Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 96327 dokumen yang sesuai dengan query
cover
Angga Indra Saputra
"Titik x dikatakan titik tetap dari sembarang pemetaan T jika dan hanya jika T x = x. Berbagai hasil mengenai teorema titik tetap telah dibuktikan pada ruang metrik. Seiring berkembangnya bidang analisis matematis, semakin banyak matematikawan yang berhasil membuktikan teorema titik tetap di berbagai ruang dan pemetaan. Namun, tidak banyak hasil mengenai teorema titik tetap yang telah dibuktikan pada ruang dislocated quasi b-metric. Ruang dislocated quasi b-metric adalah salah satu bentuk perluasan dari ruang metrik dimana jarak antara dua buah titik yang sama tidak harus bernilai nol yaitu d(x, x) =/= 0 serta sifat simetri yaitu d(x, y) = d(y, x) tidak berlaku di ruang ini. Pada skripsi ini, akan dibuktikan kembali teorema-teorema mengenai ketunggalan titik tetap pada ruang dislocated quasi b-metric untuk sembarang pemetaan. Pada Skripsi ini juga akan dibahas mengenai teorema titik tetap untuk pemetaan tipe F-kontraktif pada ruang yang sama.

A point x is said to be a fixed point of a mapping T on a nonempty set X if and only if T x = x. Many results regarding the fixed point theorem have been proved on metric spaces. As the field of mathematical analysis develops, more and more mathematicians have succeeded in proving fixed point theorems in various spaces and mappings. However, not many results regarding the fixed point theorem have been proved on dislocated quasi b-metric spaces. Dislocated quasi b-metric space is one of the extensions of metric space where the distance between two equal points does not have to be zero i.e. d(x, x) =/= 0 and the symmetry property i.e. d(x, y) = d(y, x) does not apply in this space. In this thesis, we will prove the theorems on the uniqueness of fixed points on dislocated quasi b-metric spaces for any mapping. This thesis also discusses the fixed point theorem for F-contractive type mappings in the same space."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pandu Setya Ilham
"Ruang metrik adalah suatu pasangan himpunan dan fungsi metrik, dengan fungsi metrik adalah fungsi yang memetakan dua titik pada himpunan ke himpunan set R(>=0)= [0,+∞). Pada ruang metrik terdapat satu teorema penting pada analisis yang dibuktikan oleh Stefan Banach (1920), yaitu Teorema Titik Tetap. Pada Ma, Jiang, & Sun (2014) konsep ruang metrik diperluas menjadi ruang metrik bernilai aljabar-C* dan Teorema Titik Tetap pada ruang metrik diperluas menjadi Teorema Titik Tetap pada ruang metrik bernilai aljabar- C*. Pada skripsi ini, dijelaskan bagaimana ruang metrik diperluas menjadi ruang metrik bernilai aljabar-C* dan dibuktikan kembali Teorema Titik Tetap pada ruang metrik bernilai aljabar-C*.

A metric space is a pair of set and metric function, where a metric function is a function which maps two points from the set into the set R(>=0)= [0,+∞). In metric space, there is an important theorem in analysis which has been proven by Stefan Banach (1920) that is, the Fixed Point Theorem. In Ma, Jiang, & Sun (2014) the concept of metric space is generalized to C*-algebra valued metric space and the Fixed Point Theorem in metric space is generalized to the Fixed Point Theorem in C*-algebra valued metric space. In this undergraduate thesis, it was explained how the concept of metric space can be generalized into C*-algebra valued metric space and the Fixed Point Theorem in C*-algebra valued metric space was proven back."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andry Wijaya
"Ruang metrik-G adalah pasangan (X,G) dengan X adalah himpunan tak kosong yang dilengkapi dengan fungsi G: X x X x X -> [0,\infty) yang memenuhi aksioma-aksioma metrik-G. Ruang metrik-G merupakan perluasan dari ruang metrik (X,d) yang telah dikenal. Aljabar-C* A adalah aljabar Banach atas lapangan C yang dilengkapi involusi * yang memenuhi ||a*||=||a|| dan ||a*a||=||a||^2. Kodomain metrik d dan metrik-G diperluas dari [0,\infty) menjadi A^+, yaitu himpunan elemen positif di aljabar-C* A. Ruang metrik bernilai aljabar-C* adalah (X,A,d) dengan d: X x X -> A ^+ merupakan fungsi yang memenuhi aksioma-aksioma metrik bernilai aljabar-C*. Pada skripsi ini dibahas mengenai ruang metrik-G bernilai aljabar-C*, yaitu (X,A,G) dengan G: X x X x X -> A^+ merupakan fungsi yang memenuhi aksioma-aksioma metrik-G bernilai aljabar-C*. Lebih lanjut, dibahas aplikasi dari ruang metrik-G bernilai aljabar-C* pada Teorema Titik Tetap.

