Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 105406 dokumen yang sesuai dengan query
cover
Devina Belinda Ramadhani
"Penggunaan bioetanol penting dikembangkan karena dapat dimanfaatkan sebagai bahan bakar energi bersih. Dalam penelitian ini, campuran etanol-air dipisahkan dengan menggunakan proses adsorpsi karena umumnya kandungan etanol yang dihasilkan dari proses sintesis masih dapat ditemukan air. Metode pemisahan campuran etanol-air yang digunakan adalah adsorpsi karena sangat efektif dan juga murah. Tujuan dalam peneliatian ini adalah mengobservasi proses adsorpsi kontinyu campuran etanol-air fasa cair dengan adsorben silika gel. Proses observasi dilakukan dengan membuat model matematis dari adsorpsi, sehinga diperoleh hasil akhir kurva breakthrough dengan bantuan perhitungan Finite Difference Method (FDM) menggunakan perangkat lunak Microsoft Excel. Pemodelan matematis adsorpsi disusun dengan menentukan neraca massa skala unggun dan pellet, serta kesetimbangan adsorpsi campuran etanol-air yang menggunakan persamaan isoterm adsorpsi Langmuir multi komponen. Pemodelan adsorpsi etanol-air pada unggun tetap telah dilakukan sebelumnya, namun masih belum dikembangkan untuk adsorpsi etanol-air dengan adsorben silika gel yang memasukan kedua komponen adsorbat kedalam sistem adsorpsi. Model disimulasikan untuk mengetahui pengaruh variasi laju alir umpan (5, 10, 20 ml/menit), konsentrasi awal air umpan (40%, 60%, 970% v/v) & konsentrasi awal etanol umpan (30%, 40%, 60% v/v), porositas unggun (0,1; 0,3; 0,5) serta tinggi unggun (0,2; 0,6; 1 m) terhadap profil kurva breakthrough yang dihasilkan. Dari pemodelan adsorpsi ini telah berhasil menghasilkan keterjalan kurva breakthrough yang sesuai dengan referensi percobaan yang menunjukkan laju alir meningkat seiring peningkatan laju alir umpan dan konsentrasi air pada umpan serta pengurangan tinggi unggun. Kurva tidak berubah secara signifikan pada variasi porositas unggun namun, berubah ketika variasi diiringi dengan variasi diameter partikel.

The use of bioethanol is important to develop because it can be used as a clean energy fuel. In this study, the ethanol-water mixture was separated by using an adsorption process because generally the ethanol content produced from the synthesis process can still be found in water. The method of separating the ethanol-water mixture used is adsorption because it is very effective and also cheap. The aim of this research is to observe the continuous adsorption process of the liquid phase ethanol-water mixture with silica gel as adsorbent. The observation process is carried out by making a mathematical model of adsorption, so that the final result of the breakthrough curve is obtained with the help of Finite Difference Method (FDM) calculations using Microsoft Excel software. The modeling of ethanol-water adsorption in fixed beds has been carried out previously, but has not yet been developed for ethanol-water adsorption with silica gel as adsorbent that incorporates both components of the adsorbate into the adsorption system. Modeling of ethanol-water adsorption in fixed beds has been made in several studies whether using silica gel adsorbents or not, but still not developed