Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 195849 dokumen yang sesuai dengan query
cover
Jenny Azzahra
"Salah satu teknologi produksi hidrogen yang ramah lingkungan adalah pemisahan air secara fotokatalitik dengan TiO2. Modifikasi TiO2 dengan dopan logam transisi Ni memerlukan bantuan promotor untuk memaksimalkan produksi hidrogen. Grafena dan g-C3N4 dapat berperan sebagai promotor bagi TiO2 karena memiliki kesamaan struktur 2D namun memiliki peran yang berbeda dalam produksi hidrogen secara fotokatalitik. Pada penelitian ini, loading Ni divariasikan pada Ni-G/TiO2 hingga diperoleh loading Ni terbaik dengan produksi hidrogen tertinggi, kemudian akan digunakan pada Ni-g-C3N4/TiO2 untuk membandingkan pengaruh promotor grafena dan g-C3N4. Karakterisasi fotokatalis dilakukan dengan analisis XRD, UV-Vis, dan FTIR. Uji produksi hidrogen dilakukan selama 4 jam dalam reaktor menggunakan lampu UV 20W dengan pencahayaan internal. Hasil uji produksi hidrogen untuk variasi loading Ni (0%, 0,5%, 1%, 2%, dan 4%) pada Ni-G/TiO2 berturut-turut sebesar 407,95 μmol, 450,62 μmol, 418,87 μmol, 477,89 μmol, dan 507,38 μmol. Sementara hasil uji produksi hidrogen pada TiO2 P25, g-C3N4, dan 4% Ni-g-C3N4/TiO2 berturut-turut sebesar 327,02 μmol, 291,93 μmol, dan 358,81 μmol. Hasil penelitian ini menunjukkan bahwa komposit 4% Ni-G/TiO2 merupakan alternatif yang menjanjikan untuk produksi hidrogen secara fotokatalitik karena menghasilkan hidrogen hingga 55% lebih tinggi dari TiO2 P25.

One of environmentally friendly hydrogen production technologies is photocatalytic water-splitting with TiO2. Modification of TiO2 with transition metal Ni requires the help of promoter to maximize hydrogen production. Graphene and g-C3N4 can act as promoters for TiO2 because they have the same 2D structure but have different roles in photocatalytic hydrogen production. In this study, Ni loading was varied on Ni-G/TiO2 to obtain the best Ni loading with the highest hydrogen production, then it would be used on Ni-g-C3N4/TiO2 to compare the effect of graphene and g-C3N4 promoters. Photocatalyst characterization was carried out by XRD, UV-Vis, and FTIR analysis. Hydrogen production test was carried out for 4 hours in a reactor using 20W UV lamp with internal lighting. The results of the hydrogen production test for variations in Ni loading (0%, 0.5%, 1%, 2%, and 4%) on Ni-G/TiO2 were 407.95 μmol, 450.62 μmol, 418.87 μmol, 477.89 μmol, and 507.38 μmol. Meanwhile, the results of the hydrogen production test on TiO2 P25, g-C3N4 and 4% Ni-g-C3N4/TiO2 were 327.02 μmol, 291.93 μmol, and 358.81 μmol. The results of this study indicate that 4% Ni-G/TiO2 is a promising alternative for photocatalytic hydrogen production because it produces up to 55% higher than TiO2 P25.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abigail Shekinah Glory
"Penggunaan fotokatalis TiO2 dan modifikasinya dalam produksi hidrogen secara fotokatalitik merupakan salah satu teknologi yang ramah lingkungan. Salah satu solusi untuk mengatasi keterbatasan TiO2 dalam pemanfaatan sinar tampak adalah penambahan g-C3N4 dan grafena yang memiliki kesamaan struktur 2D dengan peran yang berbeda dalam meningkatkan aktivitas fotokatalis. Penelitian ini mengkaji pengaruh loading g-C3N4 dan grafena pada TiO2 serta kombinasinya terhadap kinerja produksi hidrogen secara fotokatalitik. Sintesis katalis pada penelitian ini dilakukan dengan metode impregnasi. Karakterisasi fotokatalis dilakukan pada TiO2 P25, g-C3N4, variasi dari g-C3N4/TiO2 dan G/TiO2, serta g-C3N4/G/TiO2 dengan karakterisasi XRD, UV-Vis, dan FTIR. Uji produksi Hidrogen dilakukan dalam reaktor dengan pencahayaan internal yang dilengkapi lampu UV 20W, dan buret dengan karakterisasi produk H2 menggunakan GC. Akumulasi hidrogen yang diperoleh dengan katalis TiO2 P25, 1% g-C3N4/TiO2, 0,3% G/TiO2, dan g-C3N4/G/TiO2 secara berturut-turut sebesar 327,22 µmol, 661,43 µmol, 727,99 µmol, dan 491,2 µmol mengindikasikan bahwa 0,3% G/TiO2 adalah katalis dengan efektivitas tertinggi dengan band gap 2,97 eV yang dapat meningkatkan produksi hidrogen hingga 2,22 kali lebih tinggi dari TiO2 P25. Kombinasi g-C3N4/G/TiO2 tidak menunjukkan performa maksimal karena keberadaan g-C3N4 dan grafena secara bersamaan diduga menyebabkan adanya efek yang menghambat peran dari masing-masing promotor tersebut dalam memperbaiki performa TiO2 dalam memproduksi H2 secara fotokatalitik.

