Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 71714 dokumen yang sesuai dengan query
cover
Achmad Dhani Maulana
"Konsumsi mineral untuk pembuatan alat dan fasilitas yang berguna bagi manusia terus meningkat selama beberapa dekade. Penambangan terestrial telah menjadi metode penambangan utama untuk mengekstraksi mineral bumi selama beberapa ribu tahun, namun kemunculan deep-sea mining sedang dalam perjalanan sejak tahun 1960-an dan sudah pada titik komersialisasi. Isu dampak dari penambangan laut dalam menjadi alasan utama berkembangnya deep-sea mining. deep-sea mining berada pada ekosistem yang paling rapuh di planet ini yang disebut zona bentik, sekaligus merupakan ekosistem terpenting di planet ini untuk mendukung ekosistem lain dalam memelihara telur, larva, dan juvenilnya. Dampak deep-sea mining terhadap ekosistem laut dalam juga menjadi perhatian Indonesia, karena penambangan laut dalam dimungkinkan untuk dilakukan, namun belum ada peraturan perlindungan lingkungan nasional untuk melestarikan atau melindungi ekosistem laut dalam. Kondisi kekosongan hukum dalam deep-sea mining ini dapat diisi dengan prinsip kehati-hatian yang telah dicanangkan oleh Pemerintah Indonesia dalam UU No. 32 Tahun 2009, namun hal tersebut bukanlah solusi yang mutlak atau optimal untuk mengatasi dampak deep-sea mining, dengan tetap mengacu pada konvensi, perjanjian, atau traktat internasional yang telah diratifikasi atau dikontribusikan oleh Pemerintah Indonesia.

The consumption of minerals for manufacturing tools and facilities that are helpful for humans is on the rise for decades. Terrestrial mining has been the main mining method to extract the earth's minerals for several thousand years, yet the emergence of deep-sea mining is on its way since the 1960s and is already on the point of being commercialized. The issues of impact from deep-sea mining are the main reason for the development of deep-sea mining. The action of deep-sea mining is located in the most fragile ecosystem on this planet called as benthic zone, while also the most important ecosystem on this planet to support other ecosystems to nurture their eggs, larvae, and juveniles. The impact of deep-sea mining on deep-sea ecosystems is also a concern for Indonesia, as it is possible to do deep-sea mining, yet there are no national environmental protection regulations to preserve nor protect the deep-sea ecosystem. This legal vacuum condition in deep-sea mining could be filled with the precautionary principle that the Indonesia Government in Law No. 32 of 2009, yet it isn’t the absolute nor the optimal solution to tackle the impact of deep-sea mining, while reflecting on any International convention, agreement, or treaty that have been ratified or contributed by the Indonesian government."
Depok: Fakultas Hukum Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Manullang, Corry Yanti
"Mikroplastik adalah potongan plastik kecil dengan panjang terpanjang kurang dari 5 mm yang muncul di lingkungan sebagai akibat dari polusi plastik. Ukuran mikroplastik ini sangat kecil sehingga memungkinkan polutan ini mudah tertranspor bersama arus laut. Mikroplastik memiliki ukuran, warna dan bentuk yang mirip dengan makanan alami biota laut zooplankton sehingga dapat disalahartikan sebagai makanan. Oleh karena itu, pengetahuan terkait distribusi dan nasib partikel mikroplastik dalam suatu perairan penting dilakukan untuk memahami resikonya terdapat keanekaragaman biota yang ada dalam perairan.
Sirkulasi laut di Indonesia dipengaruhi oleh dua sistem arus utama, yaitu Arus Monsun Indonesia (ARMONDO) dan Arus Lintas Indonesia (ARLINDO). ARLINDO merupakan lintasan arus samudra yang membawa massa air dalam skala besar dari Samudra Pasifik ke Samudra Hindia dan juga memiliki peranan penting dalam iklim global. Berbeda halnya dengan ARMONDO yang merupakan pola arus permukaan yang dibangkitkan oleh angin musim (Monsun), aliran utama massa air ARLINDO terjadi pada lapisan termoklin yang disebabkan oleh perbedaan karakteristik temperatur dan salinitas lautan. Jalur utama ARLINDO adalah Selat Makasar yang mengalirkan sekitar 80% dari total ARLINDO. Massa air Samudra Pasifik bagian utara dan selatan memasuki laut Indonesia melalui ambang Sulawesi, kemudian melintasi Laut Sulawesi dan Selat Makassar. Selanjutnya, sebagian air langsung keluar ke Samudera Hindia melalui Selat Lombok dan Selat Alas, sedangkan sebagian besar mengalir ke Laut Banda dan menyatu dengan jalur ARLINDO bagian timur sebelum keluar menuju Samudera Hindia.