for ethanol-water adsorption with silica gel adsorbents that include both adsorption components into the adsorption system. The model was simulated to determine the effect of variations in feed flow rate (5, 10, 20 ml/min), initial water feed concentration (40%, 60%, 970% v/v) & initial ethanol feed concentration (30%, 40%, 60% v/v), bed porosity (0,1; 0,3; 0,5) and bed height (0,2; 0,6; 1 m) to the resulting breakthrough curve profile. From this adsorption modeling has succeeded in producing a breakthrough curve that is in accordance with the experimental reference which shows the flow rate increases with the increase in the feed flow rate and water concentration in the feed as well as the reduction in bed height. The curve did not change significantly in the variation of bed porosity however, it did change when the variation was accompanied by a variation in particle diameter."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elissa Oktaviana Kusuma Dewi
"Pertumbuhan jumlah penduduk di Indonesia tentunya diiringi dengan meningkatnya kebutuhan akan energi, terutama bahan bakar. Salah satu bahan bakar yang sangat berpotensi untuk dikembangkan adalah bioetanol. Etanol umumnya dihasilkan melalui proses fermentasi, namun produk etanol yang dihasilkan kemurniannya sangat rendah dan tidak memenuhi grade untuk dijadikan bahan bakar, yaitu sebesar 95% v/v. Oleh karena itu, saat ini dikembangkan proses pemurnian etanol melalui adosrpsi yang lebih efektif dan ekonomis. Pada penelitian ini, dilakukan pengembangan pemodelan empiris yang telah dimodifikasi untuk adsorpsi etanol-air pada kolom unggun tetap dengan adosrben zeolit. Model yang digunakan untuk mengetahui sifat adsorpsi yang terjadi adalah Model Thomas dan Model Yoon-Nelson. Performa dari suatu proses adsorpsi dapat dijelaskan oleh Model tersebut dengan melihat karakteristik model berdasarkan kurva breakthrough yang diprediksikan model serta nilai parameter pada model tersebut. Pada percobaan terdahulu, telah dilakukan modifikasi pada Model Thomas dan Model Yoon-Nelson dengan menambahkan parameter “K” pada masing-masing persamaan model dikarenakan koefisien determinasi (R2) yang diperoleh dengan persamaan model original kurang dari 0.9 dan setelah dilakukan modifikasi pada kedua model, diperoleh nilai koefisien determinasinya (R2) > 0.9. Nilai parameter yang diperoleh untuk Model Yoon-Nelson dan Thomas Modifikasi berturut-turut adalah sebagai berikut; Zeolite 3A 50% v/v (kTh = 0.0001, qo= 0.199, KT = 0.432 kYN = 0.0018, τ= 300, KY= 1.9097), Zeolite 3A 10% v/v (kTh= 0.00009, qo= 0.199, KT= 0.487 kYN = 0.0024, τ= 255, KY= 1.974), Zeolite 4A 50% v/v (kTh= 0.00001, qo= 0.189, KT = 0.341 kYN = 0.0016, τ = 270, KY = 1.891), Zeolite 4A 10% v/v ((kTh = 0.00009, qo = 0.189, KT = 0.385 kYN = 0.002, τ = 240, KY = 1.945). Berdasarkan hasil pemodelan, diketahui bahwa Model Empiris Thomas & Yoon Nelson Modifikasi tidak cukup akurat untuk memodelkan kurva breakthrough, sehingga dilakukan pengembangan model empiris untuk adsorpsi etanol-air pada kolom unggun tetap. Model yang dikembangkan merupakan adopsi persamaan Model Thomas dengan persamaan polynomial derajat 3 dengan lima nilai parmeter, yaitu K, a, b, c, dan d.

