Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 132084 dokumen yang sesuai dengan query
cover
Adinda Rabi`Ah Al`Adawiyah
"Penyakit mata berat yang telat tertangani seperti katarak, glaukoma, serta retinopati diabetik merupakan salah satu penyebab utama gangguan penglihatan dan kebutaan. Pencegahan dapat dilakukan dengan melakukan pendektesian dini melalui citra fundus. Untuk mengatasi minimnya dokter mata dan persebarannya yang masih belum merata, dilakukan pendektesian penyakit mata secara otomatis melalui gambar mata dengan pendekatan deep learning. Dalam penelitian ini, digunakan metode Transfer Learning U-Net dengan VGG16 sebagai pretrained model (V-Unet) yang telah dilatih pada online database, ImageNet. Data yang digunakan dalam penelitian ini merupakan data citra fundus yang diperoleh dari platform Kaggle. Preprocessing data pada citra fundus yang dilakukan untuk meningkatkan kinerja model adalah centered crop, resize, dan rescale. Fungsi optimasi Adam digunakan untuk meminimalkan fungsi loss ketika melatih model. Pada penelitian ini, dilakukan pemisahan data training, validasi, testing dengan 3 rasio berbeda, yaitu kasus I dengan rasio 60:20:20, kasus II dengan rasio 70:20:10, dan kasus III dengan rasio 80:10:10. Hasil penelitian ini menunjukkan bahwa V-Unet memiliki kinerja paling baik pada kasus II berdasarkan skor AUC dan running time dengan nilai rata-rata skor AUC 0,8622 dan rata-rata running time 3,7079 detik sedangkan berdasarkan nilai akurasinya V-Unet memiliki kinerja paling baik pada kasus III dengan rata-rata nilai akurasi sebesar 66,34%.

Untreated severe eye diseases such as cataracts, glaucoma, and diabetic retinopathy is one of the main causes of visual impairment and blindness. Prevention can be done by doing early detection through fundus images. To overcome the lack of ophthalmologists and their uneven distribution, an automatic detection of eye diseases is carried out through eye images using a deep learning approach. In this study, Transfer Learning U-Net method was used with VGG16 as a pre-trained model (V-Unet) which had been trained on the online database, ImageNet . The data used in this study is fundus image data that obtained from the Kaggle platform. Preprocessing data on the fundus image that is carried out to improve model performance is centered crop, resize, and rescale. Adam's optimization function used to minimize the loss function when training the model. In this study, the training, validation, testing data was separated with 3 different ratios, namely case I with a ratio of 60:20:20, case II with a ratio of 70:20:10, and case III with a ratio of 80:10:10. The results of this study indicate that V-Unet has the best performance in case II based on the AUC score and running time with an average AUC score of 0.8622 and an average running time of 3.7079 seconds while based on accuracy value the best case is case III with an average accuracy value of 66.34%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Wulandari
"Mata merupakan salah satu indera terpenting bagi kehidupan manusia. Umumnya, banyak manusia yang mengabaikan gangguan fungsi penglihatan, dimana gangguan fungsi penglihatan ini mengindikasikan awal mula penyakit mata. Penyakit mata adalah gangguan fungsi penglihatan berkisar dari gangguan fungsi penglihatan ringan hingga gangguan fungsi penglihatan berat yang dapat menyebabkan kebutaan. Dalam melakukan diagnosa terhadap pasien gangguan fungsi penglihatan memiliki jenis penyakit mata yang diderita, diperlukan tahapan pemeriksaan retina dengan ophthalmoscopy atau fotografi fundus. Setelah itu, seorang dokter spesialis mata menganalisis jenis penyakit mata yang diderita pasien tersebut. Namun, karena terbatasnya sarana fasilitas kesehatan dan dokter spesialis mata yang memeriksa dan mengoperasi. Oleh karena itu, dibutuhkan alat deteksi dini dengan menggunakan data citra agar pasien gangguan penglihatan dapat ditangani sebelum pasien menderita gangguan fungsi penglihatan berat atau dapat mengalami kebutaan. Pada penelitian ini, diusulkan oleh peneliti model klasifikasi citra fundus ke dalam kelas normal, katarak, glaukoma, dan retina disease menggunakan Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data citra yang digunakan merupakan data fundus image retina yang berasal dari website kaggle. Sebelum data citra fundus image masuk ke dalam proses training model, dilakukan tahapan preprocessing pada data citra fundus image. Pada tahapan proses training dalam CNN digunakan fungsi optimasi untuk meminimalkan fungsi loss. Adapun fungsi optimasi yang digunakan dalam penelitian ini adalah Adam dan diffGrad. Hasil penelitian ini menunjukkan bahwa kedua fungsi optimasi tersebut memiliki hasil evaluasi training yang tidak jauh berbeda pada kedua fungsi optimasi. Keunggulan menggunakan kedua fungsi optimasi ini adalah mudah diterapkan. Pada penelitian ini didapatkan training loss terkecil sebesar 0,4838, validation loss terkecil sebesar 0,6658, dan training accuracy terbaik sebesar 0,8570 yang dimiliki oleh fungsi optimasi Adam. Sedangkan untuk validation accuracy terbaik sebesar 0,7189 yang dimiliki oleh fungsi optimasi diffGrad. Sedangkan running time tercepat pada proses training model sebesar 2840,9 detik yang dimiliki oleh fungsi optimasi diffGrad. Setelah tahapan proses training, dilakukan evaluasi dengan data testing. Secara keseluruhan, apabila dilihat dari hasil testing yang terbaik dimiliki oleh fungsi optimasi Adam dengan nilai accuracy sebesar 63%, recall sebesar 63%, dan precision sebesar 63%. Sedangkan running time tercepat pada proses testing model adalah 5,4 detik yang dimiliki oleh fungsi diffGrad. Dapat disimpulkan bahwa metode CNN menggunakan Arsitektur AlexNet dan fungsi optimasi Adam memberikan performa terbaik dalam mendeteksi penyakit mata pada data fundus image.

