Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 211130 dokumen yang sesuai dengan query
cover
Farhan Muzanni
"Green diesel adalah bahan bakar diesel alternatif yang dibuat dari hydrotreating trigliserida yang memiliki alkana rantai lurus C15-C18. Penelitian ini difokuskan pada studi kinetika reaktor trickle-bed untuk memproduksi green diesel melalui reaksi hydrotreating trigliserida, yang diwakili oleh triolein, dengan katalis NiMo/Al2O3. Model yang dibuat adalah model reaktor trickle-bed 2D axisymmetric dengan mempertimbangkan perpindahan massa di fasa gas, cair, dan padatan katalis. Model disimulasikan dengan COMSOL Multiphysics 5.4 dengan menyesuaikan hasil simulasi dengan data eksperimen. Reaktor yang dimodelkan berisi katalis berbentuk bola dengan ukuran 1 mm. Reaktor akan memiliki ukuran diameter 2,01 cm dan panjang 24 cm. Kondisi operasi reaktor akan memiliki suhu umpan 290-330 oC, tekanan 10 dan 15 bar. Nilai faktor pra-eksponensial untuk reaksi hydrotreating trigliserida, reaksi maju isomerisasi C18 (k10), reaksi mundur isomerisasi C18 (k11), reaksi cracking C17 (k12), dan reaksi cracking C18 (k13) berturut-turut adalah 2,9 x 10-37 1/detik, 3,45 x 1028 1/detik, 6,67 x 10-3 1/detik, dan 1,24 x 10-52 1/detik. Energi aktivasi yang didapatkan untuk k10, k11, k12, dan k13 berturut-turut adalah –340,3 kJ/mol, 340,3 kJ/mol, 17,1 kJ/mol, dan –515,3 kJ/mol. Hasil simulasi dan hasil laboratorium mendekati garis linier pada grafik paritas, menunjukkan bahwa hasil simulasi sudah sesuai dengan hasil laboratorium.

Green diesel is an alternative diesel fuel made from hydrotreating triglycerides having straight chain alkanes C15-C18. This research is focused on the study of trickle-bed reactor kinetics to produce green diesel by hydrotreating triglycerides, represented by triolein, with NiMo/Al2O3 as catalyst. The model made is a 2D axisymmetric trickle-bed reactor model by considering mass transfer in the gas, liquid, and solid catalyst phases. The model was simulated with COMSOL Multiphysics 5.4 by adjusting the simulation results with experimental data. The modeled reactor contains a spherical catalyst with a size of 1 mm. The reactor will have a diameter of 2.01 cm and a length of 24 cm. The reactor operating conditions will have a feed temperature of 290-330 oC, pressures of 10 and 15 bar. The pre-exponential factor values for triglyceride hydrotreating reaction, forward C18 isomerization reaction (k10), C18 reverse isomerization reaction (k11), C17 cracking reaction (k12), and C18 cracking reaction (k13) were 2.9 x 10-37 1/sec, 3.45 x 1028 1/sec, 6.67 x 10-3 1/sec, and 1.24 x 10-52 1/sec , respectively. The activation energies obtained for k10, k11, k12, and k13 are –340.3 kJ/mol, 340.3 kJ/mol, 17.1 kJ/mol, and –515.3 kJ/mol, respectively. The simulation results and laboratory results are close to the linear line on the parity graph, indicating that the simulation results are in accordance with the laboratory results."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vincent Farrel Wilia
"Green diesel atau bahan bakar diesel terbarukan adalah bahan bakar diesel alternatif yang dibuat dari hidrodeoksigenasi minyak nabati dan memiliki struktur kimia yang sangat mirip dengan bahan bakar diesel konvensional, yaitu alkana rantai lurus C15-C18. Penelitian ini difokuskan pada studi kinetika reaksi trickle-bed reactor untuk memproduksi green diesel melalui reaksi hidrodeoksigenasi minyak nabati non-pangan, yang diwakilkan dengan triolein, dengan katalis NiMo/Al2O3. Model yang dibuat adalah model trickle-bed reactor 2D axisymmetric berbentuk silinder  tegak dengan diameter 2,01 cm dan tinggi 24 cm dengan mempertimbangkan perpindahan massa di fasa gas, cair, dan padatan katalis. Reaktor