Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64881 dokumen yang sesuai dengan query
cover
Harris Siswantoro
"Pada Tesis ini dibahas proses industri yang disimulasikan ke dalam simulator otomasi mesin pelubang dengan pengendali PLC TSX 17-20 telemecanique. Baik dilakukan secara manual maupun automatis. Sistirn otomasi mesin pelubang dimodelkan dan diprogramkan pada komputer PC dengan teknik pemrograman Visual sehingga dapat mewakili kondisi kerja seperti realita di lapangan.
Pengendalian dilakukan dengan PLC TSX 17-20 telemecanique yang dimiliki Laboratorium Kendali dan Otomasi - Universitas Indonesia yang memiliki fasilitas pemrograman diagram fungsi dan diagram tangga. Untuk dapat menghubungkan perangkat simulasi dengan PLC , dibuat rangkaian antarmuka dengan memanfaatkan IC 8255 sebagai Programmable I/D.
Program Pengendalian ditulis dalam ladder diagram. Dari program yang dibuat dan diamati terdapat perbedaan proses secara manual dan otomatis. Hasil pengamatan menunjukkan pengerjaan dengan proses secara manual - otomatis tidak dapat dilakukan secara bersama dalam satu program PLC karena dibatasi oleh jumlah Output yang terbatas.
Panel Pengendali dirancang sesuai dengan kebutuhau operator di lapangan, beberapa fasilitas yang disediakan antara lain, Tombol start-stop, Emergency Stop dan otomatis Start I Manual Start. Pada Simulator ini juga disediakan fasilitas untuk mengetahui fault' di dalam sistim yang akan membunyikan alarm."
1996
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hartono Partoharsodjo
Jakarta: Elex Media Komputindo, 1989
005.13 HAR t
Buku Teks SO  Universitas Indonesia Library
cover
Hansel Tanuwijaya
"Mesin penerjemah merupakan alat penerjemah otomatis pada sebuah teks dari satu bahasa ke bahasa lainnya. Tujuan dari mesin penerjemah adalah dapat membuat orang ? orang yang berasal dari berbagai budaya, yang memiliki bahasa yang berbeda, dapat berkomunikasi satu sama lain dengan mudah. Mesin penerjemah statistik adalah sebuah pendekatan mesin penerjemah dimana hasil terjemahan dihasilkan atas dasar model statistik yang parameter-parameternya diambil dari hasil analisis korpus teks bilingual (atau paralel). Penelitian di bidang mesin penerjemah statistik untuk Bahasa Inggris ? Bahasa Indonesia belum terlalu mendapat perhatian. Kualitas hasil terjemahan Bahasa Inggris ? Bahasa Indonesia tersebut masih jauh dari sempurna dan memiliki nilai akurasi yang rendah.
Diawali dari permasalahan ini, munculah sebuah ide untuk membuat aturan-aturan restrukturisasi teks pada Bahasa Inggris sesuai dengan struktur Bahasa Indonesia dengan tujuan untuk meningkatkan kualitas dan nilai akurasi hasil terjemahan mesin penerjemah statistik. Aturan restrukturisasi teks tersebut bisa berupa word reordering, phrase reordering, ataupun keduanya. Dalam penelitian ini penulis merancang 7 buah aturan word reordering, 7 buah aturan phrase reordering dan 2 buah aturan gabungan phrase reordering dan word reordering.
Penelitian dilakukan dengan menggunakan Stanford POS Tagger, Stanford Parser, dan MOSES. Stanford POS Tagger digunakan dalam tahap word reordering, Stanford Parser dalam tahap phrase reordering, dan MOSES dalam tahap penerjemahan. Hasil eksperimen menunjukkan peningkatan akurasi dan kualitas penerjemahan yang efektif diperoleh dengan word reordering. Word reordering dapat memberikan peningkatan nilai BLEU sebesar 1.3896% (dari 0.1871 menjadi 0.1897) dan nilai NIST sebesar 0.6218% (dari 5.3876 menjadi 5.4211). Pada korpus bible, rata ? rata nilai peningkatan nilai BLEU yang diperoleh dengan restrukturisasi teks adalah 0.5871% dan untuk nilai NIST terjadi penurunan sebesar 0.0144%. Pada korpus novel, rata ? rata nilai peningkatan nilai BLEU yang diperoleh dengan restrukturisasi teks adalah 0.8751% dan untuk nilai NIST terjadi peningkatan sebesar 0.3170%. Besarnya peningkatan dan penurunan yang terjadi pada penelitian ini cenderung kecil (masih di bawah 1%). Hal ini dikarenakan aturan penerjemahan Bahasa Inggris-Indonesia menggunakan aturan MD-DM yang melibatkan penukaran kata yang jaraknya dekat sudah tercakup dalam distortion model pada mesin penerjemah statistik berdasarkan frase.

Machine translation is an automatic translation tool for a text from one language to another language. The goal of machine translation is to allow people with different cultures and languages to communicate with each other easily. Statistical machine translation is an approach to machine translation in which the results produced on the basis of statistical model that its parameters taken from the bilingual corpus (or parallel) text analysis. The research on statistical machine translation from English to Indonesian has not been received much attention. The English - Indonesian translation quality is still far from perfect and has low accuracy.
