Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154717 dokumen yang sesuai dengan query
cover
Fahliza Robbyatul Adawiyah
"Wilayah perairan Indonesia, termasuk perairan Gresik, Provinsi Jawa Timur menjadi jalur lalu lintas pelayaran yang kerap padat akan banyak kapal. Hal ini akan membawa keuntungan tersendiri, karena pelabuhan di sekitar Gresik akan berkembang perekonomiannya. Namun, disamping dampak baik tersebut, ada dampak buruk yang nampaknya lebih sering didapat. Dimulai dari sikap ketidakpedulian para pengguna laut dalam berlayar, bermanuver dan berlabuh jangkar sehingga membuat utilitas bawah laut seperti pipa yang mengangkut gas akan rusak bahkan dapat menyebabkan kebocoran, ledakan dan kebakaran. Maka, perlu adanya validasi kembali area mana saja yang terdapat utilitas menggunakan metode yang cocok seperti metode magnetik karena pipa bawah laut berbahan logam akan sensitif dengan medan magnet. Hasil pengolahan data magnetik menunjukkan pipa bawah laut berada vertikal dari Utara ke Selatan daerah penelitian dengan nilai anomali magnetik tinggi sekitar 7.2 hingga 24.5 nT. Kemudian penampang 2D menampilkan model pipa bawah laut dengan baik karena nilai error nya kecil. Pipa tersebut memiliki rentang nilai kontras suseptibilitas dari 0.6 – 1. Untuk mengetahui nilai kedalamannya, data Single Beam Echo Sounder (SBES) dan Peta Laut Indonesia (PLI) nomor 96A digunakan sebagai data pendukung karena data magnetik tidak memiliki data altitude. Berdasarkan PLI kedalaman batimetri sekitar 9.1 – 10.6 meter. Berdasarkan data SBES, kedalaman batimetri memiliki range dari 9.18 – 0.5 meter. Sehingga estimasi kedalaman pipa bawah laut sesuai dengan Keputusan Menteri Pertambangan dan Energi nomor 300K/38/M.PE/1997 tentang Keselamatan Kerja Pipa Penyalur Minyak dan Gas Bumi yaitu 9 hingga 12 meter dibawah permukaan laut. Zona yang aman untuk kapal berlayar dan melabuhkan jangkar sendiri berada pada jarak lebih dari 500 meter dari posisi pipa dan instalasi lainnya yang dapat dilihat di PLI. PLI sendiri harus digunakan sebagai pedoman dalam berlayar agar meminimalisir kecelakaan pelayaran.

Indonesian territorial waters, including Gresik, East Java Province, become shipping traffic lanes that are often congested with many ships. This will bring its advantages because the port around Gresik will develop its economy. However, in addition to these good effects, there are harmful effects that seem more common. Starting from the indifference of sea users in sailing, maneuvering, and anchoring so that underwater utilities such as pipelines that transport gas will be damaged and can even cause leaks, explosions, and fires. So, it is necessary to re-validate any area with utility using a suitable method such as the magnetic method because metal subsea pipelines will be sensitive to magnets. The results of magnetic processing show that the subsea pipeline is vertical from North to South of the study area with a high magnetic anomaly value of around 7.2 to 24.5 nT. Then the 2D cross-section displays the underwater pipe model well because the error value is small. The pipe has a susceptibility contrast value ranging from 0.6 – 1. For depth value, Single Beam Echo Sounder (SBES) and Indonesian Sea Map (PLI) number 96A are used as supporting data because magnetic data does not have altitude data. Based on PLI, the bathymetry depth is around 9.1 – 10.6 meters. Based on SBES data, the bathymetry depth ranges from 9.18 – 0.5 meters. The estimated depth of the subsea pipeline is in accordance with the Minister of Mines and Energy's Decree of 300K/38/M.PE/1997 concerning the Safety of Oil and Gas Distribution Pipelines, which is 9 to 12 meters below sea level. The safe zone for ships sailing and anchoring themselves is at a distance of more than 500 meters from the pipes and other installations seen in PLI. PLI itself must be used as a guide in sailing in order to minimize shipping accidents."