Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 65409 dokumen yang sesuai dengan query
cover
Muhammad Faisal M
"Terdapat beberapa media online yang ditutup oleh Kementrian Komunikasi dan Informatika (Kemkominfo) dikarenakan menjual obat aborsi. Hal tersebut karena aborsi merupakan tindakan yang dilarang yang tertulis pada Kitab Undang-Undang Hukum Pidana (KUHP) pada pasal 346. Oleh karena itu, agar situs dari PT XYZ tidak ditutup oleh Kemkominfo, PT XYZ melakukan penanganan terkait peredaran obat aborsi ini yaitu dengan pending system. Namun, pending system hanya mendeteksi judul dari produk dengan menggunakan kata kunci spesifik yang berhubungan dengan obat aborsi yang diinput oleh tim sehingga masih terdapat produk obat aborsi yang lolos beredar karena terdapat produk yang menggunakan kata kunci yang umum dan gaming keyword. Oleh karena itu, penelitian ini membahas terkait penerapan text mining untuk membangun sebuah classification model yang berasal dari korpus obat aborsi yang ada di PT XYZ yang akan digunakan untuk pendeteksian obat aborsi kedepannya yang ada di PT XYZ.
Penelitian ini menggunakan model CRISP-DM untuk siklus hidup data mining. Selain itu, untuk membangun suatu classification model, Penelitian ini melakukan percobaan terhadap dua algoritme diantaranya adalah Naive Bayes dan Support Vector Machine dengan metode k-fold cross validation. Selain itu, penelitian ini menggunakan data harga sebagai fitur tambahan dari model yang dibangun. Untuk penentuan classification yang terbaik dilakukan evaluasi performa dari setiap classification model dengan menggunakan confussion matrix dengan parameter accuracy, recall, precision, f1-measure, dan AUC. Penelitian ini menggunakan beberapa kriteria dalam penghapusan duplikasi data untuk menghindari data bias. Model terbaik yang didapatkan yaitu model SVM dengan fitur harga yang memiliki nilai accuracy 99.82%, f1-score 99.79%, dan AUC 99.98%. Hasil dari model yang telah dianalisis pada penelitian ini dapat digunakan oleh PT XYZ untuk mendeteksi produk obat aborsi agar mengurangi kesempatan penjual menjual produk obat aborsi yang di PT XYZ. Selain itu, penelitian ini dapat memberikan gambaran untuk penelitian akademis berikutnya terkait keseluruhan proses dari text mining.

There are several online media that were closed by the Ministry of Communication and Information (Kemkominfo) due to selling abortion drugs. This is because abortion is a prohibited act which is written in the Criminal Code (KUHP) in article 346. Therefore, in order PT XYZ is not closed by the Ministry of Communication and Information, PT XYZ create system that try to handle the circulation of abortion drugs, namely pending system. However, the pending system only detects the title of the product by using specific keywords related to abortion drugs that are inputted by the team so that there are still abortion drug products that pass through the system because there are products that use general keywords and gaming keywords. Therefore, this study discusses the application of text mining to build a classification model derived from the abortion drug corpus at PT XYZ which will be used for the detection of abortion drugs in the future at PT XYZ.