The eyes are one of the most important senses for human life. Generally, many people ignore visual impairment, where this visual impairment indicates the onset of eye disease. Eye disease is a visual impairment ranging from mild visual impairment to severe visual impairment which can lead to blindness. In diagnosing patients with visual impairment who have the type of eye disease they suffer, it is necessary to carry out a retinal examination with ophthalmoscopy or fundus photography. After that, an ophthalmologist analyzes the type of eye disease the patient is suffering from. However, due to limited medical facilities and ophthalmologists who examine and operate. Therefore, an early detection tool is needed using image data so that visually impaired patients can be treated before the patient suffers from severe visual impairment or can go blind. In this study, researchers proposed a model for classifying fundus images into normal, cataract, glaucoma, and retinal disease classes using Convolutional Neural Network (CNN) with AlexNet architecture. The image data used is retinal fundus image data from the Kaggle website. Before the fundus image data enters the training model process, a preprocessing stage is carried out on the fundus image data. At this stage of the training process in CNN, an optimization function is used to minimize the loss function. The optimization functions used in this study are Adam and differed. The results of this study indicate that the two optimization functions have training evaluation results that are not much different from the two optimization functions. The advantage of using these two optimization functions is that they are easy to implement. In this research, the smallest training loss is 0.4838, the smallest validation loss is 0.6658, and the best training accuracy is 0.8570 which is owned by the Adam optimization function. As for the best validation accuracy of 0.7189 which is owned by the diffGrad optimization function. Meanwhile, the fastest running time in the model training process is 2840.9 seconds, which is owned by the diffGrad optimization function. After the stages of the training process, evaluation is carried out with data testing. Overall, when viewed from the testing results, Adam's optimization function is the best with an accuracy value of 63%, recall of 63%, and precision of 63%. Meanwhile, the fastest running time in the model testing process is 5.4 seconds, which is owned by the diffGrad function. It can be concluded that the CNN method using AlexNet Architecture and Adam's optimization function provides the best performance in detecting eye diseases in fundus image data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Levine, Joshua A., editor
"This book constitutes the refereed proceedings of the International Workshop on Mesh Processing in Medical Image Analysis, MeshMed 2012, held in Nice, France, in October 2012 in conjunction with MICCAI 2012, the 15th International Conference on Medical Image Computing and Computer Assisted Intervention. The book includes 16 submissions, 8 were selected for presentation along with the 3 plenary talks representative of the meshing, and 8 were selected for poster presentations. The papers cover a broad range of topics, including statistical shape analysis and atlas construction, novel meshing approaches, soft tissue simulation, quad dominant meshing and mesh based shape descriptors. The described techniques were applied to a variety of medical data including cortical bones, ear canals, cerebral aneurysms and vascular structures."
Heidelberg: [, Springer-Verlag], 2012
e20409307
eBooks  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturutturut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Liana Stanescu, editor
"Creating new medical ontologies for image annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system, cross media relevance models. Based on a text query the system will retrieve the images that contain objects described by the keywords."