The G-metric space is a pair (X,G) where X is a non-empty set and G: X x X -> [0,\infty) is a function that satisfies the axioms of G-metric. The G-metric space is an extension of the known metric space (X,d). C*-algebraA is a Banach algebra over field C with an involution * that satisfies ||a*||=||a|| and ||a*a||=||a||^2. The codomain of metric and G-metric is generalized from [0,\infty) to A^+, where A^+ is the set of positive elements in C*-algebra A. The C*-algebra valued metric space is (X,A,d) where d: X x X -> A^+ is a function that satisfies the axioms of C*-algebra valued metric. This undergraduate thesis discusses the C*-algebra valued G-metric space, namely (X,A,G) where G: X x X x X -> A^+ is a function that satisfies the C*-algebra valued G-metric axioms. Furthermore, we discussed the application of C*-algebra valued G-metric space in Fixed Point Theorem.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Huda
"ABSTRAK
Titik x disebut titik tetap dari pemetaan f jika dan hanya jika f(x) = x, sebagai
contoh jika pernetaan f didefinisikan dengan f(x) = x2 - 3x + 4, rnaka 2 adalah
titik tetap dari f karena f(2) = 2. Ruang Metrik-G adalah pasangan (X, G) dengan
X adalah hirnpunan tak kosong dan G adalah rnetrik (jarak) pada X (didefinisikan
pada X >< X >< X) dengan G: X >< X >< X -> RJ? sedemikian hingga untuk
setiap x, y, Z, a E X, rnernenuhi syarat berikut:
(GI) G(x,y,z) = Ojika x = y = Z, (GZ) 0 < G(x,x,y)dengar1 x i y,
(G3) G(x, x, y) 5 G(x, y, z) dengan z 42 y,(G4) G(x, y, Z) = G(x, z, y) =
G(y, z,x) = G(y,x, z) = G(z,x,y) = G(z, y, x), (GS) G(x, y,z) S G(x, a, a) +
G(a, y, Z). Ruang Metrik-G (X, G) adalah Ruang Metrik-G lengkap jika setiap
barisan G-Cauchy di (X, G)adalah G-konvergen di (X, G). Suatu pemetaan T: X ->
X pada Ruang Metrik-G lengkap disebut pernetaan kontraktifjika terdapat konstanta
lc, 0 S Fc < 1 sedernikian hingga G(T(x), T(y), T(z) S kG(x,y, Z). Tidak sernua
pemetaan memiliki titik tetap. Dari hasil penelitian diperoleh sifat-sifat dari Ruang
Metrik-G lengkap dan syarat cukup agar diperoleh ketunggalan titik tetap untuk
pemetaan kontraktif pada Ruang Metrik-G lengkap.

Abstract
Point x is called a fixed point ofthe mapping f if and only if f(x) = x, for example
ifthe mapping f defined by f(x) = x2 - 3x + 4, then 2 is a fixed point of f
because = 2. Metric-G Space is a pair (X, G) Where X is a nonempty set and
G is a metric (distance) onX (defined on X X X >< X) with G: X >< X X X -> R+
such that for every x, y, Z, a E X, satisfy the following requirement:(Gl) G (x, y, Z) =
0 ifx = y = z, (GZ) 0 < G(x,x,y) forx 92 y, (G3) G(x,x,y) 5 G(x,y,z)
for z ¢ y,(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = G(y,x,z) = G(z,x,y) =
G(z, y, x), (G5) G(x,y, Z) 5 G(x, a, a) + G(a,y, z). Metric-G Space (X, G) is a
complete Metric-G Space if every G-Cauchy sequence in
(X, G) is G-convergent in (X, G). A mapping T: X -> X on a complete Metric-G
Space is called contractive mapping if there are constants lc, 0 5 k < 1, such that
G (T(x), T(y), T(z)) S ICG (x, y, Z). Not every mapping has a fixed point, from the
research results obtained by the properties ofthe complete Metric-G Space and
sufficient condition in order to obtain uniqueness of fixed point for contractive
mapping in complete Metric-G Space."
Universitas Indonesia, 2012
T30119
UI - Tesis Open  Universitas Indonesia Library
cover
Andry Wijaya
"Ruang metrik-G adalah pasangan (X,G) dengan X adalah himpunan tak kosong yang dilengkapi dengan fungsi G : X ⇥ X ⇥ X ! [0,1) yang memenuhi aksioma-aksioma metrik-G. Ruang metrik-G merupakan perluasan dari ruang metrik (X, d) yang telah dikenal. Aljabar-C⇤ A adalah aljabar Banach atas lapangan C yang dilengkapi involusi ⇤ yang memenuhi ka⇤k = kak dan ka⇤ak = kak2. Kodomain metrik d dan metrik-G diperluas dari [0,1) menjadi A+, yaitu himpunan elemen positif di aljabar-C⇤ A. Ruang metrik bernilai aljabar-C⇤ adalah (X, A, d) dengan d : X ⇥ X ! A+ merupakan fungsi yang memenuhi aksioma-aksioma metrik bernilai aljabar-C⇤. Pada skripsi ini dibahas mengenai ruang metrik-G bernilai aljabar-C⇤, yaitu (X, A,G) dengan G : X⇥X⇥X ! A+ merupakan fungsi yang memenuhi aksioma-aksioma metrik-G bernilai aljabar-C⇤. Lebih lanjut, dibahas aplikasi dari ruang metrik-G bernilai aljabar-C⇤ pada Teorema Titik Tetap.