Indonesia’s population growth nowadays accompanied by increasing energy needs, especially fuel. Bioethanol was one of renewable fuel that has big potential to be developed. In general, bioethanol was produced through fermentation process, but the final product was low in purity and does not meet the standard to be used as fuel, which is 95% v/v. Hence, ethanol purification using adsorption methods are being developed because it is more effective and economical. In this research, modified empirical model for ethanol-water adsorption in fixed bed column using zeolite adsorbent will be developed. The model that is used to determine the properties of adsorption that occurs is Thomas Model and Yoon-Nelson Model. Those Models can explain the performance of an adsorption by looking at the characteristics of the model based on the predicted breakthrough curve and the parameter values of the model. In the earlier research, modification of Thomas Model and Yoon-Nelson Model have been done by adding “K” parameter on each equation because the results of coefficient of determination (R2) is less than 0.9, and after recalculated using the modified Models, the coefficient determination obtained is above 0.9. Evaluation on these modified models will be conducted in this research to know whether these modified models can be applied for other experimental data or not. Obtained parameter values for Modified Thomas and Yoon-Nelson Model for 50% v/v and 10% v/v on Zeolite 3A and 4A respectively as follows; Zeolite 3A 50% v/v (kTh= 0.0001, qo= 0.199, KT= 0.432 kYN = 0.0018, τ = 300, KY = 1.9097), Zeolite 3A 10% v/v (kTh = 0.00009, qo= 0.199, KT = 0.487 kYN = 0.0024, τ= 255, KY= 1.974), Zeolite 4A 50% v/v (kTh = 0.00001, qo= 0.189, KT= 0.341 kYN = 0.0016, τ= 270, KY= 1.891), Zeolite 4A 10% v/v ((kTh= 0.00009, qo= 0.189, KT = 0.385 kYN = 0.002, τ = 240, KY = 1.945). Based on the results, Modified Thomas & Yoon-Nelson empirical model is not quite accurate for modelling breakthrough curve. Hence, further research is conducted to develop new empirical model for ethanol-water adsorption in a fixed bed column. The empirical model developed by adopting Thomas Model Equation and Polynomial equation that has five parameters which is K, a, b, c, and d."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Verrel Alhafizh
"Dengan meningkatnya kebutuhan masyarakat akan bahan bakar minyak bumi untuk transportasi yang tak diimbangi dengan persediaannya yang semakin menipis, maka diperlukan energi alternatif sebagai pengganti bahan bakar fosil. Salah satu bahan bakar alternatif yang berpotensi untuk dikembangkan yaitu bioetanol. Etanol hasil fermentasi memiliki kemurnian 5-12 %b/b, dimana rentang konsentrasi ini belum memenuhi fuel grade ethanol dimana kemurnian dari ethanol harus diatas 95 %v/v. Untuk itu, diperlukan proses pemurnian lanjut terhadap etanol. Salah satu proses pemurnian yang ekonomis dan efektif untuk digunakan dalam mengatasi kendala terbentuknya campuran azeotrop antara etanol dan air yaitu proses adsorpsi. Pada penelitian ini, membahas proses pemurnian tahap awal dari campuran etanol-air menggunakan proses adsorpsi kontinyu unggun tetap dengan dua jenis karbon aktif sebagai adsorben. Material adsorben yang diuji dalam penelitian ini yaitu karbon aktif Calgon dan Karbon aktif Haycarb terhadap etanol dengan kemurnian 10%v/v dan 50%v/v. Uji adsorpsi dilakukan dengan kondisi operasi suhu dan tekanan ruangan(20oC dan 1 atm, serta laju alir 10 mL/menit melalui kolom adsorpsi unggun tetap secara kontinyu selama 5 jam hingga adsorben karbon aktif jenuh. Hasil dari penelitian ini berupa kurva breakthrough yang menunjukkan performa adsorpsi yang dilakukan, sehingga didapatkan bahwa karbon aktif Calgon dengan luas permukaan yang lebih tinggi merupakan adsorben yang paling baik digunakan dengan hasil kemurnian etanol yang paling tinggi, yaitu sebesar 59,36%v/v untuk konsentrasi awal etanol 50%v/v dan 27,46%v/v untuk konsentrasi awal etanol 10%v/v.

