Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130905 dokumen yang sesuai dengan query
cover
Muhammad Naufal Hisyam
"Turbiditas adalah salah satu ukuran yang sering digunakan untuk menilai kualitas air. Pengukuran turbiditas dapat dijadikan estimasi untuk mengetahui parameter fisis lain seperti zat padat tersuspensi total (TSS) atau parameter biologis seperti konsentrasi mikroorganisme. Beberapa penelitian telah mencoba menerapkan metode computer vision untuk memprediksi nilai turbiditas dari citra sebuah sampel air. Kebanyakan penelitian yang dilakukan masih menggunakan ekstraksi fitur secara manual sehingga diperlukan pengetahuan yang mencukupi terkait pengolahan citra dan pengukuran turbiditas. Pada penelitian ini dibuat sistem instrumentasi prediksi nilai turbiditas air berbasis pengolahan citra ponsel dengan ekstraksi fitur dan regresi oleh model deep convolutional neural network (DCNN). Penggunaan DCNN memungkinkan dilakukannya untuk melakukan ekstraksi fitur secara otomatis. Arsitektur DCNN yang digunakan yaitu ResNet-50 dan DenseNet-121. Efektivitas penerapan transfer learning berupa weight initialization pada DCNN juga ditinjau dalam kasus ini. Sampel yang digunakan pada penelitian ini berupa suspensi formazin dengan berbagai nilai turbiditas untuk pelatihan model dan beberapa sampel air untuk validasi model. Sampel disinari oleh LED di dalam kotak akuisisi yang dibuat untuk menampakkan fitur. Citra dari sampel diakuisisi menggunakan ponsel Samsung S20 FE dari dua sudut berbeda yaitu 0° (turbidimetry) dan 90° (nephelometry) terhadap sampel. Hasil terbaik pada penelitian ini diperoleh oleh Model ResNet-50 dengan transfer learning yang memperoleh MAE sebesar 2.44 untuk sampel formazin dan 7.31 untuk sampel air dengan citra turbidimetry. Hasil penelitian menunjukkan potensi menjanjikan penggunaan DCNN pada kasus regresi nilai turbiditas air untuk dikembangkan lebih lanjut.

Turbidity is a measure that is often used to assess water quality. Turbidity measurements can be used as estimates to determine other physical parameters such as total suspended solids (TSS) or biological parameters such as the concentration of microorganisms. Several studies have tried to apply computer vision methods to predict the turbidity value from images of water samples. Most of the research conducted still uses manual feature extraction, hence sufficient knowledge regarding image processing and turbidity measurements is needed. In this study, an instrumentation system for predicting water turbidity values based on mobile phone images is made. The feature extraction and regression process are done using a deep convolutional neural network (DCNN) model. The use of DCNN allows it to perform feature extraction automatically. The DCNN architecture used is ResNet-50 and DenseNet-121. The effectiveness of implementing transfer learning in the form of weight initialization on DCNN is also reviewed in this study. The samples used in this study were formazine suspensions with various turbidity values for model training and several water samples for model validation. The sample is illuminated by an LED inside an acquisition box to reveal its features. The images of the samples were acquired using a Samsung S20 FE mobile phone from two different angles, namely 0° (turbidimetry) and 90° (nephelometry) to the sample. The best results in this study were obtained by the ResNet-50 model with transfer learning applied which obtained MAE values of 2.44 for formazine samples and 7.31 for water samples using turbidimetry images. The results show the promising potential for further development of DCNN usage in the case of water turbidity values regression."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifia Fithritama
"Dalam beberapa tahun ini, telah banyak penelitian yang berhubungan dengan pengenalan pola dilakukan dengan menggunakan jaringan syaraf tiruan (artificial neural network). Skripsi ini membahas tentang sistem pengenal pola berbasis neural network ensemble (NNE), yang merupakan kumpulan dari beberapa neural network tunggal. Penelitian ini membandingkan antara NNE yang dilatih dengan fungsi eror kuadratis dan cross-entropy. Terdapat 12 dataset pola yang digunakan pada penelitian ini yaitu 9 dataset pola yang didapatkan dari ?UCI Repository of Machine Learning Database?, 2 dataset citra wajah dari kamera infra merah dan kamera cahaya tampak, dan 1 dataset campuran aroma. Prosedur kerja system terdiri dari tahap pra-pemrosesan, pelatihan, dan pengujian. Pada tahap pelatihan, diterapkan algoritma Negative Correlated Learning (NCL) yang merupakan pengembangan dari algoritma standar backpropagation. Hasil pengujian yang ditinjau dari recognition rate menunjukkan NNE yang dilatih dengan fungsi eror cross-entropy memberikan performa yang lebih baik dibandingkan dengan NNE yang dilatih dengan fungsi eror kuadratis.