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pengukuran geomagnet menggunakan magnetometer landas bumi sangat dipengaruhi oleh faktor eksternal, karena itu diperlukan suatu metode untuk memisahkan anomali akibat gangguan internal yang berasal dari dalam bumi atau eksternal. Dalam paper ini digunakan metode polarisasi (Z/H) dengan perbandingan 2 stasiun. Dengan membandingkan 2 stasiun itu diharapkan akan mengeliminir anomali yang berasal dari faktor eksternal. Pemilihan stasiun pembanding dilakukan dengan mempertimbangkan kondisi seismisitas sekitar stasiun dan banyaknya data yang sudah terekam sehingga bisa diketahui karakteristiknya. Selain itu filter yang digunakan juga masih dibagi 3 rentang periode, yaitu 10 â?? 45 detik, 45-150 detik dan 150-600 detik sehingga kita dapat melihat pada rentang periode mana prekursor lebih mudah dikenali. Berdasarkan studi kasus ini, disimpulkan bahwa perbedaan rentang periode filter lebih berpengaruh pada fluktuasi trend polarisasi dibandingkan dengan pada waktu terjadinya prekursor."
620 DIR 5:1 (2010)
Artikel Jurnal  Universitas Indonesia Library
cover
"Dalam kegiatan perhitungan indeks K dikenal adanya 2 metode bergantung jenis/tipe magnetometernya yaitu metode komputerisasi untuk jenis/tipe magnetometer digital, contohnya di stasiun Biak dan metode handscale untuk jenis/tipe magnetometer manual, contohnya di stasiun Tangerang. Dalam makalah mi dilakukan studi perbandingan distribusi harga indeks K antara stasiun Biak dengan Tangerang menggunakan data sepanjang tahun 1993-1998. Dan analisis data diperoleh bahwa di stasiun Biak, distribusi indeks K untuk nilai K < 2 lebih dominan. Sebaliknya di stasiun Tangerang, distribusi indeks K untuk nilai K> 2 lebih dominan. Selain itu, amplitudo indeks K di stasiun Tangerang relatif lebih besar daripada di stasiun Biak. Dan hasil tersebut disimpulkan bahwa pola distribusi indeks K antara stasiun Biak dan Tangerang sedikit berbeda diduga karena adanya perbedaan metode dalam perhitungan indeks K."
620 DIR 2:2 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
"Matahari merupakan sumber utama perubahan lingkungan antariksa. Pancaran radiasi dan lontaran partikel energetik mempengaruhi orbit dan sistem instrumentasi satelit. Besarnya pengaruh ini tercermin dari aktivitas matahari (diindikasikan oleh fluks radiasi Fio,7) dan aktivitas geomagnet (diindikasikan oleh indeks Ap) yang menjadi parameter lingkungan antariksa. Namun pengaruh kedua parameter ini terhadap ketinggian satelit adalah tidak langsung dalam arti kedua parameter secara langsung mempengaruhi kerapatan atmosfer di sekitar satelit, menyebabkan terjadinya hambatan terhadap satelit dan ini berdampak pada penurunan ketinggian satelit. Dalam makalah ini dapat dilihat bahwa pada tingkat aktivitas matahari yang tinggi, pengaruh kedua parameter ini sangat dominan terhadap penurunan ketinggian satelit di orbit LEO. Sedangkan di orbit MEO, pengaruhnya relatif sangat kecil. ini dapat dilihat pada beberapa kasus satelit yang mengorbit di ketinggian LEO dan MEO seperti yang dilakukan dalam penelitian ini."