Sejak pertengahan tahun 1980-an, pengukuran flux massa air, suhu dan salinitas telah banyak dilakukan di jalur ARLINDO. Namun demikian, studi pencemaran laut di kawasan ini masih belum dijelajahi dan belum diketahui secara detail. Sementara itu, polutan seperti halnya mikroplastik dapat dengan mudah tertranspor bersama arus laut. Tujuan umum dari penelitian disertasi ini adalah memenuhi kesenjangan data dan informasi terkait pencemaran mikroplastik di kawasan laut dalam jalur ARLINDO. Disertasi ini terdiri dari 5 bab, meliputi Bab Pengantar Paripurna, 3 Bab mengenai penelitian inti yang dilakukan dalam disertasi ini dan Bab Diskusi paripurna yang mengelaborasi temuan-temuan dalam penelitian ini dan memuat rekomendasi penelitian di masa yang akan datang.
Bab pertama disertasi ini, berisi pendahuluan terkait latar belakang dilakukannya disertasi ini. Dalam bab ini dipaparkan terkait polusi mikroplastik, distribusi mikroplastik, penelitian-penelitian mikroplastik di kawasan laut dalam, kondisi eksisting penelitian mikroplastik di Indonesia saat ini dan kesenjangan penelitian mikroplastik di Indonesia. Dalam bab ini juga dipaparkan terkait research gaps yang dicapai melalui penelitian disertasi ini serta nilai kebaruan penelitian ini dalam bidang penelitian mikroplastik.
Bab kedua disertasi ini memuat tentang informasi distribusi vertikal mikroplastik di kolom air kawasan laut dalam jalur ARLINDO. Kajian ini membahas sebaran mikroplastik di kolom air laut dalam secara detail yang sangat penting dalam menentukan nasib dan pengangkutan mikroplastik di perairan Indonesia yang bermuara di Samudera Hindia. Sampel kolom air dikumpulkan dari 11 stasiun, meliputi sepanjang Selat Makassar, Selat Alas dan Selat Lombok. Pengambilan sampel air dari kolom air dan pengukuran profil vertikal parameter fisik dilakukan menggunakan carousel rosette water sampler yang yang dipasang dengan alat Sea-Bird SBE 911+ conductivity-temperature-depth (CTD) hingga kedalaman 2450 m. Sampel kolom air dikumpulkan dari 8 hingga 10 kedalaman meliputi lapisan dekat permukaan (~5 m); kedalaman klorofil maksimum; lapisan termoklin (atas, tengah dan bawah); kedalaman oksigen terlarut minimum (DO-Min); dan kedalaman dekat dasar. Tingkat kedalaman pengambilan sampel bervariasi berdasarkan kondisi perairan. Untuk kedalaman perairan melebihi 1000 m pengambilan sampel tambahan dilakukan pada kedalaman 500 m, 750m, 1000 m, 1500 m, dan 2000 m. Proses ekstraksi mikroplastik dari sampel air dilakukan dengan prosedur WPO (wet peroxide oxidation) menggunakan larutan hidrogen peroksida (H2O2) 30%. Proses pengambilan sampel hingga proses ekstraksi mikroplastik dilakukan secara teliti untuk menghindari adanya kontaminasi mikroplastik dari udara maupun peralatan penelitian. Uji polimer partikel mikroplastik dilakukan dengan Raman spectroscopy. Sebanyak 924 partikel mikroplastik dengan rata-rata kelimpahan 1,062±0,646 n/L ditemukan di kolom air laut dalam jalur ARLINDO. Mayoritas bentuk plastik yang ditemukan adalah fiber. Jenis polimer yang paling dominan ditemukan adalah polimetil vinil eter- asam ko-maleat (PVEMA) dan poliester (PES). Konsentrasi mikroplastik paling banyak ditemukan di lapisan termoklin dan lapisan di bawah termoklin. Studi ini mengungkapkan bahwa suhu air dan kepadatan air merupakan faktor parameter fisika perairan yang paling signifikan yang berkorelasi dengan konsentrasi mikroplastik di kolom perairan laut dalam jalur ARLINDO. Selain itu, massa air pada lapisan termoklin dan lapisan di bawah termoklin memiliki salinitas >33‰, hal ini berkorelasi dengan karakteristik massa air perairan Pasifik Utara yang masuk ke perairan Selat Makassar. Hal ini menguatkan hipotesis bahwa aliran massa air dari Samudera Pasifik ke Samudera Hindia melalui perairan Indonesia turut membawa mikroplastik ke wilayah ini.