In recent years, many people have been working on pattern recognition using artificial neural network. This bachelor thesis discuss about pattern recognition system based on neural network ensemble (NNE), which is a group of some individual neural networks. This research compares between NNE which is trained using mean-of-square and cross-entropy error function. There are 12 datasets used in this experiment, which are 9 pattern datasets obtained from ?UCI Repository of Machine Learning Database? and 2 dataset of frontal face images from infra red and visible-light camera, and 1 dataset of odor mixtures. The working procedures of the system consist of pre-processing, training and testing stages. In the training stage, Negative Correlated Learning (NCL) algorithm, a developed standard back propagation method, is applied and some parameters are varied to obtain the optimum performance. The testing result which is measured from recognition rate shows that NNE which is trained using cross-entropy error function has a better performance than the one with mean-of-square error function."
2011
S170
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizki Laksmana Pratama
"Turbiditas merupakan salah satu indikator yang dapat digunakan untuk menilai kualitas air. Turbiditas dapat diukur menggunakan instrumen konvensional seperti turbidimeter, spektrofotometer, dan nefelometri visual. Namun, semua instrumen tersebut memiliki kekurangannya masing-masing, seperti biaya yang relatif tinggi dan kurang efisien. Pada penelitian ini diusulkan metode pengukuran yang lebih terjangkau dan efisien dengan memanfaatkan kamera ponsel, serta model regresi support vector regression dan EfficientNet-B0 berbasis convolutional neural network sebagai instrumen pengukuran. Akuisisi citra dilakukan di dua lingkungan. Lingkungan 1 didefinisikan sebagai lingkungan dengan cahaya langsung yang menyinari sampel, mengikuti prinsip turbidimetri, sedangkan lingkungan 2 didefinisikan sebagai lingkungan dengan pencahayaan yang bergantung hanya kepada cahaya sekitar dengan intensitas cahaya yang tak tentu. Citra yang telah diakuisisi oleh ponsel melalui berbagai proses prapengolahan data seperti segmentasi, augmentasi, penerapan filter Gaussian, dan ekstraksi fitur saturasi dan tekstur sebelum diteruskan ke model regresi. Dari hasil evaluasi didapatkan kesimpulan bahwa model EfficientNet-B0 lebih unggul dibandingkan dengan support vector regresssion dengan fitur saturasi, tekstur maupun gabungan. Model EfficientNet-B0 mendapatkan nilai R2 sebesar 0.992, MAE sebesar 2.474 dan MSE sebesar 10.669 untuk citra lingkungan 1, dan nilai R2 sebesar 0.97, MAE sebesar 3.333 dan MSE sebesar 29.137 untuk citra lingkungan 2.