As the increasing the demand of petroleum for transportation that is not balanced with the diminishing supply of petroleum, alternative energy is needed to replace fossil fuels. One alternative fuel that has a potential to be developed is bioethanol. Concentration result from fermentation has a purity of 5-12 %w/w, where this concentration range is not fulfilled the fuel grade ethanol that has ethanol purity above 95%. Therefore, further purification of ethanol is needed. One of the economically and effective purification process to be used in overcoming the formation of azeotropic mixture in ethanol water is adsorption process. In this study, the process of initialbstages purification of ethanol water mixture using a fixed bed continuous adsorption process with two types of activated carbon as an adsorbent is discussed. The adsorbent materials used in this study were Calgon activated carbon and Haycarb activated carbon toward ethanol with a 50%v/v and 10%v/v purity. This research is carried out under operating conditions of atmospheric temperature and pressure (20oC dan 1 atm), and flow rate of 10 mL/minutes through a fixed-bed continuous adsorption column for 5 hours until the activated carbon adsorbent is saturated. The results of this study are presented in breakthrough curves that shows the adsorption performance. Therefore, it is indicated that Calgon activated carbon which has a higher surface area is the best adsorbent to be used with the highest ethanol purity yield, which is 59,36%v/v for ethanol initial concentration 50%v/v, and 27,46%v/v for ethanol initial concentration 10%v/v."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silaen, Alberto Pramana Martin
"Permintaan etanol meningkat seiring pertumbuhan industri farmasi, kosmetik, kimia, dan campuran bahan bakar. Etanol juga membantu mengurangi emisi CO2 hingga 80% jika dibandingkan dengan bensin. Etanol memiliki titik azeotrop yaitu >96,5% v/v yang harus dilampaui sebagai campuran bahan bakar. Diperlukan metode distilasi adsorpsi yang dapat menembus titik azeotrop menggunakan adsorben silika gel biru dan putih. Metode distilasi adsorpsi ini memanfaatkan proses distilasi dan adsorpsi secara simultan sehingga uap air yang sudah dipisahkan dengan etanol berdasarkan titik didihnya akan diserap oleh adsorben pada kolom adsorber. Silika gel putih dan biru ini digunakan karena pada permukaan adsorben ini terdiri dari ikatan polar antara SiOH dan SiOSi yang dapat menyebabkan kedua silika gel ini menjadi penyerap air yang sangat baik karena kesamaan polaritasnya. Penelitian ini bertujuan untuk memperoleh pengaruh jenis adsorben silika gel putih dan biru, perbedaan berat adsorben 25 gram dan 50 gram, dan perbedaan konsentrasi awal 90% dan 95% terhadap konsentrasi produk etanol. Konsentrasi produk etanol tertinggi yang didapatkan melalui proses distilasi adsorpsi menggunakan silika gel biru lebih baik dibandingkan silika gel putih. Konsentrasi tertingi yang dapat dicapai kedua adsorben menggunakan jumlah/berat adsorben 50 gram dan konsentrasi awal etanol 95%. Berdasarkan hasil penelitian, silika gel biru sebagai adsorben pada pemurnian etanol-air menggunakan metode distilasi adsorpsi lebih baik daripada silika gel putih.

The demand for ethanol is increasing along with the growth of the pharmaceutical, cosmetic, chemical and fuel blending industries. Ethanol also helps reduce CO2 emissions by up to 80% when compared to gasoline. Ethanol has an azeotropic point of >96.5% v/v which must be exceeded as a fuel mixture. An adsorption distillation method is needed that can penetrate the azeotropic point using blue and white silica gel adsorbents. This adsorption distillation method utilizes simultaneous distillation and adsorption processes so that the water vapor which has been separated from ethanol based on its boiling point will be absorbed by the adsorbent in the adsorbent column. This white and blue silica gel is used because the surface of this adsorbent consists of polar bonds between SiOH and SiOSi which can cause these two silica gels to become very good absorbents of water due to their polarity similarity. This study aims to obtain the effect of the types of white and blue silica gel adsorbents, the difference in weight of the adsorbents 25 grams and 50 grams, and the differences in initial concentrations of 90% and 95% on the concentration of ethanol product. The highest concentration of ethanol product obtained through adsorption distillation process using blue silica gel was better than white silica gel. The highest concentration that can be achieved by the two adsorbents using the amount/weight of 50 grams of adsorbent and an initial concentration of 95% ethanol. Based on the research results, blue silica gel as an adsorbent in ethanol-water purification using the adsorption distillation method was better than white silica gel."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imas Mega Pratiwi