Bab 3 disertasi ini memberikan temuan awal mengenai konsumsi mikroplastik oleh kopepoda di jalur ARLINDO. Sampel zooplankton dikumpulkan dari 10 stasiun dengan cara menarik jaring secara vertikal dari kedalaman 300 m ke permukaan menggunakan jaring plankton NORPAC dengan ukuran mata jaring 200 µm. Sampel diawetkan dengan larutan etanol 90%. Di laboratorium, kopepoda disortir dan diklasifikasikan ke dalam tiga kategori ukuran berbeda untuk mengetahui perbedaan penelanan mikroplastik dalam berbagai ukuran biota zooplankton. 87% partikel yang ditemukan berbentuk fiber. Tiga jenis polimer dominan yang diidentifikasi adalah polivinil butiral (PVB), polimetil vinil eter- asam ko-maleat (PVEMA) dan Poliester (PES). Tingkat penyerapan mikroplastik pada masing-masing kelompok ukuran kopepoda adalah 0,016 n/ind untuk kopepoda ukuran 200-500 µm; 0,023 n/ind untuk kopepoda ukuran 500-1000 µm dan 0,028 n/ind untuk kopepoda ukuran 1000-2000 µm. Tidak terdapat perbedaan yang signifikan antara konsentrasi ketiga kelompok kelas kopepoda sepanjang jalur ARLINDO (p>0,05). Namun konsentrasi mikroplastik ditemukan berbanding lurus secara positif dengan ukuran kopepoda. Kopepoda memiliki penting dampak mendistribusikan dan mentransfer energi dalam ekosistem dan merupakan komponen rantai makanan yang penting karena berfungsi sebagai konsumen utama bagi banyak organisme akuatik. Oleh karena itu, studi ini memberikan pengetahuan dasar yang fundamental untuk penilaian risiko ekologi mikroplastik lebih lanjut di jalur ARLINDO.
Bab 4 disertasi ini menyajikan informasi awal terkait distribusi mikroplastik di sedimen laut dalam di jalur ARLINDO, yaitu Selat Makassar. Pengambilan sedimen laut dalam dilakukan 7 stasiun yang mewakili habitat laut dalam yang berbeda dengan kedalaman mulai dari 348,2 hingga 1624 m. Tujuh stasiun yang dipilih mewakili tiga lokasi berbeda. Sampel sedimen dikumpulkan pada kedalaman yang bervariasi di setiap lokasi untuk menilai variasi akumulasi mikroplastik di berbagai kedalaman laut. Hasil penelitian ini menunjukkan bahwa polusi mikroplastik telah menyebar ke seluruh lautan di dunia hingga ke laut dalam. Jumlah mikroplastik berkisar antara antara 143 hingga 520 n/Kg sedimen kering. Meskipun penelitian ini sangat terbatas karena hanya sedikit sampel yang dapat mewakili seluruh dasar laut dalam di jalur ARLINDO, namun pengetahuan awal akumulasi mikroplastik ini sangat penting untuk memprediksi distribusi mikroplastik di laut dalam. Secara keseluruhan, jumlah mikroplastik di sedimen meningkat seiring bertambahnya kedalaman dasar laut mengindikasikan potensi laut dalam untuk mengakumulasi mikroplastik.