620 DIR 2:2 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
Dinda Luthfiyah
"Ramainya lalu lintas pelayaran di perairan Teluk Jakarta akibat keberadaan Pelabuhan Maura Angke dan Pelabuhan Muara Baru menyebabkan tingginya resiko kecelakaan laut di daerah tersebut. Salah satu kecelakaan laut yang mungkin terjadi adalah kebocoran pipa bawah laut akibat jangkar kapal. Kurangnya pengetahuan para pelaut akan posisi pipa tersebut merupakan penyebab umum dari kecelakaan laut tersebut. Selain itu, pipa bawah laut juga sering kali dibangun tanpa adanya kerja sama antar perusahaan pemilik dengan lembaga pemerintahan terkait sehingga letaknya tidak terpetakan dengan baik dalam Peta Laut Indonesia. Maka dari itu, diperlukan pemetaan jalur pipa bawah laut yang lebih lanjut menggunakan metode geofisika seperti metode magnetik. Metode ini dipilih karena selain dapat mengidentifikasi struktur geologi dasar laut juga dapat mendeteksi objek-objek seperti jaringan pipa, kabel optik, dan persenjataan yang terkubur di bawah laut. Data magnetik yang diolah dalam penelitian ini merupakan data sekunder dari Pusat Hidro-Oseanografi TNI AL (PUSHIDROSAL) yang diakuisisi pada tanggal 6 dan 7 September 2021 dengan instrumen Geometrics G-882 Marine Magnetometer pada 46 lintasan. Selain itu, digunakan pula data pendukung yaitu data batimetri dan Peta Laut Indonesia (PLI) no. 86A tahun 2018. Pengolahan data magnetik dilakukan dengan menerapkan koreksi IGRF, transformasi reduce to pole, dan analytic signal. Sedangkan, PLI diolah dengan melakukan digitasi peta kontur batimetri. Dilakukan pula pemodelan 2D dari data magnetik dengan melakukan pemotongan pada 4 titik di peta hasil analytic signal. Melalui hasil pengolahan dan pemodelan 2D, diketahui bahwa terdapat sebuah pipa bawah laut yang terletak serong dari arah Barat Laut hingga Tenggara dengan besar anomali magnetik 2 – 5,6 nT. Kedalaman pipa ini ditentukan dengan data kontur batimetri dan peraturan yang berlaku yaitu diasumsikan sebesar 9 – 11 meter. Di sekitar pipa juga terdapat anomali lain yang berasal dari kabel dan objek yang belum teridentifikasi. Analisis hasil pengolahan dengan peraturan pelayaran yang ada menghasilkan langkah mitigasi keselamatan pelayaran di sekitar pipa, antara lain, kegiatan pelayaran harus mengacu pada PLI serta dalam lego jangkar kapal lebih baik dilakukan di lokasi yang berjarak lebih dari 500 meter dari letak instalasi atau pipa laut.

The heavy shipping traffic in the waters of Jakarta Bay due to the presence of Maura Angke Port and Maura Baru Port causes a high risk of marine accidents in the area. One of the marine accidents that may occur is a leak of a submarine pipe due to a ship's anchor. The seafarers' lack of knowledge of the position of the pipeline is a common cause of these marine accidents. In addition to that, submarine pipelines are also often built without cooperation between the owner company and the relevant government institutions so that their location is not well mapped in the Indonesian Marine Map. Therefore, further mapping of submarine pipelines using geophysical methods such as magnetic methods is required. This method was chosen because apart from being able to identify the geological structure of the seabed, it can also detect objects such as pipelines, optical cables, and weapons buried under the sea. The magnetic data used in this study is secondary data from the Indonesian Navy's Hydro-Oceanography Center (PUSHIDROSAL), which was acquired on 6 and 7 September 2021 with the Geometrics G-882 Marine Magnetometer instrument on 46 tracks. In addition, supporting data such as bathymetry data and the Indonesian Marine Map (PLI) no. 86A 2018 are used. Magnetic data processing is carried out by applying IGRF correction, reduce to pole transformation, and analytic signal. Meanwhile, PLI is processed by digitizing bathymetric contour maps. 2D modeling of magnetic data was also carried out by cutting 4 