The modification of TiO2 as a photocatalyst in photocatalytic hydrogen production is one of the environmentally friendly technologies. One of the solutions to resolve its limitation in utilizing visible light efficiently of TiO2 is the addition of Graphitic Nitride and Graphene that have a similar 2D structure with different role to improve the photocatalytic activity. This study examines the effect of loading g-C3N4 and Graphene in TiO2 along with the combination of those materials to the performance of photocatalytic hydrogen production. The synthesis process on this study was done by an impregnation method. The photocatalyst characterization was conducted on TiO2 P25, g-C3N4, variations of g-C3N4/TiO2 and G/TiO2, also g-C3N4/G/TiO2 with the method of XRD, UV-Vis, and FTIR. Hydrogen production experiment was carried out in a reactor with with 20W UV lamp, and burette with the GC analysis for the product’s characterization. The accumulation of hydrogen products for TiO2 P25, 1% g-C3N4/TiO2, 0,3% G/TiO2, and g-C3N4/G/TiO2 were 327,22 µmol, 661,43 µmol, 727,99 µmol, dan 491,2 µmol, respectively, indicating that 0.3% G/TiO2 is the most effective catalyst with a band gap of 2.97 eV that can improve the hydrogen production up to 2.22 times of TiO2 P25. The g-C3N4/G/TiO2 was not performed maximally because of the presence of g-C3N4 and Graphene simultaneously suspected could block the roles of each promoter to improve the photocatalytic performance of TiO2 in producing H2."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Diba Toya
"Produksi hidrogen dan degradasi 2,4,6-Triklorofenol secara simultan sudah dilakukan pada berbagai fotokatalis yaitu P25-TiO2, Titania Nanotube Arrays (TNTAs), dan variasi TNTAs-CdS selama 240 menit. VariasiTNTAs-CdS menggunakanperbandingan mol dari prekursor CdS yaitu CdCl2:CH3CSNH2dengan 0,2:0,12; 0,1:0,06; dan 0,05:0,03 mol/L. Hasil karakterisasi UV-Vis DRS menunjukkanenergy band gap berkisar antara 2,71- 2,89 eV.Fotokatalis terbaik didapat pada perbandingan 0,1:0,06 (TNTAs-CdS-2) karena menghasilkan hidrogen (3,17𝜇𝜇mol/g.s) dan degradasi 2,4,6-Triklorofenol (mencapai 80%) yang paling baik dibandingkan dengan katalis lainnya. Fotokatalis tersebut menghasilkan hidrogen 1,5 kali dibandingkan TNTAs dan 7 kali dibandingkan dengan P25-TiO2. Produksi hidrogen berjalan simultan dengan pendegradasian 2,4,6-Triklorofenol, dimana kinerja keduanya bergantung pada katalis yang digunakan. Disamping itu, pengaruh konsentrasi 2,4,6-Triklorofenol (10, 20, dan 40 ppm) dipelajari dengan menggunakan fotokatalis TNTAs-CdS-2 dan menghasilkan total produksi hidrogen berturut-turut 1,008; 1,061; dan 1,197𝜇𝜇mol/g.s. Semakin besar konsentrasi 2,4,6-Triklorofenol, semakin besar pula hidrogen yang dihasilkan.