Bab 5 disertasi ini merupakan diskusi paripurna keseluruhan penelitian yang dilakukan dalam disertasi ini. Dalam bab 2, 3 dan 4 telah disajikan masing-masing komponen penelitian disertasi secara rinci. Maka bab 5 ini bertujuan untuk mengelaborasi temuan-temuan dalam penelitian disertasi ini dan menyoroti penelitian di masa yang akan datang di kawasan laut dalam, secara khusus di kawasan laut dalam jalur ARLINDO. Dalam bab ini diungkapkan kebaruan disertasi sebagai penelitian pertama yang mengungkapkan distribusi vertikal mikroplastik secara detail di kawasan jalur utama ARLINDO. Konsentrasi mikroplastik di kolom perairan di sepanjang jalur ARLINDO ditemukan paling tinggi di lapisan termoklin dan lapisan di bawah termoklin. Parameter fisika perairan meliputi suhu dan densitas air memiliki pengaruh yang signifikan terdapat distribusi vertikal mikroplastik di dalam kolom air. Penelitian ini juga melaporkan untuk pertama kalinya informasi penelanan mikroplastik oleh plantonik kopepoda di Indonesia. Meskipun secara statistik tidak signifikan, penelitian ini juga melaporkan bahwa konsentrasi mikroplastik berbanding lurus dengan ukuran biota zooplankton. Penelitian ini juga menjadi studi pertama yang melaporkan akumulasi mikroplastik sedimen laut dalam dari Selat Makassar. Penelitian disertasi ini mengungkapkan adanya kecenderungan akumulasi mikroplastik yang lebih tinggi seiring dengan meningkatnya kedalaman perairan.

Microplastics are tiny fragments of plastic, measuring less than 5 mm in length, that are found in the environment due to the presence of plastic pollution. The minuscule dimensions of these microplastics facilitate their effortless transportation across ocean currents. Microplastics possess sizes, colors, and shapes that closely resemble those of the indigenous sustenance of zooplankton marine organisms, which can lead to potential misidentification as food. Hence, it is crucial to acquire information on the distribution and fate of microplastic particles in aquatic environments to comprehend the potential threat they pose to the variety of organisms inhabiting these waters.
The circulation of sea water in Indonesian waters is mostly controlled by two primary current systems, namely the Monsoon Current or Arus Monsun Indonesia (ARMONDO) in Bahasa and the Indonesian Throughflow (ITF). The ITF is a major ocean current that carries large volumes of water from the Pacific Ocean to the Indian Ocean. It plays an important role in the global ocean circulation system and climate system. In contrast to ARMONDO, which is a surface current generated by seasonal winds (monsoons), the main flow of ITF water masses occurs in the thermocline layer. This is caused by differences in the characteristics of ocean temperature and salinity. The primary route of the ITF is the Makassar Strait, which transports approximately 80% of the entire volume of the ITF. The water volume from the western Pacific Ocean flows into the Indonesian Sea by passing through the Sulawesi threshold, subsequently traversing the Sulawesi Sea and the Makassar Strait. Afterward, a portion of the water is channeled straight into the Indian Ocean via the Lombok and Alas Strait. Still, most of it is sent into the Banda Sea and merges with the eastern ITF route before eventually entering the Indian Ocean.
Measurements of water mass flux, temperature, and salinity along the ITF route have been extensively conducted since the mid-1980s. However, marine pollution in this region remains unexplored and requires comprehensive understanding. Meanwhile, sea currents can easily transport pollutants such as microplastics to this area. The primary aim of this research dissertation is to address the lack of data and knowledge on microplastic pollution from deep-sea areas along the ITF pathway. This dissertation comprises five chapters, namely an introduction, three chapters dedicated to the primary research in this dissertation, and a discussion chapter that presents the elaborate study findings and provides recommendations for future research.
The initial chapter of this dissertation comprises an introductory section that provided the contextual background for the dissertation. This chapter provided an overview of the microplastic, the distribution of microplastic, the overview of microplastic studies in deep-sea areas, the current state of microplastic research in Indonesia and the research gaps in microplastic study in Indonesia. This chapter also elucidates the research gaps that will be addressed by the studies conducted in this dissertation and the novelty of this dissertation on the microplastic study.
