katalis yang dilakukan meliputi uji aktivitas fasa cair dan gas, uji kinetika, dan uji mekanisme reaksi dengan metode in-situ FTIR.
Hasil penelitian membuktikan bahwa dengan bantuan fotokatalis titania dan tembaga-titania. karbon dioksida dapat direduksi oleh air baik dalam sistem cair-padat rnaupun gas-padat, menghasilkan produk utama metanol. Metana, etanol, propanol, dan aseton adalah senyawa-senyawa lain yang juga terbentuk, meskipun dalam jumlah yang relatif lebih sedikit. Aktivitas reduksi fotokatalisis CO2 pada larutan 1 M KHCO3 paling optimal diamati te1jadi ketika keasaman larutan diatur pada pH 4. Katalis TiO2 serbuk dengan komposisi kristal anatase yg tinggi, ukuran kristal kecil, dan luas permukaan besar, rnempunyai efisiensi fotoreduksi CO2 yang tinggi. Penambahan dopan PEG atau SiO2 sampai pada tingkat loading tertentu dapat meningkatkan porositas fotokatalis TiO2 film, sehingga kine1:janya menjadi Iebih baik.
Katalis tembaga/Ti02 dcngan loading tertcntu menunjukkan kinerja fotokatalisis yang sangat efisien untuk reduksi CO2, baik pada sislem cair-padat maupun gas-padat. Hasil inYestigasi menunj ukkan bahwa Cu11O adalah spcsi do pan yang paling signi fikan dalan1 1neningkatkan kine1ja TiO2 pada reduksi CO2 menjadi metanol. loading optimal yang diperoleh pada katalis CuO/TiO2 hasil impregnasi adalah 3% berat Cu, sedangkan pada katalis yang dibuat dengan pencan1puran fisik adalah 5% berat untuk dopan Cu2O dan l % berat untuk dopan CuO.
Peningkatan efisiensi reduksi CO2 1nenjadi metanol yang signifikan oleh dopan ten1baga (terutan1a dalam bentuk metal oksida) pada fotokatalis TiO2 diduga karena adanya peran ganda yang sinergis dari dopan tembaga tersebut, yaitu sebagai electron trapper pada proses fotokatalisis dan sebagai inti aktif pada proses katalisis. Sebagai electron trapper~ dopan tembaga secara efektif dapat n1enghambat laju rekombinasi pasangan elektron-hole sehingga secara signifikan dapat meningkatkan efisiensi reduksi CO2. Sebagai inti aktif pada proses katalisis, dopan tembaga diperkirakan dapat meningkatkan selektivitas produk metanol, dengan 1nekanisme melalui pen1bentukan intermediate forn1at dan metoksida.
Uji kinetika yang dilakukan pada rentang te1nperatur 43 -l 00 °C menunjukkan bahwa dopan CuO dapat n1eningkatkan laju reaksi, sehingga secara signifikan dapat meningkatkan photoefficiency dari katalis TiO2. Nilai energi aktivasi teramti (Ea) yang diperoleh untuk katalis 3% CuO/TiO2 adalah sebesar + 12 kJ/mol, yang mengindikasikan bahwa desorpsi produk adalah merupakan tahap penentu laju reaksi pada pembentukan metanol dari CO2 dan H20 dengan katalis 3%CuO/TiO2. "
Universitas Indonesia Fakultas Teknik , 2004
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Fiko Satiawan
"Parameter dari kualitas pembakaran pada motor pembakaran dalam dapat dilihat dari perfomanya dan emisi gas buang yang dihasilkan. Salah satu faktornya adalah kualitas bahan bakar yang digunakan. Metode untuk meningkatkan kualitas bahan bakar adalah dengan memberi katalis pada bahan bakar. Hal ini bertujuan untuk meningkatkan kemampuan bahan bakar mengikat oksigen, sehingga dapat meberikan efek pembakaran yang lebih baik. Tujuan lainnya adalah penggunaan katalis diharapkan dapat menghemat konsumsi bahan bakar dan menghasilkan emisi gas buang yang lebih baik. Pengujian ini menggunakan bahan bakar dasar pertamax plus. Katalis yang digunakan antara lain type a (sebut tablet), yaitu katalis dimasukan kedalam tangki bahan bakar. Sedangkan katalis yang kedua type b, katalis yang dipasang pada saluran bahan bakar yang terletak diantara pompa bahan bakar dan karburator. Pegujian juga dilakukan dengan melakukan perpaduan antara kedua katalis. Hasil pengujian menunjukan bahwa penggunaan perpaduan kedua katalis tidak menghaslkan performance yang baik jika dipadukan dengan bahan bakar pertamax plus. Dari hasil yang ada, penggunaan pertamax plus lebih baik daripada menggunakan katalis ini.