Hydrogen production and 2,4,6-Trichlorophenoldegradationhave been investigated simultanously usingP25-TiO2, TNTAs, and variation of TNTAs-CdS for 240 minutes. TNTAs-CdS variations use mol ratio of CdS precursor that isCdCl2:CH3CSNH2 with ratio 0.2:0.12, 0.1:0.06, and 0.05:0.003.Rever to UVVis analysis, the TNTAs-CdS prepared have the band gap energy in the range of 2.71-2.89 eV. Among them, the optimum composition is0.1:0.06 (TNTAs-CdS- 2) which results in the highest total hydrogen production (3,17𝜇𝜇mol/g.s) and 2,4,6-Trichlorophenol degradation(achieve 80%) compared toothers. TNTAs- CdS-2 produces total hydrogen 1.5 and 7 times compared with TNTAs and P25- TiO2, respectively.Hydrogen production and 2,4,6-Trichlorophenol degradation could be perormed simultaneously and it depands on the catalyst employed. Furthermore, the effect of2,4,6-Trichlorophenol initial concentrations (10, 20, and 40 ppm) was also studied using TNTAs-CdS-2 and produced1.008,1.061, and1.197 𝜇𝜇 mol/g.s respectively.The higherthe 2,4,6-Trichlorofenol initial concentration, the more hydrogen produced."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65372
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laily Fitri Pelawi
"Dalam penelitian ini dilakukan kombinasi proses elektrokoagulasi dan fotokatalisis dan melihat efek dopan CuO dalam TiO2 nanotubes untuk mendokolorisasi limbah pewarna dan sekaligus menghasilkan H2. Dekolorisasi dan produksi hidrogen secara simultan dilakukan dalam reaktor yang terbuat dari akrilik yang dilengkapi dengan power supply dan lampu UV. H2 dihasilkan dari reduksi ion H+ dalam larutan pada katoda stainless steel dan watersplitting oleh fotokatalisis secara bersamaan. Dekolorisasi tartrazin diperoleh dari kombinasi adsorpsi dengan elektrokoagulasi dan degradasi dengan fotokatalisis. TiO2 nanotubes disintesis dengan metode anodisasi, kemudian dimodifikasi dengan memberi dopan CuO dengan metode SILAR (Successive Ionic Layer Adsorption and Reaction). Hasil SEM dengan adanya dopan CuO 0,04 M; 0,05 M; dan 0,06 M mengkonfirmasi bahwa struktur nanotubes masih terbentuk dengan baik dengan diameter rata-rata berturut-turut 149 nm, 158 nm, dan 166 nm dan ketebalan tabung rata-rata berturut-turut 44 nm, 50 nm, dan 52 nm. Kehadiran Cu terdeteksi oleh analisis dengan EDX, yang berjumlah 0,4% wt, 1,09% wt dan 1,68% wt berturut-turut untuk dopan CuO 0,04 M; 0,05 M; dan 0,06 M pada TiO2 nanotubes. Hasil XRD menunjukkan bahwa TiO2 nanotubes berada dalam fase anatase dengan ukuran kristal 27,8 nm; 27 nm; dan 26,9 nm. Energi band gap dihitung menggunakan persamaan Kubelka-Munk dari hasil karakterisasi UV-Vis DRS. Hasil perhitungan menunjukkan bahwa, energi band gap dari CuO-TiO2 nanotubes berkurang dari band gap TiO2 nanotubes murni. Konversi dekolorisasi tartrazin berturut-turut pada sistem elektrokoagulasi, fotokatalisis dan elektrokoagulasi-fotokatalisis dalam waktu 4 jam reaksi adalah 87,6%; 32,3% dan 99,3%. Baku mutu pada sistem tunggal elektrokoagulasi 50 V dapat dicapai sekitar 1,3 jam reaksi dan jika dikombinasikan dengan sistem fotokatalisis CuO-TiO2 nanotubes hanya dibutuhkan waktu kurang dari 1 jam. Akumulasi produk H2 yang dihasilkan berturut-turut pada sistem elektrokoagulasi, fotokatalisis, dan kombinasinya yaitu sebesar 0,997 mmol, 0,008 mmol, dan 1,841 mmol. Hal ini menunjukkan dengan mengkombinasikan sistem fotokatalisis pada elektrokoagulasi dapat meningkatkan kemampuan dalam mendekolorisasi sebanyak 21,7% sehingga dapat mempercepat waktu dalam mencapai baku mutu dan produksi H2 sebanyak 83%. Kinetika dekolorisasi tartrazin pada sistem fotokatalisis dan elektrokoagulasi 50 V mengikuti persamaan laju reaksi orde dua, dengan konstanta laju reaksi berturut-turut 0,006 L/mg.jam dan 0,080 L/mg.jam sedangkan sistem kombinasi mengikuti persamaan laju reaksi adsorpsi Langmuir dengan konstanta laju reaksi sebesar 1,202 jam-1. Dari data kinetika dapat disimpulkan sistem kombinasi elektrokoagulasi-fotokatalisis dengan CuO-TiO2 nanotubes merupakan sistem yang paling efektif dari sistem tunggal elektrokoagulasi dan fotokatalisis.