New York: [, Springer], 2012
e20418292
eBooks  Universitas Indonesia Library
cover
"Perkembangan terkini dari perangkat pencitraan medik computerized tomography (CT) scan telah memungkinkan dihasilkannya citra dari penampang melintang secara multi irisan dalam orde beberapa detik. Citra medik digital yang dihasilkan merepresentasikan penampang melintang dari berbagai struktur jaringan dari irisan yang dicitrakan. Salah satu tantangan yang dapat membantu dalam proses diagnosis berbasis citra adalah ekstraksi informasi dari struktur anatomi tertentu dengan suatu metode segmentasi citra serta visualisasi volumetrik dengan bantuan komputer. Untuk kasus visualisasi volumetrik tulang pelvis pada citra CT-scan multi irisan, seluruh citra yang mengandung bagian struktur tulang pelvis harus disegmentasi. Pada penelitian ini, satu teknik segmentasi citra berbasis active contour akan diimplementasikan untuk melakukan segmentasi citra multi irisan secara semi otomatis. Proses segmentasi citra diawali
dengan menentukan model kurva 2D yang dilakukan secara manual pada citra irisan pertama. Kemudian model kurva tersebut secara iterasi akan berdeformasi sampai dengan bentuk kurva yang berhimpit pada batas tepian citra tulang pelvis. Hari akhir kurva 2D pada irisan pertama akan digunakan sebagai inisialisasi model kurva 2D pada proses segmentasi citra irisan berikutnya. Proses tersebut akan berlanjut sampai dengan citra irisan terakhir. Metode segmentasi citra berbasis active contour akan dibandingkan dengan metode segmentasi secara nilai ambang dari homogenitas distribusi intensitas dan metode segmentasi secara manual. Analisis secara kualitatif terhadap hasil segmentasi tiap irisan dan analisis kualitatif pada representasi visualisasi volumetrik digunakan pada penelitian ini.

Abstract
The current development of computerized tomography (CT) has enable us to obtain cross sectional image using multi slicing techniques in an order of few seconds. The obtained images represent several tissue structures on cross section slice being imaged. One challenge to help diagnosis using CT images is extracting an anatomic structure of interest using a method of image segmentation and volumetric visualization with the assistance of computers. In case of volumetric
visualization of pelvis bones extracted from multi-slice CT images, whole images which are containing part of pelvis bone structures must be segmented. In this research, an image segmentation technique based on active contour is implemented for semi-automatic multi slice image segmentation. Image segmentation steps are initialized with a define model of 2D curve on the first slice image manually. Next, its model curve is deformed to reach the final result of 2D curve that fits to boundary edges of pelvis bone image. The final result of 2D curve on previous slice image was used as an initialization model of 2D curve on the next slice images. This process will continue until the final slice image. This segmentation method was compared with the segmentation method based on threshold from homogenous intensity
distribution and manual segmentation method. Quantitative analysis from the results of segmentation on each slice and qualitative analysis on the representation of volumetric visualization are performed in this research."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Institut Teknologi Bandung. Fakultas Teknologi Industri], 2009
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Toennies, Klaus D.
"This book presents a comprehensive overview of medical image analysis. Practical in approach, the text is uniquely structured by potential applications. Features : presents learning objectives, exercises and concluding remarks in each chapter, in addition to a glossary of abbreviations; describes a range of common imaging techniques, reconstruction techniques and image artefacts, discusses the archival and transfer of images, including the HL7 and DICOM standards, presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing, examines various feature detection and segmentation techniques, together with methods for computing a registration or normalisation transformation, explores object detection, as well as classification based on segment attributes such as shape and appearance, reviews the validation of an analysis method, includes appendices on Markov random field optimization, variational calculus and principal component analysis."
London: Springer, 2012
e20407724
eBooks  Universitas Indonesia Library
cover
Nicholas Ayache, editor
"The three-volume set LNCS 7510, 7511, and 7512 constitutes the refereed proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012, held in Nice, France, in October 2012. Based on rigorous peer reviews, the program committee carefully selected 252 revised papers from 781 submissions for presentation in three volumes. The first volume includes 91 papers organized in topical sections on abdominal imaging, computer-assisted interventions and robotics, computer-aided diagnosis and planning, image reconstruction and enhancement, analysis of microscopic and optical images, computer-assisted interventions and robotics, image segmentation, cardiovascular imaging, and brain imaging, structure, function and disease evolution."
Berlin : [, Springer-Verlag], 2012
e20410585
eBooks  Universitas Indonesia Library
cover
Indah Annisa
"ABSTRAK
Dalam beberapa dekade terakhir, pencitraan sinar-X menggunakan film-screen mulai
digantikan oleh digital radiography. Sistem pencitraan digital salah satunya adalah
computed radiography (CR). Sejauh ini di Indonesia, perkembangan yang pesat dari CR
belum dibarengi dengan penelitian untuk memperoleh kondisi optimum dalam
aplikasinya.
Telah dilakukan penelitian di RS X menggunakan CR Agfa tipe PSP MD 4.0 dan
fantom Rando Man untuk menentukan optimasi pembentukan citra. Juga dilakukan
pengukuran Entrance Surface Dose (ESD) menggunakan thermoluminescent dosimeter
(TLD) dengan berbagai variasi nilai kV. Pemeriksaan yang dipilih adalah kepala PA,
thorax PA, dan abdomen AP. Citra fantom dievaluasi berdasarkan panduan dari
European Commission dibantu oleh dokter spesialis radiologi. Optimasi citra didasarkan
pada nilai kV dengan nilai ESD yang rendah dan hasil evaluasi citra.