This study uses the CRISP-DM model for the data mining life cycle. In addition, to build a classification model, this study conducted experiments on two algorithms including Naive Bayes and Support Vector Machine with the k-fold cross validation method. In addition, this study uses price data as an additional feature of the built model. To determine the best classification, the performance evaluation of each classification model is carried out using a confusion matrix with parameters accuracy, recall, precision, f1-measure, and AUC. This study uses several criteria in eliminating duplication of data to avoid data bias. The best model obtained is the SVM model with a price feature that has an accuracy value of 99.82%, f1-score 99.79%, and AUC 99.98%. The results of the model that had been analyzed in this study can be used by PT XYZ to detect abortion drug products in order to reduce the chance for sellers to sell abortion drug products at PT XYZ. In addition, this research can provide an overview for the next academic research related to text mining process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Asep Rinaldo
"ABSTRAK<>br>
Dalam beberapa tahun terakhir, masalah pengukuran kredibilitas informasi di jaringan sosial mendapat perhatian yang cukup besar terutama di bawah situasi darurat. Hal itu merupakan konsekuensi dari membeludaknya informasi, terlebih ketika semua orang bebas berperan sebagai sumber informasi.Penelitian ini menyoroti buramnya dinding pembatas antara fakta dan hoax di Indonesia, sehingga hal itu menyebabkan banyaknya kasus penyebaran hoax di media. Jika dibiarkan hal tersebut dapat berdampak buruk bagi seorang pribadi ataupun organisasi yang diserang isu hoax. Survei yang dilakukan Intelligence Media Management IMM menyatakan terdapat peningkatan tajam di tahun 2016 dari 1572 menjadi 7311 pemberitaan media. Dan berdasarkan hasil survei yang dilakukan masyarakat telematika mastel Indonesia hampir dari seluruh responden 84,5 menyatakan terganggu dengan maraknya berita hoax yang dapat mengganggu kerukunan masyarakat dan menghambat pembangunan nasional.Menurut Menteri Komunikasi dan Informatika Rudiantara, langkah nyata yang bisa dilakukan adalah menyaring informasi menjadi lebih cepat dan tegas. Untuk itu diperlukan tindakan sehingga penyebaran hoax di media dapat diturunkan. Tujuan dilakukannya penelitian ini adalah untuk mengidentifikasi konten di media sosial merupakan suatu hoax atau tidak pada saat konten tersebut beredar. Metodologi yang digunakan di dalam penelitian ini dimulai dengan mengumpulkan tweets yang terindikasi hoax lalu dilakukan proses pengolahan data dengan membuat suatu model text mining yang dapat memprediksi suatu konten berpotensi hoax atau tidak.Hasil dari penelitian ini yaitu didapatkan sebuah model berbasis pembelajaran sendiri menggunakan algoritma LinearSVC dengan akurasi 91 yang dapat memprediksi apakah suatu tweet merupakan berpotensi hoax atau tidak sehingga membantu dalam menyaring suatu informasi yang diharapkan dapat mengurangi penyebaran hoax di Indonesia.

ABSTRACT<>br>
In recent years, the problem of measuring the credibility of information on the social network received considerable attention, especially under emergency situations. This is the consequence of too many information, especially when everyone is free to act as a source of information.The study highlights the blurring of the dividing wall between fact and hoax in Indonesia, so it causes many cases of spread of hoaxes in the media. If left unchecked it can be bad for a person or organization that attacked the issue of hoaxes. Surveys conducted by Intelligence Media Management IMM said there is a sharp increase in 2016 from 1572 content into 7311 content spread in media. And based on the results of a survey conducted by telematics community Mastel Indonesia almost of all respondents 84.5 declared disturbed by the rise of the hoax news that could disturb social harmony and impede national development.According to the Minister of Communications and Information Rudiantara, concrete steps that can be done is to filter information faster and firmer. It required the action so that the spread of hoax in the media can be derived. The purpose of this research is to identify content in social media is a hoax or not when the content is spreading. The methodology used in this research begins with collecting tweets that indicated hoax and then performed data processing by creating a text mining model that can predict a potentially hoax content or not.The result of this research is a machine learning model using LinearSVC algorithm with 91 accuracy which can predict whether tweet potentially hoax or not, thus helping the filtering of information expected to reduce the spread of hoax in Indonesia."
2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nababan, Arif Hamied
"Pembentukan RUU Cipta Kerja memunculkan berbagai macam polemik di Indonesia. Penolakan terhadap RUU tersebut ditunjukkan oleh masyarakat Indonesia dengan berbagai cara. Mulai dari diskusi dengar pendapat dengan DPR, membahas dan mengangkat isu-isu kontroversial dalam RUU tersebut di berbagai media sosial, bahkan sampai melakukan demonstrasi besar-besaran yang tidak jarang berakhir dengan kericuhan. Penelitian ini bertujuan untuk mengidentifikasi stance masyarakat terhadap RUU Cipta kerja pada media sosial Twitter. Dataset diambil dari Twitter menggunakan kata kunci terkait RUU Cipta Kerja sebanyak 9440 data Tweet dalam periode 25 Oktober 2019 sampai pada 25 Oktober 2020. Anotasi dilakukan menggunakan label PRO, ANTI, ABS, dan IRR. Eksperimen yang dilakukan mengguanakan fitur unigram, bigram, dan unigram+bigram, dengan algoritma Multinomial Naïve Bayes, Support Vector Machine, dan Logistic Regression. Model terbaik dari eksperimen tersebut adalah model yang menggunakan fitur unigram dengan menggunakan algoritma klasifikasi logistic regression yang dapat mencapai nilai micro f-1 score sebanyak 72,3%.