In this study a combination of electrocoagulation and photocatalysis processes was carried out and observed at the effect of CuO dopant in TiO2 nanotubes to decolorize the dye waste and simultaneously produce H2. The simultaneous decolorization and production of hydrogen is carried out in an acrylic reactor equipped with a power supply and UV lamps. H2 is produced from the combination of the reduction of H+ ions in solution at a stainless steel cathode and watersplitting by photocatalysis. Tartrazine decolorization is obtained from the combination of adsorption by electrocoagulation and degradation by photocatalysis. TiO2 nanotubes were synthesized by anodizing method, then modified by giving CuO dopant by SILAR (Successive Ionic Layer Adsorption and Reaction) method. SEM results in the presence of 0.04 M CuO dopants; 0.05 M; and 0.06 M confirmed that the nanotubes structure was still well formed with an average diameter of 149 nm, 158 nm, and 166 nm and an average tube thickness of 44 nm, 50 nm and 52 nm, respectively. The presence of Cu was detected by analysis with EDX, which amounted to 0.4% wt, 1.09% wt and 1.68% wt respectively for 0.04 M CuO dopants; 0.05 M; and 0.06 M on TiO2 nanotubes. The XRD results showed that TiO2 nanotubes were in the anatase phase with a crystal size of 27.8 nm; 27 nm; and 26.9 nm. Band gap energy is calculated using the Kubelka-Munk equation from the results of UV-Vis DRS characterization. The calculation results show that, the band gap energy of CuO-TiO2 nanotubes is reduced from pure TiO2 nanotubes band gap. Conversion of tartrazine decolorization respectively for the electrocoagulation, photocatalysis and electrocoagulation-photocatalysis systems within 4 hours of reaction was 87.6%; 32.3% and 99.3%. The quality standard in a single 50 V electrocoagulation system can be achieved in about 1.3 hours of reaction and when combined with a photocatalysis system CuO-TiO2 nanotubes only takes less than 1 hour. The accumulation of H2 products produced in the electrocoagulation, photocatalysis, and combination system is 0.997 mmol, 0.008 mmol and 1.841 mmol. This shows that by combining the photocatalysis system in electrocoagulation can increase the ability to decolorize by 21.7% so it will accelerate the time in achieving quality standards and H2 production by 83%. The reaction kinetics in the 50 V photocatalysis and electrocoagulation system follows the second order reaction rate equation, with reaction rate constants of 0.006 L/mg.hour and 0.080 L/mg.hour while the combination system follows the Langmuir adsorption reaction rate equation with reaction rate constants 1,202 hour-1. From the kinetics data it can be concluded that the combination of electrocoagulation-photocatalysis systems with CuO-TiO2 nanotubes is the most effective system than a single system of electrocoagulation and photocatalysis."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahayu Lestari Sugihartini
"Siprofloksasin (CIP) sebagai antibiotik yang banyak digunakan di rumah sakit ditemukan di berbagai perairan dengan konsentrasi yang beragam. Saat didegradasi, CIP berpotensi sebagai hole scavenger yang mampu meningkatkan kinerja fotokatalis dalam menghasilkan gas hidrogen sebagai sumber energi alternatif. Metode elektrokoagulasi dan fotokatalisis yang telah dikembangkan untuk pengolahan limbah siprofloksasin belum memiliki efektivitas yang optimal. Kombinasi kedua metode tersebut berpotensi menghasilkan efektivitas yang lebih baik dalam mendegradasi siprofloksasin dan menghasilkan gas hidrogen