points on the map resulting from the analytic signal. Through the results of processing and 2D modeling, it is known that an underwater pipe is located obliquely from the Northwest to the Southeast with a magnetic anomaly of 2 – 5.6 nT. The depth of this pipe is determined by bathymetric contour data, and the applicable regulations are assumed to be 9 – 11 meters. Around the pipe, there are other anomalies originating from cables and objects that have not been identified. The analysis of the processing results with existing shipping regulations results in mitigating steps for shipping safety around the pipeline; shipping activities must refer to PLI, and it is better to do ship anchorage at a location that is more than 500 meters from the installation or marine pipeline."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Naufal Al Anshori
"Pelabuhan Gresik memiliki infrastruktur yang semakin berkembang dengan pemanfaatan Kawasan Ekonomi Kreatif (KEK) di daerah ini membuat jalur transportasi laut sangat ramai. Salah satu infrastruktur yang ada yaitu utilitas bawah laut, dimana pipa bawah laut merupakan utilitas yang penting di pelabuhan, kegunaannya adalah untuk mengalirkan fluida seperti minyak, gas bahkan limbah. Karena padatnya aktivitas jalur pelayaran di Pelabuhan Gresik menyebabkan kerusakan pipa bawah laut, seperti kegiatan melabuhkan jangkar yang sembarangan. Minimnya informasi terkait keberadaan pipa mengakibatkan jangkar tersangkut pipa sehingga dapat menyebabkan kebocoran/kerusakan bahkan ledakan pada pipa tersebut. Maka dari itu pipa-pipa tersebut perlu dipetakan agar memberikan informasi keberadaan pipa bawah laut kepada pengguna jalur pelayaran laut menggunakan metode magnetik, karena pipa berbahan logam sensitif terhadap magnet. Untuk memperkuat analisis juga digunakan data pendukung yaitu citra side scan sonar untuk mengetahui posisi dan keadaan pipa pada perairan Gresik. Hasil pengolahan data magnetik menunjukkan kehadiran objek berupa jalur pipa dengan nilai anomali magnet tinggi berkisar pada 0.3 nT – 4.2 nT. Jalur pipa tersebut terbentang dari arah Utara sampai Selatan pada daerah penelitian. Analisis dengan data citra sonar dan PLI memberikan informasi berupa letak keberadaan pipa yang berada di atas permukaan bawah laut dengan kedalaman antara 12 - 14 meter dari permukaan laut. Keberadaan pipa tidak mempengaruhi tingkat keamanan lalu lintas pelayaran selama pelayar mematuhi peraturan yang berlaku yaitu Peraturan Pemerintah Nomor 6 tahun 2020 tentang Bangunan dan Instalasi di Laut pasal 27 ayat 3a.

Gresik Port has a growing infrastructure with the use of Kawasan Ekonomi Kreatif (KEK) in this area making sea transportation very busy. One of the existing infrastructures is underwater utilities, where subsea pipelines are an essential utility in ports. They drain fluids such as oil, gas, and even waste. The dense activity of shipping lanes at Gresik Port causes damage to underwater pipes, such as careless anchoring activities. The lack of information regarding the pipe's existence causes the anchor to get caught in the pipe so that it can cause leakage/damage and even an explosion in the pipe. Therefore, these pipes need to be mapped to provide information on the existence of subsea pipelines to sea shipping lane users using the magnetic method, because metal pipes are sensitive to magnetism. To strengthen the analysis, supporting data is also used, namely side scan sonar images to determine the position and condition of the pipe in Gresik waters. The results of magnetic data processing indicate the presence of objects in the form of pipelines with high magnetic anomaly values ranging from 0.3 nT - 4.2 nT. The pipeline stretches from North to South in the study area. Analysis with sonar and PLI image data provides information in the form of the location of the pipe which is above the subsea surface with a depth of 12 meters -14 meters above sea level. The existence of the pipeline does not affect the safety level of shipping traffic as long as the sailor complies with the applicable regulations, namely Government Regulation Number 6 of 2020 concerning Buildings and Installations at Sea Article 27 paragraph 3a."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dony Soelistiyono
