Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 22986 dokumen yang sesuai dengan query
cover
Yohanes Suyanto
"Tesis ini membahas proses klasifikasi citra berdasarkan analisis tekstur. Penganalisaan tekstur menggunakan cara pendekatan statistik. Pertama akan dikenalkan konsep unit tekstur sebagai unit terkecil yang mempunyai sifat-sifat tekstur secara lengkap. Sifat-sifat tersebut menyangkut hubungan suatu pixel dengan 8 pixel di sekelilingnya. Kemudian akan ditunjukkan bagaimana suatu tekstur dapat dipecah menjadi himpunan unit tekstur, dan kemudian bisa dibuat distribusinya berdasarkan jenis tekstur dalam citra tersebut, sehingga didapat hasil spektrum tekstur.
Klasifikasi dilakukan secara terawasi dan dengan ciri histogram spektrum tekstur. Ketelitian rata-rata klasifikasi ini, 96% untuk tekstur regular, 56% untuk tekstur alami radar, 55% untuk tekstur citra LANDSAT, dan 66% untuk tekstur Brodatz.
Hasil pengukuran ciri tekstur BUS. GS dan DD pada beragam citra di atas yang digambarkan dalam bentuk diagram ciri menunjukkan bahwa ketiga ciri ini dapat digunakan sebagai pembeda tesktur."
Depok: Universitas Indonesia, 1992
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aniati Murni Arymurthy
"This dissertation describes the synergy use of remote sensing data from multi-temporal and multi sensor (optical and radar) for improving our understanding of the land-cover structural phenomena. A tropical country like Indonesia has a high cloud coverage throughout the year with a maximum during the rainy season, and hence the availability of cloud-free optical images is minimal. To solve this problem, radar images have been intensively introduced. The radar images are cloud-free but their use is hampered due to their speckle noise and topographic distortions, and the lack of a suitable radar image classification system.
In many cases, the use of optical or radar image alone is not sufficient. Therefore, the main objectives of this research are: (i) to develop a framework for multi date and multi sensor (optical and radar) image classification; (ii) to solve the cloud cover problem in optical images; and (iii) to obtain a more consistent image classification using multi date and multi sensor images. We have proposed a framework for multi date and multi sensor image classification based on a uniform image classification scheme. The term uniform means that the same procedure can be used to classify optical or radar images, low-level mosaic or fused images, single or multiple feature images.
To be able to conduct a multi temporal and multi sensor analysis, we have unified the optical and radar image classification procedure after finding that both optical and radar images consist of homogeneous and textured regions. A region is considered as homogeneous if the local variance of gray level distribution is relatively low, and a region is considered as textured if the local variance is high. We used a multivariate Gaussian distribution to model the homogeneous part and a multinomial distribution to model the gray level co-occurrences of the textured part, and applied a multiple classifier system to improve the classification accuracy.
The main advantages of the uniform classification scheme are as follow. First, we can tune the homogeneous-textured threshold value parameter in order to obtain an optimal result by allowing the classifier working as a single (conventional) or multiple classifier system. The classifier can have a better or at least the same classification accuracy as the conventional one. Second, we can use either single-band or multi-band input images. This will make it possible to classify a. radar image based on multi-model texture feature images or to classify multi spectral optical images. Third, we can use the same procedure to classify any input images. Compared to the conventional classifiers, the multiple classifier system can improve the classification result from 0% to 20% for radar images and from 0% to 2% for optical images.
The proposed framework incorporates the image mosaicking and data fusion at the low-level stage (before the classification process) as well as at the high-level stage (after the classification process). For cloud cover removal, the image mosaicking at the low-level stage is usually done using multi temporal optical images, whereas mosaicking at the high-level stage is applied to the classified optical and radar images. To be able to obtain a cloud-free image, we have modified the existing Soofi and Smith algorithm which is using multi temporal optical images to an algorithm using multi sensor images. In the high-level data fusion, we have also been able to incorporate a mechanism for cloud cover removal by omitting the information from the optical sensor and using only the information from the radar sensor. According to a case study in our experiment, the cloud cover removal and image classification using the low-level image mosaicking, the high-level image mosaicking, and the high-level data fusion gave 80.2%, 76.2%, and 80.5% classification accuracy, respectively.
The high-level data fusion combines the decisions from several input images to obtain a consensus of classified image. We have applied both the maximum joint posterior probability and the highest rank method for the decision combination functions. We have utilized two existing data fusion methods and have proposed an alternative data fusion method based on the compound conditional risk. According to the experimental results, the decision combination function based on the maximum joint posterior probability favors the optical feature image, while the highest rank method favors the radar feature image. The preference of using the maximum joint posterior probability results in the domination of optical features in the fusion result, and the classification accuracy of the fused image can be better 8.5% in average than the individual radar classified image."
1997
D235
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sardy S.
Depok: Fakultas Teknik Universitas Indonesia, 1992
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1990
S38174
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1991
S37985
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indah Agustien Siradjuddin
"Masalah yang biasa terjadi dalam pembuatan sistem pengenalan wajah adalah jumlah dimensi yang terlalu besar untuk diproses ke dalam classifier, sehingga biaya komputasi yang dibutuhkanpun akan semakin besar pula. Penelitian berikut mencoba untuk mereduksi dimensi dalam ruang spatial akan tetapi dari hasil reduksi dimensi ini tidak membuat proses ekstraksi fitur kehilangan informasi penting yang mengakibatkan penurunan akurasi pengenalan.