The formation of RUU Cipta Kerja (Job creation law) gave rise to various kinds of polemics in Indonesia. The Indonesian people have shown rejection of the law in various ways. Starting from hearing discussions with the DPR, discussing and raising controversial issues in the law on various social media, even holding large demonstrations that often end in chaos. This study aims to identify the public's stance on the job creation law on Twitter social media. The dataset was taken from Twitter using keywords related to the job creation law, totaling 9440 Tweets from 25 October 2019 to 25 October 2020. Annotations were carried out using the PRO, ANTI, ABS, and IRR labels. The experiments were carried out using unigram, bigram, and unigram + bigram features, with the Naïve Bayes Multinomial algorithm, Support Vector Machine, and Logistic Regression. The best model of the experiment is a model that uses the unigram feature using the logistic regression classification algorithm which can achieve a micro f-1 score of 72,3%."
Jakarta: Fakultas Ilmu Komputer Universita Indonesia, 2021
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ardian Wahyu Yusufi
"Penerapan Teknologi Informasi dan Komunikasi (TIK) untuk meningkatkan keunggulan kompetitif.tidak hanya dimanfaatkan oleh sektor industri, namun juga sektor pemerintahan. Pemerintah Indonesia sendiri di dalam kaitannya dengan pemanfaatan TIK, telah membangun suatu sistem yang memungkinkan masyarakat untuk melaporkan keluhan dan aspirasinya melalui sistem LAPOR!. Sistem LAPOR! ciptaan pemerintah ini ternyata ditanggapi dengan antusias oleh masyarakat, terbukti dengan banyaknya laporan yang masuk ke pemerintah. Guna membantu kinerja pemerintah, dilakukan penelitian untuk menganalisis data tekstual laporan masyarakat dengan text mining untuk kemudian dilakukan disposisi otomatis ke dalam dua kategori utama LAPOR! yaitu topik dan instansi terkait. Disposisi otomatis dilakukan menggunakan teknik problem transformation pada multilabel classification melalui algoritma klasifikasi support vector machine dan naïve bayes. Hasil penelitian menunjukkan bahwa disposisi otomatis dapat diterapkan ke dalam sistem LAPOR! dan dapat meningkatkan kinerja disposisi laporan. Algoritma yang menghasilkan performa terbaik di dalam penerapannya adalah algoritma support vector machine

The application of Information Technology and Communication (ICT) to escalate the competitive advantage is not only used in the industrial sector, but also in the government as well. The government of the Republic of Indonesia itsef, in the use of ICT, has built a system that enable its citizen to report their grievance and aspiration through LAPOR! system. This system turned out to be accepted with great enthusiasm by the public, as evidenced by the many reports to the government. In order to support the government’s performance, research is conducted to analyze the textual data using text mining, for later automatic disposition into two groups of LAPOR!'s category which is topik and instansi terkait. disposition is done using problem transformation technique in multilabel classification through support vector machine and naïve bayes classification algorithm. The result showed that automatic disposition can be applied into LAPOR! system and improves the report disposition’s performance. Algorithm that produces the best performance in the application is support vector machine. "
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Deddy Utomo
"Jenis usaha perasuransian PT XYZ dibagi menjadi dua yaitu asuransi kesehatan dan asuransi jiwa. Salah satu risiko yang terjadi dan berdampak pada kerugian perasuransian adalah kecurangan atau fraud yang dilakukan pihak tertentu untuk memperoleh keuntungan sepihak. Penelitian ini dilakukan untuk membuat pemodelan data mining yang digunakan untuk mendeteksi fraud pada asuransi kesehatan. Tujuan dari penelitian ini adalah memperoleh algoritma model berbasis data mining yang dapat mendeteksi fraud pada transaksi klaim peserta di PT XYZ. Karakteristik data yang digunakan bersifat imbalanced, karena jumlah data fraud yang digunakan tidak sebesar jika dibandingkan dengan data yang bersifat normal. Pembentukan model pada penelitian ini dilakukan dengan 32 skenario, dengan hasil terbaik skenario dengan penerapan feature engineering, feature selection, oversampling dan uji validasi menggunakan 20­-fold cross validation. Adapun hasil dari skenario tersebut menghasilkan algoritma random forest yang memiliki nilai akurasi paling baik yaitu 99,3% dengan didukung oleh nilai presisi, recall, dan f1 scores masing-masing, 99,3%, 99,3%, dan 99,3%. Hasil akhir dari penelitian ini memperlihatkan bahwa teknik feature engineering dengan penambahan atribut is_dr_speciality, memiliki kontribusi terhadap nilai akurasi model.