Hasil penelitian menunjukkan bahwa untuk pemeriksaan kepala PA optimasi terjadi
pada ESD 3,580 mGy dan 3,834 mGy untuk kondisi 80 kV dan 83 kV dengan 0,224 ?
0,274 mGy/mAs. Untuk pemeriksaan thorax PA teknik kV standar optimasi terjadi pada
ESD 1,341 mGy dan 2,378 mGy untuk kondisi 50 kV dan 55 kV dengan 0,134 ? 0,297
mGy/mAs. Sedangkan untuk teknik kV tinggi yang menggunakan 100 kV, optimasi
terjadi pada ESD 2,960 mGy dengan 0,947 mGy/mAs. Dan untuk pemeriksaan
abdomen AP optimasi terjadi pada ESD 4,090 mGy dan 4,268 mGy untuk kondisi 70
kV dan 80 kV dengan 0,204 ? 0,267 mGy/mAs. Selain nilai kV, optimasi juga
mengikutsertakan nilai kontras tinggi dan rendah, serta karakter CR Agfa yang diwakili
oleh nilai lgM (log Median).

Abstract
For the last few decades, X-ray imaging using film screen has been replaced by digital
radiography. One of digital imaging systems is computed radiography (CR). So far in
Indonesia, the rapid development of CR is not ensued with research to obtain optimum
condition in its application.
Has been performed a research in hospital X using Agfa CR Type PSP MD 4.0 and
Rando Man phantom to determine optimization of image development. Also conducted
measurement of Entrance Surface Dose (ESD) using thermoluminescent dosimeter
(TLD) for various kV values. The examinations were selected for skull PA, thorax PA,
and abdomen AP. Image phantom assessment was carried out using guideliness from
European Commission with assistance of radiologist. Optimization of image was done
based on kV value with low ESD value and image assessment.
The results showed that for skull PA examination, optimization occured on ESD 3.580
mGy and 3.834 mGy for exposure condition of 80 kV and 83 kV with 0.224 to 0.274
mGy/mAs. For standard kV technique thorax PA examination, optimization occured on
ESD 1.341 mGy and 2.378 mGy at 50 kV and 55 kV with 0.134 to 0.297 mGy/mAs. As
for the high kV technique of which used a 100 kV, ESD optimization occured at 2.960
mGy with 0.947 mGy/mAs. While for abdomen AP examination, optimization occured
on ESD 4.090 mGy and 4.268 mGy for 70 kV and 80 kV with 0.204 to 0.267
mGy/mAs. In addition to values of kV, optimization also included high and low contrast
values as consideration and Agfa CR character that was represented by the lgM (log
Median) value."
2012
T30125
UI - Tesis Open  Universitas Indonesia Library
cover
Pray Somaldo
"ABSTRAK
Diabetik Retinopati adalah kelainan retina akibat komplikasi diabetes yang menyebabkan kebutaan. Seiring berkembangnya teknologi pengolahan citra, pendeteksian Diabetik Retinopati DR dimungkinkan melalui gambar retina yang disebut citra fundus dengan menggunakan ekstraksi ?tur. Dalam penelitian ini, diusulkan metode ekstraksi ?tur menggunakan Gray Level Co-occurrence Matrix GLCM . Penelitian ini mengusulkan sebuah metode dengan enam ?tur tekstur GLCM dengan klasi?kasi Naive Bayes. Dengan menggunakan tiga metode pengujian dan offset GLCM untuk dibandingkan, offset GLCM menghasilkan hasil yang lebih baik dengan accuracy 82.05 pada metode pengujian 70 train 30 test, accuracy 80 pada metode pengujian 5-Fold Cross Validation, accuracy 80.77 pada metode pengujian 10-Fold Cross Validation. Hasil ini akan menjelaskan seberapa akurat Naive Bayes untuk mengklasi?kasikan citra fundus normal atau citra DR.

ABSTRAK
Diabetic Retinopathy is retinal disorders resulting from diabetes complications that lead to blindness. As the development of technology in image processing, detection of Diabetic Retinopathy DR was possible through retinal images called fundus image using feature extraction. In this paper, a feature extraction method using Gray Level Co occurrence Matrix GLCM is proposed. This paper proposed a method with six textural features of GLCM with Naive Bayes classifier. Using three testing methods and offset of GLCM to compare with, the offset of GLCM achieves a better result with an Accuracy of 82.05 for 70 training data and 30 testing data method, Accuracy of 80.00 for 5 fold Cross Validation method, Accuracy of 80.77 for 10 fold Cross Validation method. These results will explain how accurate Naive Bayes to classify normal fundus image or DR fundus image."
2017
S69377
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>