The parameters of the combustion quality of the internal combustion engine can be seen from perfomanya and exhaust emissions produced. One factor is the quality of fuel used. Methods to improve the quality of the fuel is to provide a catalyst to fuel. it aims to improve fuel bind oxygen, so it can not give a better burning effect. Other goal is the use of catalysts is expected to save fuel consumption and exhaust emissions better. This test uses the base fuel plus pertamax. Catalysts used include type A (called tablet), the catalyst is inserted into the fuel tank. While the second catalyst type b, a catalyst installed in the fuel line located between the fuel pump and carburetor. Test of also be done through a combination of the two catalysts. Test results show that use of a blend of the two catalysts not menghaslkan good performance when combined with fuel pertamax plus. Of the existing results, use pertamax plus better than using this catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S58399
UI - Skripsi Membership  Universitas Indonesia Library
cover
Damar Wibisono
"Penambahan air dalam umpan dapat menghambat deaktivasi katalis. Kandungan umpan 60% air memberikan deaktivasi katalis yang lebih lambat dibandingkan kandungan umpan 30% dan 15 % air. Selain itu, dengan laju umpan yang besar didapatkan konversi jauh lebih besar, namun akan terjadi penurunan konversi yang signifikan yang menyebabkan katalis terdeaktivasi. Penurunan aktivitas katalis (deactivation) tersebut dikarenakan penutupan inti aktif asam oleh kokas (coke). Hal ini dapat diketahui dengan uji keasaman katalis yang mengalami penurunan dan hasil FTIR didapatkan ikatan coke pada bilangan gelombang 1540-1600 cm-1.

Adding water to feed may inhibit deactivation of the catalyst. Sixty percent of water content in feed giving catalyst's deactivation which is slower than the feed with 30% and 15% water content. Besides that, the more faster of feed flowrate given, the more bigger conversion that earned, but there will be a significant decrease of the conversion that caused deactivation of catalyst. Deactivation of catalyst is due to the closure of the active core acid by the coke. This can be identified by testing catalyst's acidity value which has decreased and the FTIR test that contains a bond coke at a wave numbers of 1540-1600 cm-1."
2011
S186
UI - Skripsi Open  Universitas Indonesia Library
cover
Arif Varianto
"Penelitian ini bertujuan untuk memproduksi hidrogen melalui proses steam reforming bio-oil dari tandan kosong kelapa sawit dengan katalis Ni-Ce/La2O3-γAl2O3. Penelitian ini menggunakan variasi rasio cerium terhadap nikel (Ce/Ni) pada katalis, yaitu sebesar 0,25; 0,5; 0,75; dan 1,00. Steam reforming dilakukan dengan fixed bed reactor pada suhu 700oC dengan tekanan atmosferik. Bio-oil yang digunakan merupakan bio-oil aqueous fraction dengan rumus empirik CH1,47O0,27. Senyawa yang paling banyak dikandung dalam bio-oil yang digunakan adalah asam asetat dan fenol. Hasil penelitian menunjukkan bahwa katalis Ni-0,25Ce mampu menghasilkan yield hidrogen tertinggi dan karbon terdeposisi terendah. Yield hidrogen tertinggi yang dicapai katalis Ni-0,25Ce adalah 18,53% pada menit ke-10 sedangkan karbon terdeposisi yang dicapai katalis Ni-0,25Ce adalah sebesar 0,0959 gram. Semakin banyak loading cerium dari suatu katalis akan mengurangi yield hidrogen karena luas permukaan inti aktif semakin berkurang karena dispersi nikel yang rendah.

