Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16181 dokumen yang sesuai dengan query
cover
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27691
UI - Skripsi Open  Universitas Indonesia Library
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugiarto
Yogyakarta: Andi , 1992
519.536 SUG t
Buku Teks SO  Universitas Indonesia Library
cover
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27701
UI - Skripsi Open  Universitas Indonesia Library
cover
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizkiani Febrianti
"Estimasi parameter pada model regresi logistik pada umumnya menggunakan metode maximum likelihood dengan iterasi Newton Raphson. Pada model regresi logistik, estimasi parameter menggunakan metode maximum likelihood tidak dapat digunakan apabila ukuran sampel kecil dan proporsi kejadian sukses kecil. Permasalahan yang muncul saat ukuran sampel kecil dan proporsi sukses kecil, jika menggunakan metode maximum likelihood adalah proses iterasi yang tidak konvergen. Oleh sebab itu dalam kondisi tersebut, metode maximum likelihood tidak dapat digunakan untuk estimasi parameter.
Salah satu cara untuk mengatasi ketidakkonvergenan pada iterasi tersebut adalah menggunakan modifikasi score function. Modifikasi score function dapat digunakan untuk mendapatkan estimasi parameter model regresi logistik dengan melakukan modifikasi pada fungsi likelihood. Contoh aplikasi diberikan untuk menunjukkan bahwa kemungkinan estimasi parameter model regresi logistik dengan ukuran sampel kecil dan proporsi sukses kecil menggunakan metode maximum likelihood dengan iterasi Newton Raphson memberikan hasil yang tidak konvergen dan hal ini dapat diselesaikan dengan menggunakan modifikasi score function.

The maximum likelihood method with Newton Raphson iteration is used in general to estimate the parameter on logistic regression model. This parameter estimation using the maximum likelihood method cannot be used if the size of the sample and proportion of successful events are small. It is because the iteration process will not convergent to some point. Therefore, the maximum likelihood method cannot be used to estimate the parameter.
One of the ways to resolve this convergent problem is using the score function modification. This modification is used to obtain the parameter estimation on logistic regression model by doing some modification on the likelihood function. The example of parameter estimation, using maximum likelihood method with small size of sample and proportion of successful events, is given to show may be the iteration process is not convergent and this can be solved with modification score function.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desti Riminarsih
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27816
UI - Skripsi Open  Universitas Indonesia Library
cover
Gamar Aseffa
"Model regresi data panel spasial error dinamis adalah model regresi data panel yang melibatkan lag dari variabel dependen dan komponen dependensi spasial error. Karena terdapat korelasi antara lag dari variabel dependen dan komponen error, estimasi dengan Ordinary Least Squares menjadi bias dan tidak konsisten. Oleh karena itu, dibutuhkan metode lain untuk menaksir parameter dalam model. Metode yang dapat digunakan adalah perluasan metode Arellano dan Bond yang mencakup metode instrumental variabel menggunakan variabel instrumen yang disarankan oleh Mutl (2006) dan prinsip Generalized Method of Moments (GMM). Kemudian ditambah dengan metode pendekatan Kapoor, Kelejian, dan Prucha (KKP) sehingga dihasilkan taksiran yang konsisten.

The dynamic spatial error panel data regression model is panel data regression model which involves lag of the dependent variable and error spatial dependence. Because there is correlation between the lag of the dependent variable and error components, the ordinary least squares estimator becomes biased and inconsistent. Therefore, we need another method to estimate parameters in the model. The method which can be used is the extended method of Arellano and Bond covering instrumental variable method using instrument variables suggested by Mutl (2006) and the principle of the Generalized Method of Moments (GMM). Then the method is coupled with the method of Kapoor, Kelejian, and Prucha (KKP) approach so that it produces consistent estimators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S86
UI - Skripsi Open  Universitas Indonesia Library
cover
Rifki Kosasih
"Regresi data panel merupakan suatu regresi yang menggabungkan dua jenis data, yaitu data cross section dan data longitudinal. Berdasarkan komponen errornya regresi data panel dibedakan menjadi dua yaitu komponen error satu arah dan dua arah. Pada regresi data panel dibutuhkan beberapa asumsi tentang error yaitu error mempunyai mean nol dan mempunyai variansi konstan (homoskedastis) serta error antar observasi saling bebas. Dalam analisis regresi data panel, pada saat melakukan pengambilan observasi di suatu lokasi sering ditemui bahwa nilai observasi pada suatu lokasi bergantung pada nilai observasi di lokasi disekitarnya atau dengan kata lain ada korelasi spasial antar observasi. Inilah yang disebut dengan spatial dependent. Jika pengaruh spasial ini ada dan tidak dilibatkan dalam model maka asumsi error antar observasi saling bebas tidak terpenuhi. Sehingga model yang diperoleh menjadi kurang baik. Untuk itu dibutuhkan suatu model yang melibatkan pengaruh spasial dalam analisis regresi data panel yang dinamakan spatial panel data model. Dalam tugas akhir ini akan dibahas bagaimana cara menaksir parameter pada model regresi spasial panel satu arah dengan menggunakan metode maksimum likelihood."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27715
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>