The type of insurance business of PT XYZ is divided into two, namely health insurance and life insurance. One of the risks that occur and impact insurance losses is fraud committed by certain parties to obtain unilateral benefits. This research was conducted to create a data mining model used to detect fraud in health insurance. The purpose of this study is to obtain a data mining-based model algorithm that can detect fraud in participant claims transactions at PT XYZ. The characteristics of the data used are imbalanced because the amount of fraud data used is not as much as compared to normal data. The model formation in this study was carried out with 32 scenarios, with the best results being the scenario by applying feature engineering, feature selection, oversampling, and validation tests using 20-fold cross-validation. This scenario resulted in the random forest algorithm having the best accuracy value of 99.3%, supported by precision, recall, and f1 scores, 99.3%, 99.3%, and 99.3%. The final result of this study shows that the feature engineering technique with the addition of the is_dr_speciality attribute has contributed to the model's accuracy value."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Noperida Damanik
"Bank adalah salah satu industri keuangan. Sebagai industri keuangan yang melayani
nasabah, ada risiko yang terjadi pada bank. Salah satu risiko yang sering terjadi dan
menyebabkan kerugian di bank adalah fraud dalam bentuk skimming pada transaksi tarik
tunai ATM. Penelitian ini dilakukan untuk mengetahui pemodelan data mining yang
dapat digunakan untuk mendeteksi fraud skimming di salah satu bank. Tujuan dari
penelitian ini adalah memberikan referensi dalam mencari pemodelan deteksi fraud.
Karakteristik data yang digunakan adalah imbalanced data karena data transaksi fraud
sangat kecil dibandingkan dengan data transaksi normal. Metode yang digunakan pada
penelitian ini adalah tinjauan pustaka, wawancara dan eksperimen terhadap teknik
machine learning. Pembentukan model pada penelitian ini dilakukan dengan
mengimplementasikan kombinasi dari penggunaan feature selection dan tanpa feature
selection, penggunaan SMOTE dan tanpa SMOTE, serta penggunaan feature engineering
dan tanpa feature engineering dengan jarak dan jeda transaksi sehingga diperoleh delapan
scenario dari hasil kombinasi. Hasil dari penelitian ini menunjukkan bahwa dari seluruh
skenario yang diuji coba, algoritma Extreme Gradient Boosting merupakan algoritma
terbaik dalam menghasilkan model deteksi fraud. Skenario terbaik yang dihasilkan adalah
skenario dengan mengimplementasikan ketiga teknik sekaligus yaitu feature selection,
SMOTE dan feature engineering dengan jarak dan jeda transaksi. Berdasarkan hasil
evaluasi model, pembentukan model dengan feature engineering dengan jarak dan jeda
transaksi dapat meningkatkan performa model klasifikasi.

Bank is one of financial industry. As a financial industry that serve customers, bank is
potentially exposed to risk. One of potentially risk that making loss in bank is fraud in
form of skimming on ATM transaction. This study is conducted to know data mining
modelling that can be used to detect skimming fraud in a bank. The purpose of this study
is to provide reference in looking for fraud detection modelling. The characteristics of the
data used in this study is imbalanced data since fraud transaction data is very small
compared to normal transaction data. The method used in this study is the literature
review, semi-structured interviews, and experiments on machine learning techniques.
Creating model on this study is conducted by implementing combination of three used
techniques namely feature selection, SMOTE, and feature engineering with distance and
transaction lag. There are eight scenarios used in this study that were tested and analyzed
the results according to the needs of the case study research. The results of this study
indicate that the Extreme Gradient Boosting algorithm can identify fraudulent
transactions. The best scenario is a scenario by creating a model that implements feature
selection, SMOTE to handle imbalanced data, and feature engineering with distance and
transaction lag. Based on model evaluation, model generation by implementing feature
engineering with distance and transaction lag can improve performance of classification
model.