This research has a purpose to produce hydrogen by steam reforming of bio-oil from empty fruit bunch with Ni-Ce/La2O3- γAl2O3 catalyst. Variation used in this research is cerium to nickel ratio (Ce/Ni) = 0,25; 0,5; 0,75; dan 1,00. Steam reforming is operated in a fixed bed reactor with 700oC temperature and atmospheric condition. Bio-oil used is bio-oil aqueous fraction with CH1,47O0,27 as its empirical formula. Major components contained inside bio-oil aqueous fraction are acetic acid and phenol. The results of this research shows that Ni-0,25Ce catalyst can produce hidghest hydrogen yield until 18.53% in minute 10. Moreover, deposited carbon resulted by Ni-0,25Ce is 0.0959 gram. The more cerium contained in a catalyst can lead to the decreasing of hydrogen production due to the decreasing of specific surface area because of low disperse of nickel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55076
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Arifah
"Kemajuan industri yang terus berkembang banyak memanfaatkan bahan kimia yang berbahaya dan menghasilkan limbah kimia beracun. Salah satu limbah kimia beracun yang dihasilkan 4-Nitrofenol (4-NP). Salah satu cara untuk menanggulangi limbah 4-Nitrofenol adalah dengan mereduksinya menggunakan reduktor seperti NaBH4. Hasil yang didapat dari proses reduksi adalah 4-Aminofenol (4-AP). Proses reduksi tidak sempurna bila tidak menggunakan katalis. Katalis yang digunakan zeolit@NiO, zeolit@CuO, dan zeolit@CuO-NiO. Zeolit yang digunakan berfungsi sebagai template dari katalis oksida. Setiap katalis mempunyai kondisi optimum yang berbeda-beda. Urutan dengan aktivitas katalis adalah zeolit@CuO-NiO>zeolit@CuO>zeolit@NiO. Zeolit@CuO-NiO memiliki daya katalis yang paling baik, dengan adanya efek sinergi dari kedua katalis. Penggunaan katalis zeolit@CuO-NiO pada kondisi optimum 50 mg katalis dengan waktu reduksi 3 menit dalam mereduksi 4-Nitrofenol 8,6 x 10-5 M dan menghasilkan persen reduksi 100%. Penggunaan katalis zeolit@CuO pada kondisi optimum 50 mg dengan waktu reduksi 20 menit dan menghasilkan persen reduksi 100%. Katalis zeolit@NiO pada kondisi terbaik15 mg pada penilitan ini dengan waktu reduksi 45 menit dan menghasikan persen reduksi 66,98% dalam mereduksi 4-Nitrofenol 8,6 x 10-5 M. Proses reduksi dapat dibuktikan dari pergeseran λmaks 400 nm hasil intermediet ion Nitrofenolat dengan muncul peningkatan absorbansi pada λmaks 300 nm. Hasil akhir yang didapatkan 4-Aminofenol.

The growing progress industries are much using a hazardous chemicals and toxic waste. One of toxic chemical waste generated 4-Nitrophenol (4-NP). The one way to tackle the waste 4-Nitrophenol is by reduction using a reducing agent such as NaBH4. The results a reduction process is 4-minophenol (4-AP). The reduction process is not perfect when not using the catalyst. The catalysts used are zeolite@NiO, CuO zeolite@CuO and zeolite@CuO-NiO. Zeolites are used as a template function of oxide catalysts. Each catalyst has optimum conditions in different way. The activities of the catalyst are zeolite@CuONiO> zeolite@CuO>zeolite@NiO. Zeolite@CuO-NiO has the best catalyst, with a good combine effect of the two catalysts. The optimum condition of catalysts zeolite@CuO-NiO in weight of 50 mg catalyst, with a time 3 minutes in a reducing of 4-Nitrophenol 8.6 x 10-5 M and resulted in 100% percent reduction. Catalysts zeolite@CuO in the optimum conditions of weight 50 mg with a time reduction 20 minutes and may produce 100% percent reduction. Zeolite@NiO catalyst at the best conditions of weight 15 mg in this experiment, with a time reduction of 45 minutes and generate 66.98% percent reduction of 4-Nitrophenol 8.6 x 10-5 M. The reduction process shown by shifted λmaks 400 nm, Nitrofenolat ion intermediates increase in absorbance at 300 nm λmaks and the final result is 4-Aminophenol.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muh Nur Afif Luthfi