Based on this issue, come out an idea to make some text restructuring rules on English according to Indonesian languange structure, with the purpose of improvement the quality and accuracy of the statistical machine translation. Text restructuring rules can be word reordering or phrase reordering or both. In this research, the authors design 7 word reordering rules, 7 phrase reordering rules and 2 combined phrase reordering and word reordering rules.
This research uses Stanford POS Tagger, Stanford Parser, and MOSES. Stanford POS Tagger is used in word reordering process, Stanford parser used in phrase reordering process, and MOSES in translation process. The results from experiments show that the most effective improvement is word reordering. The improvement with word reordering in BLEU score is 1.3896% (from 0.1871 become 0.1897) and for NIST score is 0.6218% (from 5.3876 become 5.4211). On bible corpus, the average of all text restructuring rules score are increased 0.5871% (BLEU) and decreased 0.0144% (NIST). On novel corpus, the average of all text restructuring rules score are increased 0.8751% (BLEU) and increased 0.3170% (NIST). The amount of increase and decrease that occurred in this study is considered as a small occurence (which is still under 1%). This is caused by the MD-DM rules that involve exchanging words that have small distances between their range which have already been accounted for by the distortion model in phrase based statistical machine translation."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Syartuni, Ananta
Jakarta: Elex Media Komputindo, 1992
005.133 SYA l
Buku Teks SO  Universitas Indonesia Library
cover
Henry Artajaya
"Representasi dokumen sebagai vektor GLSA pada beberapa percobaan seperti uji sinonim, klasifikasi dokumen, dan clustering terbukti mampu menghasilkan tingkat akurasi yang lebih baik daripada sistem sejenis yang berbasis algoritma LSA akan tetapi GLSA belum pernah diujikan pada sistem penilai esay otomatis. Percobaan ini meneliti pengaruh implementasi GLSA pada sistem penilai esay otomatis dan perbandingan unjuk kerjanya dengan sistem penilai esay otomatis berbasis LSA. Unjuk kerja sistem penilai esai otomatis berbasis GLSA lebih unggul daripada sistem berbasis LSA. Dari 60 kali pengujian, GLSA menghasilkan nilai yang lebih akurat pada 47 kali pengujian atau 78,3% total pengujian sedangkan LSA hanya unggul pada 9 kali pengujian atau 15% total pengujian dan sisanya 4 kali pengujian atau 6,7% total pengujian menghasilkan nilai dengan tingkat akurasi yang sama. Nilai Pearson Product Moment Correlation pada percobaan menggunakan sistem LSA 0.57775-0.85868 sedangkan pada GLSA sebesar 0.73335-0.76971. Hal ini mengindikasikan bahwa sistem berbasis LSA dan GLSA yang diujikan layak pakai karena memiliki performa yang sama baiknya dengan performa yang dilakukan oleh manusia. Ditinjau dari waktu proses yang dibutuhkan, LSA unggul pada soal 1 dan 2 dengan rataan 0,07466 detik dan 0,2935 detik sedangkan pada GLSA rataan waktu proses soal 1 dan 2 sebesar 1,32329 detik dan 17,3641 detik. Waktu proses yang dibutuhkan sistem penilai esai otomatis berbasis GLSA lebih lama dibandingkan dengan LSA. Akan tetapi karena GLSA menunjukkan kinerja yang amat baik, amat dipercaya bahwa manfaatnya lebih besar daripada biaya komputasi.

Document representation as GLSA vectors were shown to improve performance on different tasks such as synonymy test, document classification, and clustering compared to LSA based systems, however GLSA performance has never been tested on automated essay grading system. This experiment examines the effect of GLSA implementation on automated essay grading system and evaluates its performance compared to LSA based system. GLSA performance was shown to outperform LSA based automated essay grading system. From 60 samples, GLSA outperform LSA 47 times (78,3%), LSA outperform GLSA 9 times (15%), and 4 times (6,7%) resulted the same score accuracy. Pearson Product Moment Correlation Value resulted from the experiment using LSA based system is 0.57775-0.85868 and 0.73335-0.76971 for GLSA based system. This result incidates LSA and GLSA based system used on this experiment are ready to be used as human rater replacement because both of the system deliver similar performance with human rater. Processing time of LSA based system is faster with average processing time consecutively 0,07466 second and 0,2935 second compared to GLSA consecutively 1,32329 second and 17,3641 second. GLSA requires more processing time than LSA based system because GLSA based system has more calculation steps than LSA. However GLSA showed better performance, therefore it's believed that its benefits outweigh the computational cost."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42481
UI - Skripsi Open  Universitas Indonesia Library
cover
Titis Wahyuni
Depok: Jurusan AKK FKM UI, 2003
005.1 TIT m
Buku Teks SO  Universitas Indonesia Library
cover
Hustinawati
Depok: Jurusan AKK FKM UI, 2003
005.1 HUS m
Buku Teks SO  Universitas Indonesia Library
cover
Jogiyanto H.M.
Yogyakarta: Andi, 1995
004 JOG p
Buku Teks  Universitas Indonesia Library
cover
Antony Pranata
Yogyakarta: Andi, 1997
005.269 ANT p
Buku Teks SO  Universitas Indonesia Library
cover
Bayu Rahayudi
"Buku ini membahas tentang dasar pemograman terhadap komputer yang selalu berada di kehidupan kita sehari-hari"
Malang: UB Press, 2011
001.64 BAY d
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>