"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Puteri Prameswari
"Ulasan hotel online di era modern ini memiliki peran besar mengingat hotel merupakan faktor penentu daya saing sebuah daerah wisata, namun pemanfaatannya masih jarang ditemukan. Berkaitan dengan rencana pemerintah untuk meningkatkan kunjungan wisatawan ke Indonesia, penelitian ini mengaplikasikan text mining terhadap ulasan hotel online untuk menemukan pengetahuan yang bermanfaat dalam membangun sektor perhotelan sebagai bagian integral dalam industri pariwisata. Teknik klasifikasi teks digunakan untuk mendapatkan informasi sentimen yang terkandung dalam kalimat ulasan melalui analisis sentimen, serta teknik klasterisasi pada text summarization untuk menemukan kalimat representatif yang mampu menggambarkan keseluruhan isi ulasan. Percobaan dengan ulasan hotel di Labuan Bajo, Lombok, dan Bali menghasilkan luaran yang memuaskan, di mana akurasi model penggolong klasifikasi sebesar 78 dan Davies-Bouldin Index DBI sebesar 0.071 untuk proses klasterisasi. Luaran penelitian ini diharapkan mampu menggambarkan kondisi hotel di daerah wisata unggulan Indonesia sehingga dapat berkontribusi dalam peningkatan kualitas sektor perhotelan sebagai penunjang industri pariwisata di Indonesia.

In this modern era, online hotel reviews have a big role considering the hotel is one the aspects in determining the competitiveness in the tourist area, but its implementation is still rare. Regarding the government 39 s plan to increase tourist arrivals to Indonesia, this research utilized text mining towards online hotel reviews to find useful knowledge in building the hospitality sector as an integral part of the tourism industry. Text classification technique was used to obtain sentiment information contained in review sentences through sentiment analysis, as well as clustering technique as a part of text summarization to find representative sentences that are able to describe the entire contents of the review. Experiments with hotel reviews in Labuan Bajo, Lombok and Bali generated surprising outcomes, where the accuracy of classification model reaches 78 and the Davies Bouldin Index DBI of clustering algorithm strikes 0.071. The output of this research is expected to be able to describe the condition of the hotel in tourist area based on the different level of tourism development so that it can contribute to improving the quality of the hotel industry as well as supporting the tourism industry in Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48159
UI - Tesis Membership  Universitas Indonesia Library
cover
Sitorus, Clara Fransisca
"ABSTRAK
Dokumen ilmiah memuat ilmu pengetahuan yang dihasilkan dari penelitian. Dokumen-dokumen ini saling terhubung apabila terdapat hubungan antara penelitian yang satu dengan yang lain. Bidang ilmu pengetahuan merupakan bagian penting dalam menganalisis perkembangan ilmu pengetahuan. Domain kajian suatu bidang ilmu pengetahuan dapat dilihat dengan bantuan alat visualisasi. Salah satu bentuk visualisasi adalah pemetaan ilmu. Penelitian ini bertujuan untuk mendapatkan informasi tentang gambaran peta penelitian publikasi internasional Fakultas Teknik UI selama 6 tahun terakhir Januari 2010 ndash; Oktober 2016 yang terindeks Scopus. Pemetaan dilakukan dengan membangun jaringan hubungan antar artikel. Metode pendekatan analisis co-word dilakukan pada subjek penelitian kata kunci atau deskriptor . Data yang diolah diambil dari atribut author keyword dan index keyword publikasi internasional. Berdasarkan kemunculan co-occurence dari pasangan kata, analisis co-word menggambarkan tema penelitian dan menunjukkan hubungan antar tema dari konten berupa teks. Hasil dari penelitian ini adalah pemetaan dan klaster tema publikasi FT UI dan setiap departemen FT UI. Klaster tema publikasi FT UI didominasi oleh tema dari Departemen Teknik Elektro, Teknik Mesin, dan Teknik Metalurgi.

ABSTRACT
Scientific document contains knowledge generated from the research. These documents are connected if there is a link between each research. Science field is an important part in analyzing the development of science. Domain study of a field of science can be seen with the aid of visualization tools. One form of visualization is science mapping. The aim of this research is to achieve up to date information on the map of six years January 2010 ndash October 2016 international publication conducted by the researchers from Fakultas Teknik UI that are indexed by Scopus database. Science mapping is conducted by construct networks of links between articles. Method of co word analysis approach on subjects keywords or descriptor was implemented. Tabulation of data are extracted from the author keyword and index keyword of documents. Based on the co occurrence of pairs of words, co word analysis seeks to extract the themes of science and detect the linkages among these themes directly from the subject content of texts. The results of this study shows the theme map dan clusters in FT UI and each department of FT UI. Publication themes of FT UI are dominated by the theme from Department of Electrical Engineering, Mechanical Engineering, and Metallurgical Engineering."