"Peralatan produksi pada industri minyak dan gas saat ini sudah banyak yang beroperasi mendekati umur desainnya. Khususnya peralatan produksi berupa pipa penyalur bawah air, bahkan banyak yang sudah beroperasi melewati umur desain. Meskipun demikian pipa penyalur tersebut masih digunakan untuk mengalirkan cairan hidrokarbon dengan laju alir dan tekanan yang relatif tinggi. Hal ini guna mengimbangi semakin tingginya kegiatan sumuran yang dilakukan, baik pengeboran sumur baru, peningkatan produksi sumur yang ada dengan artificial lift (water injection atau gas lift) maupun pengaktifan kembali sumur mati atau idle. Untuk memastikan bahwa integritas pipa penyalur masih baik untuk mendukung kontinyuitas produksi minyak dan gas, maka kegiatan integritas yang mencakup inspeksi, perawatan dan perbaikan dilakukan secara berkala untuk menghindari kehilangan produksi tidak terjadwal. Inspeksi pipa penyalur bawah air yang dipakai menggunakan metoda Inline Inspection (ILI) karena pertimbangan efisiensi waktu dan biaya. Kajian integritas menghasilkan nilai failure pressure (PF) 176,6 bar dan safe operating pressure (PS) 127,2 bar. Nilai tersebut masih di atas MAOP pipa 29 bar sehingga pipa masih layak operasi saat ini. Mempertimbangkan laju korosi sebesar 0,797 mmpy maka kajian sisa umur layan pipa penyalur adalah 2,4 tahun dari inspeksi terakhir. Korelasi yang signifikan antara laju korosi maupun penipisan ketebalan dinding pipa terhadap waktu usia pipa ditunjukkan dengan nilai R=1. Model matematika untuk fungsi ketebalan dinding pipa (Ta) = -0.1588x2+3.6195x-16.669 dan fungsi laju korosi (CR) = 0.0137x2-0.3752x + 3.2674.

Production equipment in oil and gas industry mostly have already been operated close to its design life. Especially for subsea pipeline, many of those have already operated exceed its design life. Nevertheless, the subsea pipelines are still utilized to flow the hydrocarbon fluid with high flowrate and pressure. This is to accommodate and compensate the increasing of well activity, such as drilling new well, improvement of well performance through artificial lift (water or gas lift injection) or reactivation the idle well. As assurance that integrity of subsea pipelines is still fit for service to support continuity oil and gas production lifting, then inspection activity shall be done in frequent. Subsea pipeline inspection activity which commonly used due to its time and cost efficiency is inline inspection (ILI). Integrity assessment resulting the pipeline failure pressure (PF) 176,6 bar and safe operating pressure (PS) 127,2 bar. These values are much higher than pipeline MAOP 29 bar so that pipeline is fit for service. Considering corrosion rate value 0,797 mmpy, then remaining life assessment resulting the pipeline has remaining life for 2,4 year from last inspection. Significant correlation between corrosion rate and pipeline wall thickness by time is showed by value R=1. Mathematic model for pipeline wall thickness (Ta) = -0.1588x2 + 3.6195x-16.669 while corrosion rate (CR) = 0.0137x2-0.3752x + 3.2674."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Farizan Riadhi