"Dalam penelitian ini, nanokomposit CoMoO4/SBA-15 disintesis sebagai katalis bimetal untuk mengubah asam lemak menjadi parafin melalui reaksi deoksigenasi tanpa kehadiran hidrogen atau pelarut. SBA-15 disintesis menggunakan metode sol-gel, dan CoMoO4/SBA-15 (Co:Mo = 5:5 wt%) dibuat melalui metode impregnasi kering (incipient wetness), bersama dengan katalis monometalik Co3O4/SBA-15 ( 10% berat Co), dan MoO3/SBA-15 (10% berat Mo) untuk mengamati pengaruhnya terhadap struktur dan yield serta selektivitas produk hidrokarbon. Difraktogram sinar-X dan mikroskop elektron transmisi menegaskan bahwa proses impregnasi kering partikel logam tidak mengubah struktur heksagonal pendukung katalis, SBA-15. Analisis fisisorpsi isoterm N2 menunjukkan bahwa katalis hasil sintesis memiliki struktur meso dengan kisaran diameter pori 5-6 nm. Uji katalitik dilakukan dalam reaktor semi-batch pada suhu 350 °C selama 2 jam, dan produk dianalisis menggunakan metode Kromatografi Gas – Spektroskopi Massa (GC-MS). Terlihat bahwa komponen utama produk hidrokarbon dari reaksi deoksigenasi adalah pentadekana, salah satu komponen dalam bahan bakar penerbangan. Aktivitas katalitik pada proses deoksigenasi menunjukkan bahwa MoO3/SBA-15 memiliki rendemen tertinggi (94,87%) dan Co3O4/SBA-15 memiliki selektivitas tertinggi untuk C-15 (86,32%). Kondisi reaksi optimal untuk katalis CoMoO4/SBA-15 adalah dengan jumlah katalis 5% wt, dan suhu reaksi 375 °C.

In this study, CoMoO4/SBA-15 nanocomposite was synthesized as a bimetallic catalyst for converting fatty acids into paraffin through a deoxygenation reaction without the presence of hydrogen or solvent. SBA-15 was synthesized using the sol-gel method, and CoMoO4/SBA-15 (Co:Mo = 5:5 wt%) was prepared through dry impregnation (incipient wetness) method, along with monometallic catalysts Co3O4/SBA-15 (10 wt % of Co), and MoO3/SBA-15 (10 wt % of Mo) to observe their effect on the structure and yield and selectivity of the hydrocarbon products. X-ray diffractograms and transmission electron microscopy confirmed that the dry impregnation process of metal particles did not change the hexagonal structure of the catalyst support, SBA-15. Physisorption analysis of the N2 isotherm shows that the as-synthesized catalyst had a meso-structure with a pore diameter range of 5-6 nm. The catalytic test was carried out in semi-batch reactor at 350 °C for 2 hours, and the product was analyzed using Gas chromatography-mass spectroscopy (GC-MS) method. It is shown that the major component of the hydrocarbon product from the deoxygenation reaction is pentadecane, one of components in aviation fuel. The catalytic activity in the deoxygenation process reveals that MoO3/SBA-15 has the highest yield (94.87%) and Co3O4/SBA-15 has the highest selectivity for C-15 (86.32%). The optimal reaction conditions for the CoMoO4/SBA-15 catalyst was 5% by weight of the catalyst, and the reaction temperature was 375 °C."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sanny Suprihono
"Pada penelitian ini digunakan senyawa H3PW12O40, salah satu jenis heteropoli asam, dengan support silika (5102). Katalis ini mempunyai sifat unik, dapat mereaksikan etanol tidak hanya dipemukaan (umumnya katalis lain) tapi jugs di dalam ruah (bulk) katalis. Katalis ini menyerap kuat etanol dan eter, tapi tidak etilen. Sebelum direaksikan, dilakukan karakterisasi inframerah dari luas permukaan. Variasi yang dilakukan dalam uji reaksi yaitu temperatur, waktu kontak (W/F), dan Ioading katalis (persen masse H3PW12O40 dalam katalis H3PW12O40/SiO2). Untuk vaxiasi temperatur dan loading katalis, diambil pads harga W/F tetap, 66700 gr-kat.detik/mol.