Reduksi dimensi dalam ruang spatial ini didapatkan dengan cara membangkitkan sejumlah garis pada data citra secara acak. Ada dua metode dalam membangkitan garis yaitu Fitur Garis Acak (FGA) dan Template Fitur Garis Acak (TFGA). Pada FGA, sejumlah garis dibangkitkan pada seluruh data citra secara acak. Sedangkan TFGA, sejumlah garis dibangkitkan hanya satu kali saja dan himpunan garis ini yang akan digunakan untuk membangkitkan garis pada data citra yang lain. Dari masing-masing garis ini dibangkitkan sejumlah spatial window. Vektor representasi citra didapatkan dari rata-rata intensitas yang terdapat pada spatial window tersebut. Vektor representasi citra ini akan dijadikan fitur untuk classifier. Classifier yang digunakan adalah k-nearest neighborhod dan backpropagation sebagai pembanding.
Dari hasil percobaan menggunakan database weizmann, didapatkan bahwa pengenalan akan lebih stabil jika metode untuk membangkitkan garis adalah TFGA. Selain stabil dengan metode TFGA ini akurasi pengenalan lebih baik dibandingkan dengan metode FGA pada jumlah garis yang sama. Pada jumlah garis yang terkecil dengan menggunakan classifier k-nearest neighborhod, rata-rata akurasi pengenalan metode FGA adalah 46.67% sedangkan dengan TFGA akurasi pengenalan adalah 57.14%. Dengan classifier pembanding backpropagation dan menggunakan metode TFGA didapatkan rata-rata akurasi pengenalan 78.29%. Secara umum dari keseluruhan metode semakin bertambah jumlah garis maka semakin meningkat pula tingkat akurasi pengenalan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
T529
UI - Tesis Membership  Universitas Indonesia Library
cover
Syahrizal
Depok: Fakultas Teknik Universitas Indonesia, 1993
S38388
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aniati Murni Arymurthy
"Makalah ini membahas dua pilihan penerapan struktur basis data citra pada sistem pencarian citra berbasis isi. Pendekatan pertama menggunakan folder untuk menyimpan berkas citra dan Java object serialization untuk menyimpan data citra. Pendekatan kedua menggunakan basis data Data Base Management System MySQL untuk menyimpan berkas dan data citra. Kedua pendekatan dibahas dari aspek penerapan struktur basis data untuk tujuan pengembangan sistem pencarian citra berbasis isi yang efisien. Data yang tidak terstruktur dan proses clustering data lebih mudah ditangani dengan struktur basis data dari pendekatan pertama. Data yang jumlahnya besar dan terstruktur serta proses indexing lebih mudah ditangani dengan struktur basis data dari pendekatan kedua. Sistem pencarian citra berbasis isi lebih banyak melakukan kueri jenis select dibandingkan dengan insert dan update data, dalam hal ini kedua pendekatan dapat memenuhinya dengan baik. Secara umum, pendekatan kedua dianggap memberikan dukungan yang baik dalam penyimpanan dan manipulasi data, serta dapat mengurangi upaya dan waktu yang dibutuhkan pada pengembangan sistem."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Sardy S.
"Pada penelitian ini akan diterapkan sistim visi komputer terhadap contoh maket pemandangan suatu daerah, yang terdiri dari beberapa jenis kelas pola, misalnya tanaman, air, perumahan, dan sebagainya. Data citra pemandangan tersebut direkam oleh suatu sistim akuisisi memakai kamera video CCD-warna yang mengandung informasi digital dalam tiga kanal spektrum elektromagnetik.
Yang akan diselidiki adalah bagaimana jenis-jenis pola tersebut dapat diklasifikasikan oleh suatu sistim perangkat komputer cerdas berbantuan jaringan syaraf tiruan dan logika fuzzy, sehingga hasilnya dapat tervisualisasi ''serta memberikan unjuk- kerja klasifikasi yang cukup .memadai dibandingkan dengan metode-metode yang telah lazim digunakan, seperti multiple density slicing, nearest neighbor, dan maximum likelihood.
Aspek penelitian.ini adalah bahwa kalau sistim tersebut berhasil, maka baik metode maupum perangkat yang dibuat dapat dikembangkan untuk teknik penginderaan jauh, aplikasi medis, kontrol kualitas dengan.pemeriksaan oleh mesin komputer, dsb.
Unjuk kerja metode klasifikasi dinyatakan oleh prosentasi kebenaran pada-suatu tabel yang menyatakan distribusi pengkategorian obyek ke dalam kelas yang telah ditentukan sebelumnya. Pengecekkannya langsung dilakukan dengan maket yang dibuat, sehingga beberapa pengamatan lapangan dari berbagai sudut pandang serta ketinggian dapat diatur sebaik-baiknya guna melengkapi hasil-hasil percobaan. Disamping itu hasil klasifikasi yang bertipe peta tematik disertai legends yang sesuai, dapat ditampilkan atau divisualisasikan pada layar monitor SVGA.

In this research, it is applied a computer vision system to an image which is consisting of several objects patterns. from an artificial maquette scene which had been taken by a color CCD camera. Due to object's responses in several electromagnetic waves are different to each other, then the 'recorded image can be splitted into three different color channels, i.e. blue, green, and red.
The research will investigate how to classify the above patterns. by using' an. intelligent computer system such as neural networks and fuzzy logic in order to obtain a reasonable performance compared with the available conventional classification system such as multiple density slicing, nearest. neighbor, and maximum likelihood.
The aspect of research is that the designed method -if successful- may be developed-to be applied to remote sensing technology, medical application, quality control by machine inspection, etc.
The classification performance is represented by percentage of correct on a truth table, which is reflected the distribution of object's category to a predetermined category. The direct observation can easily be done on the available maquette, so the several looking angles and height can be arranged to accomplish the experimental results. Beside it, the classification results will be represented on a thematic map with suitable legends to be visualized on a SVGA color monitor.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
LP1997 12
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Aniati Murni Arymurthy
Bandung: UI-Press, 2005
PGB 0374
UI - Pidato  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>