"Manajemen integritas pipa penyalur dimulai dari bagaimana ancaman terhadap integritas pipa penyalur di-identifikasi dan dikelola dengan efektif. Penilaian resiko terhadap ancaman integritas pipa penyalur dilakukan terhadap aset pipa penyalur sebagai obyek yang di-analisa. Pendekatan pendataan informasi keselamatan proses (process safety information) aset pipa penyalur umumnya diperlakukan melekat sebagai satu kesatuan jalur utuh dari Launcher ke Receiver. Keberagaman mode ancaman dan mode kerusakan menjadi dasar melakukan segmentasi pipa penyalur tersebut agar penilaian resiko lebih akurat. Dengan kemajuan teknologi inspeksi saat ini, inspeksi In-Line-Inspection menjadi semakin akurat dan terjangkau. Inspeksi baseline atau re-inspeksi In-Line-Inspection berpotensi menjadi basis pendataan aset (Asset Register) karena mampu mendeteksi komponen-komponen perpipaan pada pipeline secara akurat. Dengan adanya pendataan informasi keselamatan proses secara detail pada setiap komponen perpipaan, segmentasi yang dilakukan saat penilaian resiko dapat menjadi lebih detail sampai ke level komponen. Tesis ini membahas bagaimana memanfaatkan potensi penilaian resiko yang lebih detail hingga ke level komponen dengan memanfaatkan asset register yang detail yang diperoleh dari pemanfaatan data in-line inspection. Kelemahan dari metode segmentasi detail adalah banyaknya data dan juga usaha yang diperlukan dalam melakukan penilaian resiko. Namun dari berkembangnya teknologi informasi saat ini, populasi data yang besar (big data) dapat dikelola dengan bantuan teknologi informasi yang relevan.

Pipeline integrity management is initiated from how hazards/threats toward pipeline integrity are to be identified and managed effectively. Risk assessment conducted to pipeline integrity hazards/threats is subjected to how the pipeline as object is perceived to be analyzed. The approach of documenting process safety information on pipeline generally developed and regarded as a whole pipeline assets consist from launcher to receiver. The diverse of threats and damage mechanism along the line is the basis of pipeline segmentation in order to specify risk assessment object thus increase its accuracy. In the development of inspection technology, in-line-inspections are become more sensitive and become more affordable. Whether baseline or re-inspection of in-lineinspection could have potential to be utilized in developing asset register, because it can distinguish pipeline components accurately. By embedding process safety information specific for each pipeline components, the segmentation taken during pipeline risk assessment can be detailed to the component level. The focus of this study is analyzing pros and cons of utilization the advantages of detailed pipeline risk assessment to component level by utilizing detailed asset register which obtained from in-lineinspection data. The weakness of detailed segmentation is the abundant of segment to be analyzed and increase the efforts during risk assessment. However, in the development of information technology, big data can be manageable by utilizing relevant information technology."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizky Zulkarnaen
"Pipa sebagai sistem penyaluran atau distribusi menjadi kebutuhan utama di industri minyak dan gas bumi saat ini. Namun penggunaan jalur pipa ini tersimpan bahaya sehingga menjadi salah satu sumber bahaya utama instalasi minyak dan gas bumi di dunia. Penilaian risiko fasiltas operasi di industri minyak dan gas bumi mutlak diperlukan untuk melihat tingkat kegagalan dan kehandalan sistem operasi fasilitas tersebut. Fasilitas CGP SKW PTJM akan dilakukan perubahan fasilitas, salah satunya adalah pipa penyalur LPG existing 8 inchi sepanjang 110 km yang akan menjadi pipa penyalur pipa kondensat dari CGP SKW ke ORF J. Keadaan tersebut menyebabkan diperlukannya penilaian risiko kembali fasilitas pipa existing 8 inchi sepanjang 110 km.
Penelitian ini dilakukan untuk mendapatkan gambaran risiko relatif keberadaan jalur pipa kondensat ukuran 8 inchi dari CGP SKW ke ORF J sepanjang 110 km. Penelitian dilakukan dengan menggunakan metode semi kuantitatif model W. Kent Muhlbauer tahun 2004. Pembagian seksi pipa dilakukan berdasarkan kepemilikan lahan, tipe penggunaan lahan, kedalaman pipa, buoyancy control, teknik konstruksi, tipe proteksi katodik dan tipe vegetasi sehingga menghasilkan 12 seksi jaringan pipa.