yang dimodelkan berisi katalis berbentuk bola dengan diameter 0.85-1 mm, dengan kondisi operasi: tekanan 5 bar dan suhu umpan 285-325 °C. Triolein dengan  laju alir 0.15 mL/min di dalam pelarut dodekana diumpankan ke dalam reaktor sebagai fasa cair, dan hidrogen dengan laju alir hidrogen 1 SLPM. Mekanisme reaksi dari hydrotreating trigliserida menjadi green diesel pada kondisi tekanan 5 bar terdiri dari reaksi hidrogenasi trigliserida (r1), reaksi hidrogenasi digliserida (r2), reaksi hidrogenasi monogliserida (r3), reaksi reduksi free fatty acid r), reaksi hidrodeoksigenasi fatty alcohol r5), reaksi dekarboksilasi free fatty acid r6), reaksi dekarbonilasi free fatty acid r7), dan reaksi esterifikasi fatty alcohol r8). Energi aktivasi untuk k1, k2, k3, k4, k5, k6, k7, k8, dan k9 secara berturut-turut adalah 141,4; -1,5; 39,9; 139,9; 305,5; 15,2; -15,9; -231; dan -213 kJ/mol. Nilai faktor pra-eksponensial untuk k1, k2, k3, k4, k5, k6, k7, k8, dan k9 berturut-turut adalah 4,99.1012 m3/mol.detik; 1,99 m3/mol.detik; 3,4.103mm3/mol.detik; 8,08.1012 6/mol2.detik; 1,21.1026m3/mol.detik; 1,08.10-3 1/detik; 2,65.10-18 m3/mol.detik; 9,04.10-25 m3/mol.detik; dan 1,38.10-21 m3/mol.detik. Berdasarkan grafik paritas dan analisis AARD, parameter kinetika yang didapatkan untuk hydrotreating trigliserida menjadi green diesel sudah valid dengan nilai AARD untuk tekanan 5 bar adalah 12,10%.

Green diesel or renewable diesel fuel is an alternative diesel fuel made from hydrodeoxygenation of vegetable oils and has a chemical structure that is very similar to conventional diesel fuel, namely straight chain alkanes C15-C18. This research is focused on the study of trickle-bed reactor reaction kinetics to produce green diesel through the hydrodeoxygenation reaction of non-food vegetable oil, represented by triolein, with NiMo/Al2O3 as catalyst. The model made is a 2D axisymmetric trickle-bed reactor in the form of an upright cylinder with a diameter of 2.01 cm and a height of 24 cm by considering mass transfer in the gas, liquid, and solid catalyst phases. The modeled reactor contains a spherical catalyst with a diameter of 0.85-1 mm, with operating conditions: pressure 5 bar and a feed temperature of 285-325 °C. Triolein with a flow rate of 0.15 mL/min in dodecane solvent was fed into the reactor as a liquid phase, and hydrogen with a hydrogen flow rate of 1 SLPM. The reaction mechanism of hydrotreating triglycerides into green diesel at a pressure of 5 bar consists of a triglyceride hydrogenation reaction (r1), a diglyceride hydrogenation reaction (r2), a monoglyceride hydrogenation reaction (r3), a free fatty acid reduction reaction (r4), a fatty alcohol hydrodeoxygenation reaction (r5), free fatty acid decarboxylation reaction (r6), free fatty acid decarbonylation reaction (r7), and fatty alcohol esterification reaction (r8). The activation energies for k1, k2, k3, k4, k5,k6, k7, k8, and k9 are 141.4; -1.5; 39.9; 139.9; 305.5; 15.2; -15.9; -231; and -213 kJ/mol. The pre-exponential factor values for k1, k1, k2, k3, k4, k5,k6, k7, k8, and k9 are respectively; 4.99 x 1012 m3/mol.sec, 1.99 m3/mol.sec; 3.4 x 103 m3/mol.second; 8.08 x 1012 m6/mol2.sec; 1.21 x 1026 m3/mol.second; 1.08 x 10-3 1/second; 2.65 x 10-18 m3/mol.sec; 9.04 x 10-25 m3/mol.sec; and 1,38 x 10-21 m3/mol.second. Based on the parity chart and AARD analysis, the kinetic parameters obtained for hydrotreating triglycerides into green diesel are valid with the AARD value for 5 bar pressure being 12.10%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didier Nsabimana
"ABSTRAK
Biodiesel atau Fatty Acid Methyl Ester (FAME) mendapatkan terlalu banyak perhatian
karena penurunan cadangan minyak di seluruh dunia dan masalah perubahan iklim.