Turbidity is an indicator that can be used to assess water quality. Turbidity can be measured using conventional instruments such as turbidimeter, spectrophotometer, and visual nephelometry. However, all of these instruments have their respective drawbacks, such as relatively high costs and inefficient. In this study, a more affordable and efficient measurement method is proposed by utilizing a cellphone camera, as well as a support vector regression and EfficientNet-B0 model based on convolutional neural network as a measurement instrument. Image acquisition will be carried out in two environments. Environment 1 is defined as an environment with direct light shining on the sample, following the principle of turbidimetry, while environment 2 is defined as an environment in which the illumination depends on the ambient light with an indeterminate light intensity. The image that has been acquired by the cellphone will go through various data preprocessing processes such as segmentation, augmentation, application of Gaussian filters, and extraction of saturation and texture features before being forwarded to the regression model. From the evaluation results, it can be concluded that the EfficientNet-B0 model is superior to the support vector regression with saturation, texture, or combined features. The EfficientNet-B0 model gets an R2 value of 0.992, an MAE of 2.474 and an MSE of 10,669 for environment 1 image, and an R2 value of 0.97, an MAE of 3.333 and an MSE of 29,137 for environment 2 image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Durrabida Zahras
"Untuk memenuhi tantangan dalam hal meningkatnya jenis penyakit di era modern ini, teknologi memainkan peran yang sangat penting dalam penelitian kesehatan. Kesehatan wanita telah menjadi perhatian utama karena meningkatnya angka kanker serviks yang  dapat menjadi penyakit mematikan. Dalam studi ini, kami akan menggunakan Deep Convolutional Neural Network untuk menemukan akurasi dalam mengklasifikasikan data kanker serviks pada empat jenis metode. Data kanker serviks diwakili oleh 32 faktor risiko dan empat variabel target: Hinselmann, Schiller, Cytology, dan Biopsy. Presentase akurasi metode Deep Convolutional Neural Network cukup baik jika dibandingkan dengan Neural Network dalam hal pengklasifikasian data faktor risiko kanker serviks, kita dapat melihat bahwa setiap data diklasifikasikan dengan benar dengan total akurasi mencapai hampir 90% untuk setiap target.

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Womens health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep Convolutional Neural Networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging compare to the original neural network in classyfying cervical risk dataset, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dian Maharani
"Jika biaya kerugian yang disebabkan peristiwa kebakaran dapat diprediksi dengan big-structured data mengenai faktor-faktor penyebab kebakaran yang sudah ada maka penentuan polis asuransi kebakaran di perusahaan asuransi menjadi lebih efektif dan efisien. Pada tesis ini, model Deep Neural Network (DNN) digunakan untuk memprediksi biaya kerugian akibat kebakaran untuk polis asuransi, kemudian membandingkan akurasi model DNN dan NN. Dari hasil penelitian didapatkan bahwa akurasi (MSE) model DNN optimal sebesar 0,04217331959 ±0,63924424e-15, sedangkan akurasi (MSE) model NN yang optimal sebesar 0,04217335183±  0,64079999e-15. Hal tersebut menunjukan bahwa model DNN sebanding dengan model NN dalam memprediksi biaya kerugian pada asuransi kebakaran dengan data yang digunakan merupakan big-structured data. Selain itu, running time program untuk model NN lebih cepat dibandingkan dengan model DNN.

If the loss costs caused by fire events can be predicted with big structured data regarding the factors that cause the fires that already exist, determining fire insurance policies in the insurance companies can be more effective and efficient. In this study, the Deep Neural Network (DNN) model is used to predict the loss cost due to fire for insurance policies, then compare the accuracy of the DNN and NN models. The results showed that the accuracy (MSE) of the optimal DNN model was 0.04217331959 ± 0.63924424e-15. While the optimal NN model was 0.04217335183 ± 0.64079999e-15. This shows that the DNN model is comparable with the NN model in predicting the loss cost in fire insurance with the data used being big structured data. In addition, the running time of the program for the NN model is faster than the DNN model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53940
UI - Tesis Membership  Universitas Indonesia Library
cover
Eka Qadri Nuranti B.