The second chapter of this dissertation provides detailed information regarding the vertical distribution of microplastics in the water column of the deep-sea area along the ITF pathway. This study provides a comprehensive analysis of the distribution of microplastics in the deep-sea water column that could be highly significant in determining the fate and transport of microplastic within Indonesian waters that exits into the Indian Ocean. The water column samples were obtained from 11 locations, including the Makassar Strait, Alas Strait, and Lombok Strait. The collection of water samples from different depths and the measurement of physical parameters were conducted using a carousel rosette water sampler equipped with a Sea-Bird SBE 911+ conductivity-temperature-depth (CTD) instrument, reaching a depth of 2450 m. Water column samples were obtained from various depths, including near-surface layers at approximately 5 m, the maximum depth with high chlorophyll concentration, several layers of the thermocline (top, middle, and bottom), the depth with low dissolved oxygen and depths on to the bottom. Additional sampling is conducted at 500 m, 750 m, 1000 m, 1500 m, and 2000 m when the water depth exceeds 1000 m up. The extracting of microplastics from samples is carried out using the WPO (wet peroxide oxidation) procedure using a 30% hydrogen peroxide (H2O2) solution. The sample-collecting and microplastic extraction procedures in the laboratory were carefully conducted to prevent any potential contamination. Raman spectroscopy analysis was carried out for polymer identification of particle. A total of 924 microplastic particles with an average abundance of 1.062±0.646 n/L were found in the water column. The majority of shape of plastic found are fibers. The predominant polymer types identified are polymethyl vinyl ether maleic acid (PVEMA) and polyester (PES). The most concentrated amount of microplastics located in the thermocline layer and the layer after the thermocline. Our findings indicate that water temperature and water density are the most significant physical water parameters correlated to the microplastic concentration. In addition, the water mass in the thermocline layer and the layer below the thermocline that had a salinity of >33‰, which correlated with the characteristics of the North Pacific water that enters the waters of the Makassar Strait. These findings provide further evidence to support the hypothesis that the water flow from the Pacific Ocean to the Indian Ocean through Indonesian waters transports microplastics to this region.
Chapter 3 of this dissertation provided the initial findings on the consumption of microplastics by copepods in the ITF pathway. The zooplankton samples were collected from 10 stations by vertically towing nets from a depth of 300 m to the surface using a NORPAC plankton net with a mesh size of 200 µm. The zooplankton samples were preserved in a solution of 90% ethanol. In the laboratory, the copepods were sorted and classified into three different size categories to determine differences in microplastic ingestion in various sizes. The majority, precisely 87%, of the particles discovered were in the form of fibers. The three primary polymer types found were polyvinyl butyral (PVB), polyvinyl ether maleic anhydride (PVEMA), and polyester (PES). The rate of ingestion of microplastics in each size group of copepods was 0.016 n/ind for copepods measuring 200-500 µm; 0.023 n/ind for copepods measuring 500-1000 µm and 0.028 n/ind for copepods measuring 1000-2000 µm. The concentrations of the three copepod class groupings along the ITF route did not show statistically significant changes (p>0,05). Nevertheless, it was revealed that the amount of microplastics increased in direct correlation with the size of the organisms. Copepods have an important impact on distributing and transferring energy in ecosystems and are important components of the food chain because they serve as primary consumers for many aquatic organisms. Therefore, this study offers essential foundational knowledge for future ecological risk assessment of microplastics in the ITF pathway.
The fourth chapter of this dissertation contained provides initial information regarding the distribution of microplastics in marine sediments in the Makassar Strait. Deep sea sediment samples were carried out at 7 stations representing different deep-sea habitats with depths ranging from 348.2 to 1624 m. The seven stations selected represent three different sites. Sediment samples were collected at varied depths at each site to assess variations of microplastic accumulation across various ocean depths. The results of this research show that microplastic pollution has spread throughout the world's oceans and into the deep sea. The amount of microplastics ranged from 143 to 520 n/Kg. Despite the limited scope of this research, as it only examines a small number of samples from the ITF pathway, the findings provide valuable insight into the accumulation of microplastics. This knowledge is crucial for forecasting the dispersion of microplastics in the deep sea. In general, the quantity of microplastics found in sediments rises as the depth of the seabed increases, suggesting that the deep sea can accumulate the microplastics.