Meskipun biodiesel memiliki banyak manfaat dibandingkan minyak diesel, biodiesel
masih memiliki masalah stabilitas oksidasi dan sifat aliran dingin yang membatasi
penerapannya. Jadi, untuk mengurangi masalah ini, kita perlu memutakhirkan FAME
kita dengan menghidrogenasi sebagiannya. Dalam penelitian ini biodiesel dengan
komposisi 95,3% metil linoleat (C18:2) dan 4,7% metil oleat (C18:1) dicampur dengan
pelarut n-heptana dengan perbandingan 20% sampai 80% dan dihidrogenasi sebagian
dalam reaktor trickle bed menggunakan Ni/Al2O3 sebagai katalis. Penelitian ini
dilakukan dengan menggunakan reaktor trickle bed yang ada, sebelum memulai
eksperimen reaktor trickle bed dimodifikasi; kami memasang tungku kedua di unggun
katalis, ukuran katalis adalah 0,7-0,6 mm, serpihan stainless-steel digunakan untuk
pasir silika di bagian pemanas untuk meningkatkan laju perpindahan panas. Reaktor
trickle bed yang digunakan memiliki diameter 2,05 cm dan tinggi total 37 cm, unggun
katalis memiliki tinggi 24 cm sedangkan bagian pemanas memiliki tinggi 11 cm. Itu
dioperasikan pada tekanan 7 bar dan suhu 135 oC, 160 °C dan 185 °C. Pada suhu 135
oC ada 99,21% konversi metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil
oleat (C18:1). Pada suhu 160 °C ada konversi 98,42% dari metil linoleat (C18:2)
menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 185 °C ada konversi
lengkap (100%) dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil
oleat (C18:1). Pada 135 oC percobaan menghasilkan H-FAME dengan jumlah C18: 0
yang lebih tinggi yaitu 57,65% dari C18:0 dan 39,4% dari C18:1, pada 160 °C
percobaan menghasilkan H-FAME dengan komposisi yang hampir sama yaitu C18:0
dan C18:1 yaitu 49,1% dari C18:0 dan 46,85% dari C18:1 sedangkan pada 185 °C
percobaan menghasilkan H-FAME dengan komposisi yang lebih tinggi dari C18:1
yaitu 42,15% dari C18:0 dan 53,9% dari C18:1.

ABSTRACT
Biodiesel or Fatty Acid Methyl Ester (FAME) is gaining too much attention due
to the decline of oil deposits worldwide and the climate change concerns. Although
biodiesel has many benefits over petroleum diesel it still has the problem of oxidation
stability and cold flow properties which limit its application. So, in order to mitigate
these problems, we need to upgrade our FAME by partially hydrogenating it. In this
research the biodiesel with the composition of 95.3 % methyl linoleate (C18:2) and 4.7
% methyl oleate (C18:1) was mixed with n-heptane as solvent to the ratio of 20% to
80% and partially hydrogenated in the trickle bed reactor using Ni/Al2O3 as a catalyst.
This research was conducted using the existing trickle bed reactor so, before starting
the experiments the trickle bed reactor was modified; we installed a second furnace at
catalyst bed, the size of catalyst was 0.7-0.6 mm, stainless-steel flakes were used
instead of silica sand in the heating section in order to increase the heat transfer rate.
The trickle bed reactor used had the diameter of 2.05 cm and a total height of 37 cm,
the catalyst bed had a height of 24 cm while the heating section had a height of 11 cm.
It was operated at a pressure of 7 bar and temperatures of 135 °C, 160 °C and 185 °C.
At a temperature of 135 °C there was 99.21% conversion of methyl linoleate (C18:2)
into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 160 °C
there was 98.42% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0)
and methyl oleate (C18:1). At a temperature of 185 oC there was complete conversion
(100%) of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate
(C18:1). At 135 °C the experiment yielded H-FAME with higher amount of C18:0 i.e
57.65% of C18:0 and 39.4% of C18:1, at 160 °C the experiment yielded H-FAME with
almost equal composition of C18:0 and C18:1 i.e 49.1% of C18:0 and 46.85% of C18:1
while at 185 °C the experiment yielded the H-FAME with higher composition of C18:1
i.e 42.15% of C18:0 and 53.9% of C18:1."