The G-metric space is a pair (X,G) where X is a non-empty set and G : X ⇥ X ⇥ X ! [0,1) is a function that satisfies the axioms of G-metric. The G-metric space is an extension of the known metric space (X, d). C⇤-algebra A is a Banach algebra over field C with an involution ⇤ that satisfies ka⇤k = kak and ka⇤ak = kak2. The codomain of metric d and G-metric is generalized from [0,1) to A+, where A+ is the set of positive elements in C⇤-algebra A. The C⇤-algebra valued metric space is (X, A, d) where d : X ⇥ X ! A+ is a function that satisfies the axioms of C⇤-algebra valued metric. This undergraduate thesis discusses the C⇤-algebra valued G-metric space, namely (X, A,G) where G : X ⇥ X ⇥ X ! A+ is a function that satisfies the C⇤-algebra valued G-metric axioms. Furthermore, we discuss the application of C⇤-algebra valued G-metric space in Fixed Point Theorem."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pada skripsi ini pembuktian Teorema Fixed-Point Brouwer untuk kasus dimensi dua (pada cakram) melalui Aljabar Topologi akan dijabarkan. Pembuktian dilakukan dengan bantuan Teorema Ketiadaan Retraksi dan Teorema Lapangan Vektor. Selain membahas pembuktian untuk kasus dua dimensi ( 2 B ), pada skripsi ini pembuktian untuk kasus n dimensi ( n B ) juga dijabarkan. Pada skripsi ini teorema-teorema lain seperti hubungan retraksi dengan fixed point, dan hubungan homotopi dengan fixed point juga dibuktikan. "
Universitas Indonesia, 2007
S27665
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farmakis, Ioannis
"This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers -- Source other than Library of Congress."
New Jersey : World Scientific, 2013
515.724 8 FAR f
Buku Teks SO  Universitas Indonesia Library
cover
New York: McGraw-Hill, 1977
515 FIX
Buku Teks SO  Universitas Indonesia Library
cover
Ridho Elfapriano Susilo
"Salah satu perumuman dari ruang metrik adalah ruang metrik parsial. Ruang metrik parsial merupakan (X, p) dengan X merupakan himpunan tak kosong dan p : X × X → R merupakan metrik parsial pada X, yaitu pemetaan bernilai R pada X×X yang memenuhi beberapa aksioma. Nilai metrik parsial tersebut dapat diperumum menjadi aljabar-C* unital A, sehingga dibentuk ruang metrik parsial bernilai aljabar-C* (X, A, p) dengan X merupakan himpunan tak kosong dan p : X × X → A merupakan metrik parsial bernilai aljabar-C* pada X, yaitu pemetaan bernilai A pada X × X yang memenuhi beberapa aksioma. Titik tetap dari pemetaan pada suatu himpunan, khususnya ruang metrik, adalah titik yang dipetakan ke dirinya sendiri. Teorema titik tetap merupakan teorema mengenai eksistensi dan ketunggalan titik tetap dari pemetaan pada ruang metrik. Pada skripsi ini, ditentukan dan dibuktikan hubungan ruang metrik parsial bernilai aljabar-C* dengan ruang metrik bernilai aljabar-C*. Selain itu, dibuktikan teorema titik tetap dari pemetaan kontraktif bernilai aljabar-C* pada ruang metrik parsial bernilai aljabar-C*.

One of the extension of metric spaces is partial metric spaces. A partial metric space is a pair (X, p) where X is a nonempty set and p : X × X → R is a partial metric on X, which is a real valued mapping on X × X that satisfy some axioms. The value of partial metrics can be generalized to a unital C*-algebra A, so that we can form a C*-algebra valued partial metric space (X, A, p) where X is a nonempty set and p : X × X → A is a C*-algebra valued partial metric on X, which is a A-valued mapping on X × X that satisfy some axioms. A fixed point of a mapping on a set, particularly metric space, is a point that is mapped to itself. Fixed point theorems are theorems regarding existence and uniqueness of a fixed point of a mapping on metric spaces. In this research, we establish and prove the relations between C*-algebra valued partial metric spaces and C*-algebra valued metric spaces. Furthermore, we prove a fixed point theorem of a C*-algebra valued contractive mapping on C*-algebra valued partial metric spaces."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pembelajaran pada jaringan syaraf tiruan (JST)n melibatkan banyak proses komputasi. Kemampuan JST melakukaan klasifikasi dengan benar menggunakan komposisi bobot hasil pembelajaran merupakan representasi keberhasilan pembelajaran."
384 JURTEL 11:2 (2006)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>