"ABSTRAK
Bioetanol merupakan bahan bakar alternatif yang dianggap paling menjanjikan di masa depan karena bioetanol merupakan bahan bakar yang ramah lingkungan. Pada prosesnya, etanol yang dihasilkan memilki kadar 30-40 v/v. Sehingga dengan begitu etanol masih membutuhkan proses pemurnian. Salah satu metode pemurnian yang paling hemat energi adalah adsorpsi. Salah satu parameter adsorpsi adalah kinetika laju adsorpsi. Penelitian ini ditujukan untuk mengetahui kinetika adsorpsi sistem etanol-air pada PVA, zeolite, dan karbon aktif. Proses adsorpsi pada temperatur 30oC menghasilkan laju kinetika adsorpsi yang optimum untuk adsorben PVA, zeolite, dan karbon aktif. Laju adsorpsi optimum untuk PVA, zeolite, dan karbon aktif masing-masing bernilai 0,4911 menit-1; 0,5 menit-1; dan 1,1272 menit-1. Nilai energi aktivasi dari masing-masing adsorben adalah 51,43 kJ/mol untuk PVA; 8,16 kJ/mol untuk zeolite; dan 20,30 kJ/mol untuk karbon aktif. Dari nilai energi aktivasi dapat diketahui bahwa proses adsorpsi dengan PVA sebagai adsorben merupakan proses adsorpsi secara kimiawi, proses adsorpsi menggunakan zeolit merupakan proses adsorpsi secara fisika, dan proses adsorpsi menggunakan karbon aktif merupakan proses adsorpsi secara fisika. Berdasarkan tingkat selektivitas air dan etanol, disimpulkan bahwa PVA, zeolite, dan karbon aktif dapat digunakan dalam proses pemurnia untuk mendapatkan etanol yang nantinya dapat digunakan sebagai bahan bakar bioetanol.

ABSTRACT
Bioethanol is an alternative fuel that is considered the most promising in the future because it is eco friendly. In the process, production of bioethanol had levels of 30 ndash 40 v v. So, ethanol need to be purified for reaching levels above 95 v v. The method which has the most energy efficient is adsorption. One of parameter from adsorption is kinetics of adsorption rate. This study aimed to determine the kinetics of adsorption rate of ethanol water system on PVA, Zeolite, and Activated Carbon. The optimum adsorption rates for each PVA, zeolite, and activated carbon are 0.4911 min 1 0.5 min 1 dan 1.1272 min 1. The activation energy value of each adsorbent are 51.43 kJ mol for PVA 8.16 kJ mol for zeolite And 20.30 kJ mol for activated carbon. From activation energy, can be seen that the adsorption process using PVA as adsorbent is chemisorption, adsorption process using zeolite is physisorption, and adsorption process using activated carbon is physisorption According the water to ethanol selectivity study, we found that zeolite as a potential adsorbent compared to the others due to the molecular sieving properties of the material."
2017
S68931
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jessica Mediasri
"Salah satu metode pemurnian untuk memisahkan campuran etanol-air adalah adsorpsi karena memiliki efisiensi energi yang baik. Pada adsorpsi, perlu dilakukan regenerasi adsorben sebagai pertimbangan aspek ekonomi untuk memperpanjang waktu umur pakai. Penelitian ini dilakukan untuk melihat pengaruh regenerasi adsorben terhadap adsorpsi campuran etanol-air pada unggun tetap. Adsorben yang digunakan pada penelitian adalah zeolit sintetis 3A. Regenerasi adsorben dilakukan dengan metode pemanasan oven drying, menggunakan oven dengan temperatur 100 - 120°C selama kurang lebih 10 jam, atau sampai tidak ada penurunan berat adsorben teregenerasi lagi. Campuran etanol-air yang diadsorpsi memiliki dua variasi konsentrasi awal etanol yaitu sebesar 50% v/v dan 10% v/v, dalam kolom adsorpsi unggun tetap secara kontinyu dengan laju alir 10 ml/menit selama 5 jam dengan temperatur dan tekanan ruangan. Data yang diperoleh merupakan pengaruh regenerasi terhadap kinerja adsorben yaitu adsorpsi efektif, waktu penetrasi, dan kapasitas adsorpsi. Data kemudian diolah dan disajikan dalam bentuk kurva breakthrough yang kemudian dibandingkan dengan hasil adsorpsi menggunakan zeolit 3A baru. Pada adsorpsi konsentrasi etanol 50% v/v kapasitas adsorpsi menggunakan adsorben teregenerasi mengalami penurunan sebesar 18% dan 19% pada adsorpsi konsentrasi etanol 10% v/v.