Reaksi dehidrasi etanol ke etilen terjadi melalui reaksi simultan melalui eter sebagai produk intermediate dan konversi langsung etanol ke etilen. Reaksi etanol ke eter dominan pads temperatur relatif rendah (< 125 °c). Pada Temperatur lebih tinggi, reaksi eter ke etilen menjadi lebih dominan.
Katalis H3PW12O40 tanpa penyangga, pada temperatur dibawah 150 °c keaktifannya turun dengan cepat dibanding katalis H3PW12O40/SiO2. Produk eter Iebih banyak diperoleh pads loading katalis lebih rendah. Kondisi optixnurn dari konversi etanol ke etilen dan eter, dari penelitian ini, yaitu : W/F - 66700 gr-kat.detik/mol dan loading 56.86%. Untuk produk etilen =200 °c dengan konversi 99% dem selektivitas 99%. Sedangkan eter pada T = 125 °c dengan konversi 48% dan fraksi mol eter 28 %"
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48881
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robert Ronal Widjaya
"Karakterisasi Bentonit-Cr dan Zeolit komersial HZSM-5 sebagai katalis pada
proses konversi ethanol menjadi biogasolin. Bentonit-Cr memiliki sifat keasaman
yang tinggi serta tahan terhadap kandungan air yang banyak, sehingga selain
mampu memproses umpan yang mengandung kadar air yang cukup besar dari
campuran ethanol-air, juga mempunyai umur katalis yang panjang. Bentonit-Cr
yang kemudian digunakan sebagai material katalis yang hasilnya akan
dibandingkan dengan Zeolit HZSM-5, serta dilakukan karakterisasi kedua katalis
tersebut dengan XRD, SEM, BET, TGA, Catalytic Muffler, dan GC-MS. Dari
hasil analisa tingkat keasaman dengan menggunakan metode gravimetri dapat
diketahui bahwa tingkat keasaman dari Bentonit-Cr yang paling tinggi dan juga
dari hasil XRD dapat diketahui adanya pergeseran sudut 2theta pada Bentonit-Cr,
hal tersebut mengindikasikan bahwa proses pilarisasi berhasil dilakukan, serta
didukung dengan data BET yang menunjukkan bahwa adanya penambahan luas
permukaan spesifik pada Bentonit-Cr dibandingkan dengan bentonit yang belum
dipilarisasi. Selanjutnya dilakukan uji aktivitas katalis dan hasil yang didapatkan
diuji dengan GC-MS. Dari Hasil GC-MS dapat diketahui ethanol telah berubah
menjadi Butanol dan kemungkinan terbentuk Hexanol, Decane, Undecane, serta
Dodecane. Kesemua senyawa tersebut dalam range gasolin yaitu C4 sampai
dengan C12.

Abstract
Characterization of Bentonit-Cr and commercial Zeolit HZSM-5 as catalysts for
ethanol conversion to biogasoline. Bentonit-Cr has high acidity and resistant to a
lot of moisture, so in addition to being able processing feedback which a lot of
moisture from the concentration of ethanol-water mixture, also it?s not easy
deactivated. Bentonit-Cr which is used as catalyst material for ethanol conversion
to biogasoline and the result will be compared using Zeolit catalyst HZSM-5 and
performed characterization of both catalyst with XRD, BET, TGA, Catalytic
Muffler, and GC-MS. The result of this acidity test using gravimetric method are
shown in acidity level of Bentonit-Cr is the highest and also the result of XRD
testing are known that shift angle 2theta on Bentonit-Cr, it?s indication that Cr
element on the Bentonit can interaction, and those supported by BET data are
shown that the addition of specific surface area in Bentonit-Cr compared with
Bentonit which not pillared yet. As for the ETG testing results analyzed by GCMS,
there has been conversion of ethanol into biogasoline, in which butanol and
possibly also hexanol, decane, dodecane, undecane were form. Those compounds
are included in the gasoline range C4 until C12."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31425
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>