2019
T55071
UI - Tesis Membership  Universitas Indonesia Library
cover
Andrey Sapati Wirya
"ABSTRAK
Penelitian ini bertujuan untuk memperoleh model hydrocracking dalam trickle bed reactor untuk produksi green fuel menggunakan katalis Ni-W berpenyangga silika alumina, mendapatkan ukuran reaktor trickle bed untuk perpindahan panas yang baik dan mencari kondisi optimum untuk tingkat kemurnian tinggi. Penelitian diawali dengan studi pustaka tentang green fuel, kinetika hydrocracking, trickle bed reactor dan pemodelan. Kemudian model ditentukan dan dikembangkan untuk dilakukan simulasi serta diverifikasi untuk menguji konvergensi. Hasil simulasi dianalisis secara teknis untuk mendapatkan kondisi optimum dengan kemurnian yang tinggi. Dari hasil simulasi didapatkan bahwa kemurnian produk diesel mencapai 44,22 pada temperatur 420 0C. Produk kerosin dapat mencapai kemurnian sebesar 21,39 pada temperatur 500 0C. Produk nafta dapat mencapai kemurnian sebesar 25,30 pada temperatur 500 0C.
hr>
ABSTRAK
The purposes of this research are to get hydrocracking model in trickle bed reactor to produce green fuel using Ni W supported alumina silica catalyst, to determine the size of trickle bed reactor which provide good heat transfer, and to get optimum condition for high purity product. The research is initiated by literature study of green fuel, hydrocracking kinetics, trickle bed reactor, and basic of modeling. The model is determined and developed to perform simulation under different conditions. Model is verified to check the convergence. Simulation results are analyzed technically to achieve optimum condition with high product purity. Simulation results show that the diesel product purity is 44.22 at 420 0C. The Kerosene product could achieve purity of 21.39 at 500 0C. The naphta product could achieve purity of 25.30 at 500 0C."
2017
S68050
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taqi Aufa
"ABSTRACT
Tujuan dari penelitian ini adalah untuk mengembangkan model dua dimensi axisimmetri untuk reaksi hidrogenasi parsial FAME menjadi H-FAME, dan mengetahui pengaruh dari parameter proses dan parameter geometri terhadap performa reaktor. Penelitian ini terdiri dari studi literatur, kinetika reaksi, pemodelan reaktor, dan analisis dan pembahasan. Model matematis dikembangkan dari persamaan-persamaan neraca massa fasa cair, fasa gas, dan fasa padat, neraca momentum hukum darcy dan neraca energi. Model selanjutnya diselesaikan menggunakan metode computational fluid dynamic CFD yang disolusikan menggunakan software COMSOL multiphysic 5.3. Reaktor yang dimodelkan berbentuk silinder dengan diameter 0.8 m, tinggi 16 m dan memiliki pola aliran searah kebawah. Parameter operasi reaktor adalah: tekanan umpan 611 kPa, temperatur umpan 433 K, laju alir fasa cair 0,1921 m3/s, laju alir fasa gas 0,8339 m3/s, dan diameter katalis 1 mm. Berdasarkan hasil simulasi didapatkan konversi 79,56, yield asam stearat 28,3, dan jatuh tekenan 6,9 kPa/m.