One of the purifying methods to separate ethanol-water mixtures is adsorption, because of its good energy efficiency. Regeneration of adsorbent needs to be done in consideration of economic aspects. This research aims to determine the regeneration effect of adsorbent on the adsorption of ethanol-water mixture in fixed bed. The adsorbents used in this research are synthetic zeolite type 3A. The adsorbent is regenerated using oven drying method, with a temperature range of 100 - 120°C for approximately 10 hours, or until there is no additional weight of the regenerated adsorbents. The mixtures used in this research are in two variations of ethanol concentrations, 50% v/v and 10% v/v, in a fixed bed adsorption column continuously with a flow rate of 10 ml/min for 5 hours at room temperature and pressure. The result of this research is the effect of the adsorbent regeneration process on the performance of the adsorbent, by calculating the effective adsorption, penetration time, and adsorption capacity. The data obtained is presented in breakthrough curves which then compared with the results of adsorption using the new zeolite type 3A. On the adsorption of 50% v/v ethanol concentration, the adsorption capacity using regenerated adsorbent decreases by 18% and by 19% on the adsorption of 10% v/v ethanol concentration."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Mulia
"ABSTRAK
Produk bioetanol sebagai bahan bakar alternatif masih perlu ditingkatkan kemurniannya sehingga memenuhi standar fuel grade ethanol 95%v/v. Pada prosesnya, etanol hasil fermentasi memiliki kemurnian 5-12%b/b. Salah satu metode pemurnian yang dapat digunakan adalah adsorpsi yang memiliki efisiensi energi baik. Media adsorben akan mengalami kejenuhan dalam waktu tertentu, sehingga perlu dilakukan regenerasi adsorben. Penelitian ini membahas pengaruh regenerasi adsorben terhadap proses pemurnian tahap awal dari campuran etanol-air menggunakan proses adsorpsi kontinu pada unggun tetap. Material adsorben yang diuji dalam penelitian ini adalah karbon aktif Calgon bekas yang telah diregenerasi dengan metode pemanasan oven drying dengan temperatur 115°C. Digunakan campuran etanol-air dengan kemurnian etanol 10%v/v dan 50%v/v. Uji adsorpsi dilakukan dengan kondisi operasi suhu dan tekanan ruangan, serta laju alir 10 mL/menit melalui kolom adsorpsi unggun tetap secara kontinu selama 5 jam hingga adsorben karbon aktif jenuh. Hasil dari penelitian ini diolah dan disajikan dalam bentuk kurva breakthrough yang menunjukkan performa adsorpsi. Hasil kemurnian etanol tertinggi sebesar 59,04%v/v pada konsentrasi awal etanol 50%v/v dan 27,12%v/v pada konsentrasi awal etanol 10%v/v. Kinerja adsorben teregenerasi mengalami penurunan sekitar 10% setelah dilakukan regenerasi, dengan kapasitas adsorpsi 0,156 pada konsentrasi awal etanol 50%v/v dan 0,225 pada konsentrasi awal etanol 10%v/v.