"Pertumbuhan dokumen putusan pengadilan sangat pesat, setiap bulannya bertambah hingga kurang lebih sebanyak 100.000 dokumen dan 94% diantaranya merupakan putusan pengadilan tingkat pertama. Meskipun sistem hukum Indonesia menganut sistem civil law yang mengutamakan perundang-undangan sebagai sumber hukum, namun salah satu sumber pertimbangan hukum dapat bersumber dari putusan hakim terdahulu (yurisprudensi). Oleh karena pertumbuhan dan kebermanfaatan yurisprudensi dalam memutuskan suatu perkara, sangat sulit menemukan informasi atau memanfaatkan dokumen yang bersesuaian dengan kasus yang dihadapi. Penelitian ini melakukan suatu prediksi masa hukuman putusan pengadilan tingkat pertama dengan memanfaatkan yurisprudensi menggunakan Multi-Level Learning CNN+Attention. Hasil dari eksperimen ini mendapatkan kombinasi fitur terbaik yang diperoleh dari dokumen yaitu dengan menggunakan fitur informasi dari riwayat_tuntutan, fakta, fakta_hukum, dan pertimbangan_hukum. Prediksi dilakukan dengan cara category prediction dan regresion prediction. Pada category prediction membuktikan bahwa model Multi- Level CNN+Attention mendapatkan akurasi yang lebih baik dibandingkan model deep learning lainnya yaitu sebesar 77.32%. Untuk regresion prediction menunjukkan bahwa label amar putusan representasi tahun menghasilkan R2-Score lebih baik dibanding representasi hari dan bulan dengan peningkatan sebesar 28.51% dan 25.62%.

The growth of court decision documents has been extremely rapid, each month increasing to approximately 100,000 cases, and 94% of them are court decisions of the first-level case. Although the Indonesian legal system adheres to a civil law system that prioritizes legislation as a source of law, one source of legal considerations can come from previous judges' decisions (jurisprudence). Because of jurisprudence's growth and usefulness in deciding a case, it is complicated to find information or use documents relevant to the topic at hand. This study conducted a prediction of first-level judicial decisions by utilizing jurisprudence using Multi- Level Learning CNN+Attention. This experiment's results get the best combination of features obtained from the document, namely by using the features of prosecution history, facts, legal facts, and legal considerations. Prediction is made through category prediction and regression prediction. The category prediction proves that the Multi-Level CNN+Attention model gets better accuracy than other deep learning models, which is 77.32%. The regression prediction shows the label of year representation decision results in a better R2-Score than the representation of days and months with an increase of 28.51% and 25.62%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Haris Hamzah
"Diabetes mellitus tipe-2 (T2DM) merupakan penyakit metabolisme kronis yang sering diderita oleh orang dewasa. T2DM ditandai dengan menurunnya insulin dalam tubuh. Enzim dipeptidil peptidase-4 (DPP-4) dapat mengkatalisasi penurunan hormon peptida inkretin, terutama peptide-1 seperti hormon gastric inhibitory peptide (GIP) dan glucagon-like peptide-1 (GLP-1), yang mengakibatkan penurunan sintesis insulin. Inhibitor DPP-4 adalah target obat yang menjanjikan untuk T2DM, karena dapat memblokir kerja enzim DPP-4 dengan menghambat kerja hormon GLP-1 dan GIP. Penelitian ini menggunakan data inhibitor DPP-4 yang akan diekstraksi ciri menggunakan metode Extended-Connectivity Fingerprint (ECFP) dan Functional-Class Fingerprints (FCFP). Hasil ekstraksi ciri tersebut digunakan sebagai vektor masukan untuk metode deep neural network (DNN) untuk memprediksi inhibitor DPP-4 ke dalam senyawa aktif dan tidak aktif. Selain itu, metode CatBoost diusulkan sebagai metode pemilihan fitur terhadap hasil ekstraksi ciri metode ECFP dan FCFP. Dalam penelitian ini akan membandingkan performa metode DNN dengan menggunakan pemilihan fitur metode CatBoost dan tanpa menggunakan pemilihan fitur metode CatBoost. Hasil dari penelitian ini menunjukkan bahwa metode DNN menggunakan ekstraksi ciri ECFP_6 dengan proporsi pemilihan fitur sebesar 90% memiliki nilai sensitivitas, spesifisitas, akurasi, dan MCC berturut-turut adalah 0.927,0.881,0.906, dan 0.810.