Chapter 5 of this dissertation contained a comprehensive explanation of the research gaps addressed in this study and research recommendation in the future research. This chapter described the novelty of the dissertation as the first research to reveal the vertical distribution of microplastics in the main pathway of the ITF. The concentration of microplastics in the water column along the ITF pathway was highest in the thermocline layer and the layer after the thermocline. The vertical distribution of microplastics in the air column is significantly influenced by the physical properties of water, particularly temperature and water density. This study presents novel findings about the ingestion of microplastics in the three sizes of planktonic copepods. While lacking statistical significance, this study reveals a direct correlation between the concentration of microplastics and the size of the zooplankton biota. This study is the first to document the accumulation of microplastic sediment in the deep-sea region of Makassar Strait. The research findings indicate that there is a tendency for microplastic accumulation to increase with increasing water depth.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Zuleha Ernas
"[Pesatnya pertumbuhan ekonomi dan penduduk di daerah pesisir menjadikan kebutuhan akan ruang yang lebih luas sehingga reklamasi kawasan pesisir menjadi pilihan utama yang banyak ditempuh Pemanfaatan pasir laut yang berlebihan dan tidak terkendali dapat mengganggu ekosisitem bahkan merusak daya dukungnya Penelitian ini mengkaji gangguan pada produktivitas perairan Teluk Banten Kabupaten Serang yang disebabkan kegiatan penambangan pasir laut di tahun 2004 2015 Masalah penelitian adalah belum adanya kajian ilmiah lingkungan mengenai pengaruh penambangan pasir laut di Teluk Banten Penelitian ini menggunakan pendekatan kuantitatif dengan metode kuantitatif dan kualitatif Data fisik dianalisis menggunakan korelasi dan regresi polinomial orde 2 dan data wawancara dianalisis dengan metode deskriptif Hasil penelitian memperlihatkan hubungan yang kuat r 0 9835 antara penambangan pasir laut dengan peningkatan kekeruhan perairan Teluk Banten dengan persamaan regresi y x 90 8494 9 2392 10 3 x 1 3059 10 7 x2 Penambangan pasir laut juga signifikan mengurangi produktivitas perairan Teluk Banten r 0 9726 dengan persamaan regresi y x 2 948 3 21 10 7 x ndash 8 26 10 14 x2 Hasil penelitian juga memperlihatkan persepsi negatif masyarakat nelayan terhadap aktivitas penambangan pasir laut Menurut mereka penambangan pasir laut berdampak pada aktivitas penangkapan ikan karena tidak dapat menangkap ikan di perairan dekat desa mereka lagi.

A rapid economic and population growths in urban coastal areas may followed by an expansion of space Mostly the expansion is applying a coastal reclamation An uncontrollable and overexploitation of marine sand for coastal reclamation may disturbing the ecosystem and even cause damage to its carrying capacity This research is finding the disturbance of marine productivity in Banten Coastal Bay Serang District which is caused by marine sand mining activity in 2004 2015 According to preliminary finding there is no scientific studies about the impact of marine sand mining activity in Banten Coastal Bay yet This research is using quantitative approach with quantitative and qualitative method The physical aspect has been analyzed using statistically correlation and 2nd order of polynomial regression Interview data which is analyzed by a descriptive method somehow providing some clues The result shows the strong correlation r 0 9835 between marine sand mining production and the increasing of water turbidity in Banten Coastal Bay which represent by a regression equation y x 90 8494 9 2392 10 3x 1 3059 10 7x2 Marine sand mining production is also significant reduce r 0 9726 the marine productivity of Banten Coastal Bay which represent by a regression equation y x 2 948 3 21 10 7x ndash 8 26 10 14x2 It is found in the fisheries community that they have a negative perception to the marine sand mining activity According them those mining activities impacting to their fishing tradition They cannot catch the fish in the near shore around their livinghood anymore ;A rapid economic and population growths in urban coastal areas may followed by an expansion of space Mostly the expansion is applying a coastal reclamation An uncontrollable and overexploitation of marine sand for coastal reclamation may disturbing the ecosystem and even cause damage to its carrying capacity This research is finding the disturbance of marine productivity in Banten Coastal Bay Serang District which is caused by marine sand mining activity in 2004 2015 According to preliminary finding there is no scientific studies about the impact of marine sand mining activity in Banten Coastal Bay yet This research is using quantitative approach with quantitative and qualitative method The physical aspect has been analyzed using statistically