ABSTRACT
Bioethanol product as an alternative fuel needs enhancement of purity to meet the standard of 95%v/v. In the process, the ethanol produced from fermentation has purity of 5-12%w/w. One of the purification methods that can be used is adsorption that has good energy efficiency. However, regeneration on spent adsorbents is needed in consideration of economic aspects. This study discusses the effects of regenerated adsorbents in the initial-stages purification process of ethanol-water mixture in fixed-bed continuous adsorption. Spent Calgon activated carbon is regenerated using oven drying method with the temperature of 115°C. This study is using ethanol purity of 10%v/v and 50%v/v. The research is carried out under operating conditions of atmospheric temperature and pressure, and flow rate of 10 mL/minutes through a fixed-bed continuous adsorption column for 5 hours until the adsorbent is saturated. The results of this study are presented in breakthrough curves that shows the adsorption performance. The highest ethanol purity yield of 59.04%v/v for ethanol initial concentration 50%v/v, and 27.12%v/v for ethanol initial concentration 10%v/v. The adsorption performance is decreased about 10% after the regenerated adsorbents is in use with adsorption capacity of 0.156 for ethanol initial concentration 50%v/v and 0.225 for ethanol initial concentration 10%v/v.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Rahma Dhia Aulia
"Konsumsi energi nasional saat ini terus meningkat setiap tahun dengan konsumsi tertinggi diduduki oleh bensin yang bersifat tidak dapat diperbaharui. Dalam kondisi ini, dibutuhkan sumber energi alternatif yang dapat diperbaharui, salah satunya adalah bioetanol. Bioetanol harus memiliki kemurnian etanol 99,5% v/v yang tidak dapat dicapai dengan teknologi konvensional sehingga dibutuhkan teknologi pemurnian yang efisien dan ekonomis. Distilasi adsorpsi menggunakan adsorben zeolit sintetis 3A dan 4A merupakan proses pemurnian bioetanol untuk menghasilkan kemurnian etanol yang tinggi. Penelitian ini bertujuan untuk menganalisis proses distilasi adsorpsi dan membandingkan kinerja adsorben. Uji distilasi adsorpsi dilakukan dengan mengalirkan etanol 90% v/v dan 95% v/v. Uap etanol-air secara simultan mengalir menuju kolom adsorpsi yang berisi adsorben dengan variasi berat 25 g dan 50 g. Didapatkan bahwa adsorben zeolit 3A memiliki kinerja yang lebih baik dibandingkan dengan zeolit 4A karena menghasilkan kemurnian etanol tertinggi sebesar 99,58% v/v pada konsentrasi awal etanol 95% v/v dan jumlah adsorben 50 g. Sedangkan, zeolit 4A hanya mencapai kemurnian etanol tertinggi sebesar 99,13% v/v pada konsentrasi awal etanol 95% v/v dan jumlah adsorben 50 g. Adsorben zeolit 3A memiliki luas permukaan yang lebih besar dibandingkan zeolit 4A dan diameter pori yang mendekati besar molekul air sehingga memiliki bersifat lebih selektif terhadap adsorpsi air.

The national energy consumption is continuously increasing every year, with the highest consumption occupied by non-renewable gasoline. In this context, renewable energy sources are needed, and one such source is bioethanol. However, achieving the required purity of 99.5% v/v ethanol using conventional technology is challenging, necessitating efficient and cost-effective purification methods. Adsorptive distillation using synthetic zeolite adsorbents, specifically 3A and 4A, is a promising process for high-purity ethanol production. This study aimed to analyze the adsorptive distillation process and compare the performance of the two adsorbents. Adsorptive distillations were conducted using initial ethanol concentrations of 90% v/v and 95% v/v. The ethanol-water vapor flowed into an adsorption column containing zeolite adsorbents weighing 25 grams and 50 grams. The results indicated that the zeolite 3A adsorbent outperformed zeolite 4A, achieving the highest ethanol purity of 99.58% v/v at an initial ethanol concentration of 95% v/v and an adsorbent weight of 50 grams. In contrast, zeolite 4A only reached a maximum ethanol purity of 99.13% v/v under the same conditions. Zeolite 3A, with its larger surface area and pore diameter close to the size of water molecules, exhibited greater selectivity for water adsorption."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lulus Ridho Pangudi