ABSTRACT
The purpose of this research is to develop two dimention axisymetry model for partial hydrogenation of FAME to H FAME and to understand the effect of process and geometry parameter to its performance. This research consist of literature study, reaction kinetic, reactor modelling, and analysis. Mathematical model is develop from mass gas, liquid, solid, momentum darcy law and energy balance equations. The model is solved by using computational fluid dynamic method CFD by using COMSOL multiphysic 5.3. The reactor modelled has 0.8 m diameter and 16 m height with cocurrent downfall fluid pattern. The reactor modeled at inlet temperature 433 K, inlet pressure 611 kPa, liquid flow rate 0.1921 m3 s, gas flowrate 0.8339 m3 s and catalyst diameter 1 mm. The simulated reactor able to achieve 79.56 conversion, stearic acid yield of 28.3, and pressure drop of 6.9 kPa m."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reynaldi
"Sebagian besar bioetanol di Indonesia diproduksi dari tanaman pangan yang menimbulkan persaingan dengan industri pangan, menyebabkan tidak stabilnya harga bioetanol dan impor bahan baku. Salah satu alternatif produksi bioetanol adalah melalui fermentasi gas sintetis dengan Clostridium ragsdalei. Penelitian ini bertujuan untuk mendapatkan parameter kinetika reaksi dan perpindahan massa reaksi fermentasi, juga pengaruh variasi kondisi terhadap reaksi. Dilakukan pembuatan model reaktor unggun trickle menggunakan COMSOL Multiphysics®. Didapatkan parameter kinetika reaksi sebagai berikut: vmax,CO 70,797 mmol/g.h, vmax,H2 20,101 mmol/g.h, Ks,CO 0,171 mmol/L, Ks,H2 1,284 mmol/L, KI,EtOH 217 mmol/L, KI,HAc 962 mmol/L, KI,CO 0,136 mmol/L, YX,CO 3,925 g/mol, YX,H2 0,245 g/mol, vAcrmax,CO 26,748 mmol/g.h, vAcrmax,H2 2,652 mmol/g.h, KAcrsCO 388 mmol/L, KAcrsH2 464 mmol/L, dan kd 0,362 1/h. Parameter kinetika memiliki rentang AARD 7,443 sampai 39,454% dibandingkan data eksperimen. Kemudian didapatkan koefisien perpindahan massa gas-cair keseluruhan (kGL­a) untuk gas H2 43,860 sampai 115,750, untuk gas CO 13,082 sampai 35,487, dan untuk gas CO2 13,108 sampai 35,571. Didapat nilai optimal dari berbagai variasi sebagai berikut: laju alir cairan 500 ml/menit dan laju alir gas 4,6 ml/menit, konsentrasi awal bakteri 0,4 OD660, dan komposisi gas sintetis 100% gas CO mampu memproduksi bioetanol sebesar 214,260 mol/m3 dan asam asetat sebesar 143,130 mol/m3.
..... Majority of bioethanol in Indonesia is produced from food crops which creates competition with food industry, instability to bioethanol prices and increase of raw materials import. One alternative for bioethanol production is through fermentation of synthetic gas with Clostridium ragsdalei. This research aims to obtain kinetic parameters, mass transfer parameters, and analyze the effect of system conditions to reaction. This research was conducted through modelling of trickle bed reactor using COMSOL Multiphysics®. The estimated values ​​for the kinetics parameters are: vmax,CO 70,797 mmol/g.h, vmax,H2 20,101 mmol/g.h, Ks,CO 0,171 mmol/L, Ks,H2 1,284 mmol/L, KI,EtOH 217 mmol/L, KI,HAc 962 mmol/L, KI,CO 0,136 mmol/L, YX,CO 3,925 g/mol, YX,H2 0,245 g/mol, vAcrmax,CO 26,748 mmol/g.h, vAcrmax,H2 2,652 mmol/g.h, KAcrsCO 388 mmol/L, KAcrsH2 464 mmol/L, and kd 0,362 1/h with AARD 7.443 to 39.454%. The range of overall gas-liquid mass transfer coefficient (kGL­a) for H2 gas is 43.860 to 115.750, for CO gas 13.082 to 35.87, and for CO2 gas 13.108 to 35.571. The optimal parameter values ​​ are 500 ml/minute liquid flow rate, 4.6 ml/minute gas flow rate, 0.4 OD660 initial concentration of bacteria, and 100% CO synthetic gas which is capable of producing 214.260 mol/m3 of bioethanol and 143.130 mol/m3 of acetic acid.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setyo Sarwanto Moersidik
"Up-Flow Fixed Bed Reactor adaiah suatu unit pengolahan biologis pada kondisi aerob dengan memanfaatkan mikroorganisme dari jenis pertumbuhan melekat (attached Growth Process).
Reaktor yang digunakan pada penelitian ini dalam skala laboratorium dengan ukuran tinggi 85 cm + jagaan 25 cm, diameter 15 cm terbuat dari PVC. Media yang digunakan Bio-Ball. Reaktor dilengkapi dengan aerator untuk mensuplai kebutuhan oksigen selama proses nitrifikasi bersangsung, serta pompa untuk mengalirkan iimbah kedalam reaktor dan katup-katup pengatur debit aliran maupun suplai udara.
Limbah yang digunakan dalam penelitian ini adalah limbah essence yang dihasilkan P.T Essence berlokasi di Jalan Otista Jakana Timur dengan kandungan ammonium yang cukup tinggi untuk mendukung proses nitrifikasi. Limbah dialirkan dengan debit 6.25 ml/detik dengan detention time 40 menit.