secara simultan. Pada penelitian ini dilakukan sintesis komposit CdS/TiO2 nanotube arrays (CdS/TiNTAs) dengan metode anodisasi dan metode SILAR (Successive Ionic Layer Adsorption Reaction) dengan memvariasikan komposisi CdS pada komposit (0,05M; 0,1M; 0,2M). Kinerja fotokatalis terbaik dihasilkan oleh 0,1M CdS/TiNTAs dengan kemampuan degradasi siprofloksasin mencapai 20,43% dan produksi hidrogen sebesar 23,5µmol/m2. Karakterisasi UV-Vis DRS menunjukkan bahwa pembentukan komposit CdS/TiNTAs menurunkan energi celah pita dari 3,16 eV menjadi 2,92 eV. Pengujian XRD membuktikan komposit CdS/TiNTAs yang disintesis berada dalam fasa anatase. FESEM-EDS menunjukkan fotokatalis memiliki morfologi nanoturbular dan mengkonfirmasi adanya unsur Cd dan S pada fotokatalis. Proses kombinasi elektrokoagulasi dan fotokatalisis dilakukan dengan menggunakan fotokatalis CdS/TiO2, anoda Aluminium, dan katoda stainless steel 316 pada tegangan 20 V selama 240 menit dengan efisiensi mencapai 87% dan produksi hidrogen mencapai 2,6 mol/m2.

Ciprofloxacin (CIP) as the most widely used antibiotics in hospitals is found in various waters with varying concentrations. When degraded, CIP has the potential to act hole scavengers that can improve photocatalyst performance in producing hydrogen gas as an alternative energy source. The electrocoagulation and photocatalysis methods that have been developed for the treatment of ciprofloxacin waste have not yet had optimal effectiveness. The combination of the two methods has the potential to produce better effectiveness in degrading ciprofloxacin and producing hydrogen gas simultaneously. In this study, the synthesis of composite CdS / TiO2 nanotube arrays (CdS / TiNTAs) is done by anodization and SILAR (Successive Ionic Layer Adsorption Reaction) method was carried out by varying the composition of CdS on composites (0.05M; 0.1M; 0.2M). The best photocatalyst performance is achieved by 0.1M CdS/TiNTAs with CIP degradation efficiency of 20.43% and hydrogen production of 23.5μmol/m2. The UV-Vis characterization of the DRS shows that CdS/TiNTAs decreased the band gap energy from 3.16 eV to 2.92 eV. XRD proved that the synthesized CdS/TiNTAs were in anatase phase. FESEM-EDS shows photocatalysts have a nanoturbular morphology and confirms the presence of Cd and S elements. The combined process of electrocoagulation and photocatalysis was carried out using CdS/TiO2 photocatalysts, Aluminum anodes, and stainless steel-316 cathode at 20 V for 240 minutes with an efficiency of 87% and hydrogen accumulation of 2.6 mol/m2."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rossalina Kurniawan
"Degradasi zat warna tartrazine dan produksi hidrogen secara simultan dengan kombinasi fotokatalisis dan elektrokoagulasi telah diteliti. Proses fotokatalisis dilakukan dengan menggunakan katalis TiO2 nanotube yang telah disintesis dengan metode anodisasi. Pada proses elektrokoagulasi digunakan elektroda Al-SS 316 dengan variasi tegangan 5V; 10V; 15V. Struktur katalis TiO2 bermorfologi nanotube dikarakterisasi dengan SEM-Mapping, FTIR, XRD, dan UV-Vis DRS. Kondisi optimum yang didapatkan dari proses elektrokoagulasi yaitu pada tegangan 15V dengan waktu uji selama 4 jam.
Dari hasil fotokatalisis dengan TiO2 nanotube didapatkan konversi degradasi zat warna tartrazine sebesar 48,86 dan konsentrasi H2 3,46. Penggunaan plat aluminium sebagai anoda dan plat stainless steel 316 sebagai katoda pada proses elektrokoagulasi juga telah berhasil mendegradasi zat warna tartrazine sebesar 82,45 dan konsentrasi H2 12,14.