Dari hasil penelitian diperoleh indek risiko yang paling rendah adalah indek indek kesalahan pihak ketiga dengan nilai (69,50), setelah itu indek desain dengan nilai (70,50), urutan berikutnya adalah indeks korosi dengan nilai sebesar (71,33), dan indeks yang tertinggi adalah indek kesalahan operasi dengan nilai sebesar 85. Faktor dampak kebocoran tertinggi terdapat pada seksi 1, 9, 11 dan 12 dengan nilai 5,25. Faktor dampak kebocoran terendah terdapat pada seksi 2,4,6,7 dan 10 dengan nilai 1,75.
Seksi pipa yang paling berisiko untuk mengalami kegagalan paling tinggi adalah seksi 1, 11 dan 12 dengan nilai 56,95. Sedangkan seksi pipa yang paling tidak berisiko untuk mengalami kegagalan adalah seksi 6 dengan nilai 174,29. PTJM berdasarkan standar AS/ANZ 4360 harus melakukan pengelolaan risiko dengan prioritas puncak pada seksi pipa 1,3,5,8,9, 11 dan 12. Variabel risiko yang dapat dilakukan peningkatan oleh PTJM antara lain indek kerusakan pihak ketiga (line locating, public education, ROW condition dan patrol frequency), indeks korosi (proteksi internal, tes timbal, close interval survey condition dan internal inspection), indeks desain (corrective action) dan indeks kesalahan operasi (safety system, SCADA, training dan mechanical error preventer).

Pipeline as transmission and distribution system becoming major demands for oil and gas industry today. However these pipeline applying contain hazard that become the one of the major instalation hazard source in world of oil and gas installation. Operating facilitiy risk assessment is essential for oil and gas industry operation to overview facility operation system failure and reliability level. In the other hand, CGP SKW PTJM will change their facility structure, one of the changes is 8 inch LPG existing pipeline along 110 km that will becoming condensate pipeline from CGP SKW to ORF J. These condition to cause the need to reassess of 8 inch existing pipeline risk along 110 km.
This study was conducted to have risk relative overview of 8 inch condensate pipeliene from CGP SKW to ORF J along 110 km. The study use 2004 W. Kent Muhlbauer semi quantitative method. Pipe sectioning of this study was conducted based on land ownership, land use, pipe depth, buoyancy control, construction type, cathodic protection type and vegetation tipe that resulted 12 section of pipeline.
From these study generate risk relative score, the lowest risk relative score is coming from third party index with score of 69.53, then the second one is design index with score of 70.50, the third one is corrosion index with score of 71.33, and the highest one is incorrect operatios index with score of 85. The highest score for leak impact factors is coming from section 1, 9, 11 and 12 with score of 5.25. The lowest leak impact factors is coming from section 2,4,6,7 and 10 with score of 1.75.
Pipe section that have the highest risk for chance of failure is section 1,11 and 12 with score of 56,95. While the lowest one is section 6 with score of 169,71. According to AS/ANZ 4360 standard, PTJM have to conduct pipeline risk management with top priority on section 1,3,5,8,9, 11 and 12. Risk variables that can be improved by PTJM are third party index (line locating, public education, ROW condition and patrol frequency), corrosion index (internal protection, lead test, close interval survey condition and internal inspection), design index (corrective action) and incorrect operations index (safety system, SCADA, training and mechanical error preventer).
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2014
T43355
UI - Tesis Membership  Universitas Indonesia Library
cover
"Interplanetary structures are important for the development of geomagnetic disturbance. The structures include intense north-southward Interplanetary Magnetic Field, the shock, solar wind density and velocity, and probably the magnetic cloud. We studied five events of magnetic clouds which occurred in the minimum phase of solar activity in order to understand solar wind-magnetosphere coupling. The correlations between storm intensity and the different solar wind parameters will also be presented as well. By analyzing five magnetic clouds occurred in 2006 and the associated geomagnetic enhancement, we found that not all magnetic clouds lead to geomagnetic disturbances. "
600 JADIR 8:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>