2016
S66264
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risky Eka Putra
"ABSTRAK
Tesis ini membahas mengenai isu penerapan pertama kali PSAK 10 (Revisi 2010), yang berlaku efektif per 1 Januari 2012, atas pencabutan PSAK 52, yaitu terkait penentuan mata uang fungsional dan mata uang pengukuran dengan melakukan studi kasus pada suatu entitas pertambangan batubara di Indonesia (PT XYZ). Hasil penelitian ini menunjukkan bahwa sebelum melakukan kegiatan produksi, pada umumnya entitas pertambangan batubara di Indonesia menggunakan mata uang Rupiah untuk membayar biaya pada tahapan eksplorasi dan evaluasi serta pada tahapan pengembangan dan konstruksi. Tetapi setelah entitas berproduksi, semua transaksi terkait penjualan batubara, serta sebagian besar biaya yang terjadi menggunakan Dolar Amerika Serikat, sehingga berdasarkan indikator penentuan mata uang fungsional disimpulkan bahwa mata uang fungsional entitas pertambangan batubara di Indonesia adalah Dolar Amerika Serikat. Selanjutnya, akibat perubahan mata uang pengukuran yang sebelumnya Rupiah menjadi Dolar Amerika Serikat, perlu dilakukan prosedur pengukuran kembali (remeasurement) atas semua unsur laporan keuangan, dan selisih kurs yang timbul akibat prosedur tersebut dicatat pada saldo laba.

ABSTRACT
This thesis discusses the issue on the initial implementation of PSAK 10 (Revised 2010), which is effective per 1 January 2012, on the revocation PSAK 52, which is related to the determination of the functional currency and the measurement currency by performing a case study on a coal mining entity in Indonesia (PT XYZ). The results of this research show that prior to the production stage, most of the coal mining entities in Indonesia use Rupiah to pay the cost of exploration and evaluation stage, and also the development and construction stage. But at the production stage, all transactions related to the sale of coal, as well as most of the costs incurred are using the U.S. Dollar, so that based on the functional currency indicators, it is concluded that the functional currency of the coal mining entity in Indonesia is U.S. Dollar. Furthermore, due to changes in measurement currency, which is previously Rupiah, into U.S. Dollar, it is required to do remeasurement of all financial statement items, and foreign exchange differences arising from the procedure is recorded in retained earnings. "
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2013
T33633
UI - Tesis Membership  Universitas Indonesia Library
cover
Satria Agung
"Investasi berbasis Crowdfunding merupakan Platform yang mengembangkan berbagai macam keunggulan yang mereka miliki untuk memikat masyarakat agar mau melakukan investasi digital, seperti menyediakan fitur berbagai aneka ragam instrumen investasi dan memberikan kemudahan seperti menawarkan biaya minimum untuk melakukan investasi sebagai modal awal. Penelitian ini bertujuan untuk mengetahui dan menganalisis ulasan pada aplikasi Crowdfunding Land X dan Santara dengan menggunakan metode Text Mining yang berbasis Sentiment Analysis Data yang digunakan dalam penelitian ini merupakan data sekunder yang didapat dengan cara mengambil data yang berupa text review pada aplikasi Crowdfunding Land X dan Santara. Data review yang berhasil diambil untuk aplikasi Santara sebesar 14.991 review, dan data pada aplikasi Land X, data yang berhasil berjumlah 2.241 review. Alat analisis yang digunakan dalam penelitian ini adalah software R dengan metode Text Mining berbasis Sentiment Analysis. Dengan menggunakan Text Mining berbasis Sentiment Analysis, dapat menjadi salah satu indicator analisis untuk melihat pandangan pengguna aplikasi terhadap aplikasi Land X dan Santara.

Crowdfunding-based investments are platforms that develop many various advantages to entice the public to make digital investments, such as providing features for a wide variety of investment instruments and giving conveniences such as offering minimum fees for investing as initial capital. This study aims to find out and analyze reviews on Crowdfunding Land X and Santara applications using the Sentiment Analysisbased Text Mining method. The data used in this study is secondary data obtained by taking data in the form of text reviews on the Land X and Santara Crowdfunding applications. The successful review data was taken for the Santara application amounted to 14,991 reviews, and the data on the Land X application, the successful data amounted to 2,241 reviews. . The analytical tool used in this study is R software with the Text Mining method based on Sentiment Analysis. By using Text Mining based on Sentiment Analysis, it can be an indicator of analysis to see the views of application users on Land X and Santara applications."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>