Hasil kombinasi proses fotokatalisis dan elektrokoagulasi didapatkan konversi degradasi zat warna tartrazine sebesar 90,68 dengan konsentrasi zat warna menjadi 1,93 ppm dan konsentrasi H2 nya sebesar 12,14. Konsentrasi akhir limbah zat warna tartrazine dari proses kombinasi fotokatalisis-elektrokoagulasi sudah aman jika dibuang ke lingkungan karena sudah memenuhi baku mutu. Selain itu, gas H2 yang dihasilkan berpotensi sebagai sumber energi terbarukan.

Degradation of tartrazine dye and the production of hydrogen simultaneously with a combination of photocatalysis and electrocoagulation has been investigated. The photocatalytic process was performed by using a catalyst of TiO2 nanotubes that had been synthesized by anodizing method In electrocoagulation process used Al SS 316 electrode with variation of 5V voltage 10V 15V. The structure of TiO2 catalysts with nanotube morphology is characterized by SEM Mapping, FTIR, XRD, and UV Vis DRS. The optimum condition obtained from the electrocoagulation process is at a voltage of 15V with a test time of 4 hours.
From the results of photocatalysis with TiO2 nanotube obtained degradation of tartrazine dye equal to 48,86 and concentration of H2 3,46. The use of aluminum plate as anode and 316 stainless steel plate as cathode in electrocoagulation process has also succeeded degrading tartrazine dye by 82,45 and concentration of H2 12,14.
The result of the combination of photocatalysis and electrocoagulation process obtained degradation conversion of tartrazine dye by 90.68 with dye concentration to 1.93 ppm and H2 concentration of 12.14. The final concentration of tartrazine dye waste from combination of photocatalysis electrocoagulation process is safe if disposed to the environment because it meets the quality standard. In addition, the production of H2 has potential as a renewable energy source.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurhayati Indah Ciptasari
"Dalam beberapa tahun terakhir, peningkatan pesat teknologi telah mendorong pengembangan berbagai jenis material di bidang ilmu pengetahuan dan penelitian. Salah satu material yang paling populer untuk penelitian adalah reduced Graphene Oxide (rGO). Material dibuat dari Graphene Oxide (GO) dengan melakukan berbagai metode pengolahan kimia dan termal untuk mengurangi kandungan oksigen di dalamnya. Sifat-sifat luar biasa dari rGO seperti sifat termal, mekanik, dan elektronik menjadikannya sebagai kandidat bahan yang potensial digunakan dalam berbagai aplikasi dengan penambahan matriks untuk memperluas penggunaannya. Penelitian ini bertujuan untuk mengembangkan kemungkinan material nanokomposit reduced Graphene Oxide (rGO) untuk aplikasi fotokatalitik yang lebih ramah lingkungan serta pengembangan material nanokomposit reduced Graphene Oxide (rGO) untuk aplikasi superkapasitor. Penelitian dilakukan dengan beberapa tahapan. Pertama dengan membuat bahan baku reduced graphene oxide dari grafit dengan menggunakan metode Hummers modifikasi. Kemudian mensintesis rGO dengan AgNPs (Perak Nanopartikel) menggunakan metode hidrotermal in-situ dengan reduktor NaBH4. Setelah itu, dilakukan pengujian aktivitas fotokatalitiknya terhadap ion Pb untuk mengetahui kinerja efektivitas rGO/AgNPs fotokatalitik dan potensinya sebagai bahan fotokatalitik alternatif dalam pengolahan limbah. Selanjutnya sintesis nanokomposit rGO dengan ZrO2 (Zirkonia) dilakukan dengan metode hidrotermal in-situ menggunakan reduktor NaBH4. Kemudian dilakukan karakterisasi sifat fisik dan kimianya agar dapat diaplikasikan pada superkapasitor. Analisis dilakukan dengan menggunakan X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Spektroskopi Raman, Spektrofotometer UV-Vis, Fourier Transform Infra Red (FTIR), dan Electrochemical Impedance Spectroscopy (EIS). Hasil penelitian ini Sintesis nanokomposit rGO/AgNPs menggunakan metode hidrotermal in-situ dengan reduktor NaBH4 untuk menguji aktivitas fotokatalitiknya terhadap ion Pb berhasil dilakukan. Performa fotokatalitik dengan uji terhadap ion Pb didapatkan persentase maksimum sebesar 44% pada 1,5 jam iradiasi. Nanokomposit rGO/ZrO2 berhasil disintesis dengan metode hidrotermal in-situ menggunakan reduktor NaBH4. Nilai spesifik kapasitansi tertinggi sebesar 482 F/g diperoleh pada rGO-ZrO2 = 1:2 dengan menggunakan PANI dalam larutan elektrolit H2SO4 karena pada kondisi ini menghasilkan nilai resistansi yang rendah sebesar 238,53 ohm.  