Diabetes mellitus type-2 (T2DM) is a chronic metabolic disease that often affects adults. T2DM is characterized by a decrease of insulin in the body. The dipeptidyl peptidase-4 (DPP-4) enzyme can catalyze a decrease of incretin peptide hormones, especially peptide-1, such as gastric inhibitory peptide (GIP) hormone and glucagon-like peptide-1 (GLP-1), which results in decreased insulin synthesis. DPP-4 inhibitors are a promising drug target for T2DM because they block the action of the DPP-4 enzyme by inhibiting the activity of the GLP-1 and GIP hormones. This study uses DPP-4 inhibitor data, which will be feature extracted using the Extended-Connectivity Fingerprint (ECFP) and Functional-Class Fingerprints (FCFP) methods. The results of feature extraction are used as input vectors of the deep neural network (DNN) method to predict DPP-4 inhibitors into active and inactive compounds. In addition, the CatBoost method is proposed as a feature selection method for the feature extraction results of the ECFP and FCFP methods. In this study, we will compare the performance of the DNN method using the feature selection of the CatBoost method and without using the feature selection of the CatBoost method. The results of this study indicate that the DNN method using feature extraction ECFP_6 with 90% of the feature selection having sensitivity, specificity, accuracy, and MCC values, respectively, 0.927, 0.881, 0.906, and 0.810."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwiky Nugraha
"Bertumbuhnya perkembangan transportasi udara, ekonomi dan fasilitas di daerah mengakibatkan kenaikan pada pemakaian avtur di Indonesia. Peningkatan permintaan avtur ini harus disesuaikan dengan perkembangan fasilitas dan pasokan avtur pada bandara di daerah seperti bandara Raja Hasi Fisabilillah di Tanjungpinang. Tetapi penyedia avtur belum mempunyai data awal untuk membuat kebijakan dan perencanaan. Untuk itu, dibutuhkanlah data awal berupa peramalan permintaan avtur. Terdapat banyak metode untuk melakukan peramalan, namum belum diketahui metode yang mampu memberikan hasil terbaik. Untuk itu dilakukan peramalan yang menggunakan metode peramalan ARIMA dan ANN pada penelitian ini.
Metode ARIMA baik dalam mengestimasi data time series yang bersifat linear, serta metode ANN baik dalam mendeteksi pola non linear. Serta digunakan metode hybrid yang menggabungkan metode ARIMA dengan ANN yang diharapkan memberikan hasil yang baik. Dari penelitian yang dilakukan, hasil peramalan dibandingkan dengan metode tradisional dan SARIMA, dan didapatkan bahwa metode hybrid memberikan hasil yang terbaik dibandingkan dengan error MAPE sebesar 13.75 . Dengan jumlah permintaan pada periode selanjutnya sebesar 101.94 kl, 104.48 kl, 105.46 kl, 114.04 kl, 106.05 kl, 114.03 kl, 114.63 kl, 116.15 kl, 101.44 kl, 97.86 kl.

The growing of air transport, the economy and the facilities in the local area resulted in an increase in aviation fuel consumption in Indonesia. The increase of jet fuel demand is must be accompanied by the development of facilities and the supply of aviation fuel at airports in local areas such as Raja Haji Fisabilillah airports in Tanjungpinang. But aviation fuel providers not already have preliminary data for planning and policy making. Thus, required the initial data like forecasting demand for aviation fuel. There are many methods for forecasting, yet we don rsquo t know which method are capable of providing the best results. For that reason, we try to using ARIMA and ANN forecasting method.
ARIMA is one of the method which is good in estimating the linear data of time series, and ANN methods is good at detecting non linear pattern. And we used a hybrid method that combines ARIMA with ANN which expected to provide good results. This research shown the results of forecasting compared to traditional and SARIMA method, and found that the hybrid method gives the best result, with MAPE error is 13.75 . And the total demand in the next period is 101.94 kl, 104.48 kl, 105.46 kl, 114.04 kl, 106.05 kl, 114.03 kl, 114.63 kl, 116.15 kl, 101.44 kl, and 97.86 kl.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66594
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>