correlation and 2nd order of polynomial regression Interview data which is analyzed by a descriptive method somehow providing some clues The result shows the strong correlation r 0 9835 between marine sand mining production and the increasing of water turbidity in Banten Coastal Bay which represent by a regression equation y x 90 8494 9 2392 10 3x 1 3059 10 7x2 Marine sand mining production is also significant reduce r 0 9726 the marine productivity of Banten Coastal Bay which represent by a regression equation y x 2 948 3 21 10 7x ndash 8 26 10 14x2 It is found in the fisheries community that they have a negative perception to the marine sand mining activity According them those mining activities impacting to their fishing tradition They cannot catch the fish in the near shore around their livinghood anymore.;A rapid economic and population growths in urban coastal areas may followed by an expansion of space Mostly the expansion is applying a coastal reclamation An uncontrollable and overexploitation of marine sand for coastal reclamation may disturbing the ecosystem and even cause damage to its carrying capacity This research is finding the disturbance of marine productivity in Banten Coastal Bay Serang District which is caused by marine sand mining activity in 2004 2015 According to preliminary finding there is no scientific studies about the impact of marine sand mining activity in Banten Coastal Bay yet This research is using quantitative approach with quantitative and qualitative method The physical aspect has been analyzed using statistically correlation and 2nd order of polynomial regression Interview data which is analyzed by a descriptive method somehow providing some clues The result shows the strong correlation r 0 9835 between marine sand mining production and the increasing of water turbidity in Banten Coastal Bay which represent by a regression equation y x 90 8494 9 2392 10 3x 1 3059 10 7x2 Marine sand mining production is also significant reduce r 0 9726 the marine productivity of Banten Coastal Bay which represent by a regression equation y x 2 948 3 21 10 7x ndash 8 26 10 14x2 It is found in the fisheries community that they have a negative perception to the marine sand mining activity According them those mining activities impacting to their fishing tradition They cannot catch the fish in the near shore around their livinghood anymore , A rapid economic and population growths in urban coastal areas may followed by an expansion of space Mostly the expansion is applying a coastal reclamation An uncontrollable and overexploitation of marine sand for coastal reclamation may disturbing the ecosystem and even cause damage to its carrying capacity This research is finding the disturbance of marine productivity in Banten Coastal Bay Serang District which is caused by marine sand mining activity in 2004 2015 According to preliminary finding there is no scientific studies about the impact of marine sand mining activity in Banten Coastal Bay yet This research is using quantitative approach with quantitative and qualitative method The physical aspect has been analyzed using statistically correlation and 2nd order of polynomial regression Interview data which is analyzed by a descriptive method somehow providing some clues The result shows the strong correlation r 0 9835 between marine sand mining production and the increasing of water turbidity in Banten Coastal Bay which represent by a regression equation y x 90 8494 9 2392 10 3x 1 3059 10 7x2 Marine sand mining production is also significant reduce r 0 9726 the marine productivity of Banten Coastal Bay which represent by a regression equation y x 2 948 3 21 10 7x ndash 8 26 10 14x2 It is found in the fisheries community that they have a negative perception to the marine sand mining activity According them those mining activities impacting to their fishing tradition They cannot catch the fish in the near shore around their livinghood anymore ]"
Depok: Program Pascasarjana Universitas Indonesia, 2016
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Masschusetts: Brick House, 1980
304.2 LIF
Buku Teks  Universitas Indonesia Library
cover
Yuwen Li
London: Martinus Nijhoff Publishers, 1994
666.45 YUW t
Buku Teks SO  Universitas Indonesia Library
cover
Kaslan A. Tohir
Jakarta: Rineka Cipta, 1991
304.2 KAS b
Buku Teks  Universitas Indonesia Library
cover
cover
Miller, G. Tyler (George Tyler), 1902-1988
Pacific Grove, Calif.: Brooks/Cole, 2004
363MILE001
Multimedia  Universitas Indonesia Library
cover
Miller, G. Tyler (George Tyler), 1931-
"Buku ini memberikan pengetahuan mengenai alam dan bagaimana caranya agar manusia dapat hidup selaras dengan alam, tidak merusak alam. terdiri dari 20 bab yang disusun dalam 5 bagian, yaitu manusia dan kelestarian; prinsip dan konsep ilmiah; populasi, sumber daya, dan kelestarian; melestarikan keanekaragaman; dan sumber-sumber energi."
New York: Thomson, 2004
363.7 MIL e (1)
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>