In recent years, rapid advancements in technology have driven the development of various types of materials in the field of science and research. One of the most popular materials for research is reduced Graphene Oxide (rGO). This material is made from Graphene Oxide (GO) through various chemical and thermal processing methods to reduce its oxygen content. The outstanding properties of rGO, such as thermal, mechanical, and electronic properties, make it a potential candidate for use in various applications with matrix additives to expand its usage. This research aims to explore the potential of reduced Graphene Oxide (rGO) nanocomposite materials for environmentally friendly photocatalytic applications and the development of rGO nanocomposite materials for supercapacitor applications. The research is conducted in several stages. Firstly, raw materials of reduced graphene oxide are produced from graphite using a modified Hummers method. Then, rGO is synthesized with AgNPs (Silver Nanoparticles) using an in-situ hydrothermal method with NaBH4 as the reducing agent. Subsequently, the photocatalytic activity of the rGO/AgNPs composite is tested against Pb ions to evaluate its effectiveness and potential as an alternative photocatalytic material in wastewater treatment. Furthermore, the synthesis of rGO nanocomposites with ZrO2 (zirconium dioxide) is carried out using an in-situ hydrothermal method with NaBH4 as the reducing agent. The physical and chemical properties of the nanocomposites are characterized for their application in supercapacitors. Analysis is performed using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Raman Spectroscopy, UV-Vis Spectrophotometry, Fourier Transform Infrared (FTIR) Spectroscopy, and Electrochemical Impedance Spectroscopy (EIS). The results of this research show the successful synthesis of rGO/AgNPs nanocomposites using an in-situ hydrothermal method with NaBH4 as the reducing agent to test their photocatalytic activity against Pb ions. The photocatalytic performance, tested against Pb ions, achieved a maximum percentage of 44% after 1.5 hours of irradiation. Additionally, the rGO/ZrO2 nanocomposites were successfully synthesized using the in-situ hydrothermal method with NaBH4 as the reducing agent. The highest specific capacitance value of 482 F/g was obtained at rGO-ZrO2 = 1:2 ratio, using PANI in the H2SO4 electrolyte solution, as this condition resulted in a low resistance value of 238.53 ohms."
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Raynaldi Philipus
"Nanopartikel ZnO yang dimodifikasi oleh CTAB dan didop dengan empat variasi konsentrasi atom Ni berhasil dibuat melalui metode kopresipitasi. Seluruh sampel dikarakterisasi oleh pengukuran energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, electron spin resonance (ESR), field emission scanning electron microscope (FESEM), dan UV-Vis spectrophotometry.
Hasil pengukuran memperlihatkan bahwa penambahan CTAB dan konsentrasi atom dopant mempengaruhi morfologi dan sifat optik dari seluruh sampel. Pengujian aktivitas fotokatalitik sampel dilakukan pada larutan methyl orange (MO) dan methylene blue (MB) di bawah paparan sinar UV selama 2 jam. Hasil yang diperoleh menunjukkan bahwa efisiensi kinerja degradasi fotokatalitik dari sampel meningkat seiring dengan bertambahnya konsentrasi atom dopant.

CTAB-modified ZnO nanoparticles doped with four different concentrations of Ni were successfully synthesized by co-precipitation method. All samples were characterized using energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, electron spin resonance (ESR), field emission scanning electron microscope (FESEM), and UV-Vis spectrophotometry.
The results demonstrated that the addition of CTAB and doping concentration affect the morphology and optical properties of the samples. The photocatalytic activity test of all samples was studied by observing the degradation of methyl orange (MO) and methylene blue (MB) under UV light irradiation. The result indicates that the performance of photocatalytic activity from all samples increases along with the increasing concentration of atomic dopant.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54069
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ibnu Sultan A.