"Adsorpsi menggunakan unggun tetap zeolit dapat menjadi salah satu metode purifikasi bioetanol yang cukup menjanjikan dikarenakan biayanya yang relatif murah dengan efisiensi tinggi. Dalam penelitian ini, operasi adsorpsi etanol-air menggunakan unggun tetap zeolit diinvestigasi dengan membuat model matematika untuk memperoleh kurva terobosan menggunakan metode perhitungan Finite Difference. Model adsorpsi didapatkan dengan menyelesaikan persamaan neraca massa fasa cair, difusi fasa film, difusi intrapartikel menggunakan model Linear Driving Force (LDF), serta kesetimbangan adsorpsi desorpsi yang menggunakan persamaan isoterm adsorpsi Langmuir. Model disimulasikan untuk mengetahui pengaruh variasi parameter proses yaitu variasi nilai laju alir (8, 10, 12 ml/menit), konsentrasi awal larutan etanol-air (10%, 50%,  90% v/vair), porositas unggun (0,56; 0,7), dan tinggi unggun (0,6; 0,8; 1,0 meter). Peningkatan laju alir umpan menyebabkan terjadinya percepatan waktu breakpoint dan peningkatan keterjalan kurva terobosan secara signifikan. Peningkatan konsentrasi air sebagai adsorbat pada umpan menyebabkan terjadinya peningkatan keterjalan kurva terobosan secara signifikan dan percepatan waktu breakpoint meskipun tidak signifikan. Peningkatan porositas unggun menyebabkan terjadinya penundaan waktu breakpoint tanpa adanya perubahan signifikan pada keterjalan kurva terobosan. Peningkatan ketinggian unggun zeolit menyebabkan terjadinya penundaan waktu breakpoint tanpa adanya perubahan signifikan pada keterjalan kurva terobosan.

Utilization of adsorption in a fixed bed column with zeolite as the adsorbent can be a promising solution to purify the ethanol until it reaches the fuel-grade criteria, due to its relatively lower cost and higher efficiency. In this study, ethanol-water adsorption in the zeolite fixed-bed column was investigated by creating a mathematical model to obtain a breakthrough curve using the Finite-Difference calculation method with the aid of computational software (Microsoft ExcelTM add-in), OpenSolverTM. The fixed bed adsorption process is modelled by the liquid phase mass balance equations complemented by an approach to the adsorption and diffusion processes in the adsorbent particles using the Linear Driving Force (LDF) model and Langmuir extended mixture adsorption isotherm equation. The variations of several operation parameters (flow rate, initial concentration of water, porosity, and column length of adsorption) significantly affect the breakthrough curve. Breakthrough points occur faster with a higher flow rate, and higher initial concentration. While the effect of porosity and column length is similar, breakthrough and exhaustion times are slower with increasing porosity and column length."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iqbal Yamin
"Semakin meningkatnya konsumsi minyak bumi sebagai bahan bakar membuat sumber energi yang tidak terbaharukan ini semakin menipis. Hal ini membuat kita harus mencari alternative renewable energy, salah satunya adalah bio-ethanol. Dalam penelitian ini akan dilakukan pengaturan volume ethanol sebagai campuran bahan bakar melalui main jet secara terpisah dengan bensin premium untuk mengetahui pengaruhnya terhadap emisi yang dihasilkan oleh motor. Kadar ethanol yang digunakan adalah E7, E10, E13, E16, dan E20. Dari hasil penelitian ini diharapkan akan diketahui berapa banyak bio-ethanol yang dibutuhan sebagai campuran agar emisi yang dihasilkan menjadi lebih bagus.

As the consumption of petroleum keep increasing, make this unrenewable energy resources met its end. A new alternative renewable energy such as bio- ethanol is needed. In this research, control volume of bio-ethanol as a blend of fuel through main jet with gasoline will be done to find the effect on the emission it produce. The rate of bio-ethanol that will be used are E7, E10, E13, E16, and E20. From this research, how much of bio-ethanol will be needed as a blend to the fuel so the the emission it produce can be better is expected to be known."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44647
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>