"ABSTRAK
Upaya untuk memproduksi hidrogen masih sedikit dari sumber yang terbarukan, termasuk hasil limbah biomassa berupa gliserol. Kombinasi proses fotokatalisis dan reformasi uap untuk produksi hidrogen telah diinvestigasi. Analisis SEM menunjukkan morfologi batu apung yang di-coating dengan TiO2 dan TiO2-Ni menempel pada batu apung secara merata. Analisis UV-Vis DRS menunjukkan batu apung yang di-coating TiO2 dan TiO2-Ni memiliki absorbansi dengan band gap energy yaitu menjadi 3,1 eV untuk batu apung-TiO2 dan 3 eV untuk batu apung-TiO2-Ni sehingga menunjukkan adanya penurunan energy bandgap. Penambahan dopan Ni pada TiO2 mampu menaikkan produksi hidrogen mencapai 1,5 kali lebih banyak dibandingkan hanya dengan TiO2. Melalui proses fotokatalisis selama 250 menit dengan mengkombinasikan proses fotokatalisis dan reformasi uap pada suhu 100 0C menghasilkan hidrogen sebesar 2334 µmol.

ABSTRACT
Attempts to produce hydrogen is still slightly from renewable sources, including biomass waste results in the form of glycerol. The combination process of photocatalytic and steam reforming for hydrogen production has been investigated. SEM analysis showed that the morphology of pumice-coating with TiO2 and TiO2-Ni stuck in pumice evenly. UV-Vis DRS analysis shows that in the pumice-coating of TiO2 and TiO2-Ni has absorbance with a band gap energy is 3.1 eV for pumice-TiO2 and 3 eV for pumice-TiO2-Ni suggesting a decrease in the bandgap energy . The addition of dopants Ni on TiO2 is able to increase the production of hydrogen up to 1.5 times more than the just the TiO2. Through a photocatalytic process for 250 minutes by combining the photocatalytic process and steam reforming at 100 0C produces hydrogen at 2334 μmol.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36065
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahman Hadi
"Gas Hidrogen memiliki manfaat sebagai bahan bakar yang bermanfaat untuk sumber energi masa depan karena menurunkan ketergantungan akan minyak bumi dan pengurangan polusi udara. Penyimpanan hidrogen adalah masalah utama yang harus ditaklukkan untuk keberhasilan implementasi teknologi sel bahan bakar dalam aplikasi transportasi dan ini merupakan tantangan ilmu material utama. Salah satu solusi untuk mengatasi permasalahan tersebut adalah dengan menggunakan metode adsorpsi. Material reduced Graphene Oxide (rGO) merupakan salah satu material yang berpotensial untuk digunakan sebagai media penyimpanan gas hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada reduced Graphene Oxide (rGO) dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones.Pada riset ini, penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan pada simulasi ini adalah 77, 100, 150, 200, 273, dan 298 K dengan variasi tekanan pada tiap temperatur adalah 1, 2, 5, 10, 15, 20, 40, 80. dan 100 bar. Hasil simulasi kemudian dibandingkan dengan hasil riset secara eksperimental yang telah dilakukan oleh peneliti lainnya. Pada temperatur tinggi, hasil simulasi mendekati hasil riset secara eksperimental. Namun pada temperatur rendah, hasil simulasi memiliki perbedaan secara signifikan dari riset secara eksperimental.

Hydrogen gas has benefits as a useful fuel for future energy sources because it reduces dependence on petroleum and reduces air pollution. Hydrogen storage is a major problem that must be conquered for the successful implementation of fuel cell technology in transportation applications and this is a major material science challenge. One solution to overcome these problems is to use the adsorption method. Reduced Graphene Oxide (rGO) material is a material that has the potential to be used as a storage medium for hydrogen gas. In this study, the authors wanted to see the effect of temperature and pressure on hydrogen adsorption on reduced Graphene Oxide (rGO) using molecular dynamics simulations using Lennard-Jones potential. In this research, the authors used the Molecular Dynamics Simulation method. Temperature variations used in this simulation are 77, 100, 150, 200, 273, and 298 K with variations in pressure at each temperature are 1, 2, 5, 10, 15, 20, 40, 80. and 100 bar. The simulation results are then compared with the results of experimental research conducted by other researchers. At high temperatures, the simulation results approach experimental research results. However, at low temperatures, the simulation results have a significant difference from experimental research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>