Parameter-parameter yang dianalisa adalah ; COD, BOD5, DO, SS, Temperatur, pH, NH4,NO2,NO3. Penelitian dilakukan pada Laboratorium Teknik Penyehatan dan Lingkungan Fakultas Teknik Universitas Indonesia yang secara keseluruhan memakan waktu kurang lebih 3 bulan yaitu mulai awal Agustus hingga akhir Oktober 1994.
Dari hasil penelitian didapatkan efisiensi penurunan COD sebesar 65.09 - 72.45 % dan temperatur penelitian berkisar 24-25°C dengan pH 7-8. Proses nitrifikasi dianalisa dengan mengamati penurunan ammonium yang mencapai 68.82-76.42 %, penurunan nitrit mencapai 68.43-76.82 % dan peningkatan nitrat mencapai 60.82-69.22%, menunjukkan bahwa proses nitrifikasi berjalan cukup baik."
Depok: Fakultas Teknik Universitas Indonesia, 1995
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Datsevich, Leonid B.
"This book analyzes conventional fixed-bed reactors such as trickle-bed, bubble (packed) column, and multitubular reactors with regard to process efficiency, design and safety. It is shown that these reactors do not possess any substantial potential for improving industrial processes. Modern concepts in mass transfer, kinetics and process design are applied to process development. In light of the given analysis, new approaches to the development of technologies based on innovative principles are elucidated. For the first time, first-hand knowledge about two-zone model, oscillation theory, map of the energy dissipation is presented in full."
New York: Springer, 2012
e20405839
eBooks  Universitas Indonesia Library
cover
Naufal Agung Wicaksono
"Dimetil eter adalah senyawa organik dengan rumus kimia CH3OCH3 yang dapat dijadikan bahan bakar alternatif LPG. Tujuan dari penelitian ini adalah mendapatkan model reaktor unggun diam heterogen yang valid untuk sintesis DME dari CO2 pada katalis Cu-Fe-Zr/HZSM-5 sehingga diperoleh parameter kinetika yang dipakai untuk merancang reaktor unggun diam skala komersial. Model yang telah dikembangkan disimulasikan menggunakan software COMSOL Multiphysics 5.5. Validasi model dilakukan pada kondisi isotermal sehingga tidak ada neraca energi. Validasi model dilakukan dengan menyamakan konsentrasi luaran reaktor simulasi dan eksperimen dengan mengubah-ubah parameter kinetika. Faktor pra-eksponensial yang diperoleh untuk hidrogenasi CO2, hidrogenasi CO, RWGS, dan dehidrasi metanol masing-masing sebesar 6,3376 x 103 mol/kg.s, 5,12 x 10-2 mol/kg.s, 1,20863 x 105 mol/kg.s, dan 6 x 1029 mol/kg.s serta energi aktivasi masing-masing sebesar 1,8919 x 104 J/mol, 0 J/mol, 7,629 x 103 J/mol, dan 1 x 105 J/mol dengan range AARD (average absolute relative deviation) antara 6,3111-13,4582%. Parameter kinetika tersebut dipakai untuk merancang reaktor unggun diam skala komersial untuk target produksi DME sebesar 150.000 ton per tahun dengan memvariasikan suhu, tekanan, GHSV (gas hour space velocity), rasio H2/CO2, diameter katalis, dan geometri reaktor sehingga diperoleh volume reaktor terendah. Variasi suhu sebesar 240-280 oC, variasi tekanan sebesar 1-5 MPa, variasi GHSV sebesar 500-2500 mL/g.h, variasi rasio H2/CO2 sebesar 1:1-7:1, variasi diameter katalis sebesar 1-5 mm, variasi diameter unggun sebesar 5-20 cm, dan variasi panjang unggun sebesar 8-16 m. Hasil yang optimal diperoleh pada suhu 260 oC, tekanan 3 MPa, GHSV 2000 mL/g.h, rasio H2/CO2 4:1, diameter katalis 2 mm, diameter unggun 10 cm, dan panjang unggun 12 m dengan konsentrasi DME 12,1 mol/m3, laju alir massa DME 107,3 kg/d, dan jatuh tekan 0,20384 bar dengan jumlah tube sebanyak 3995 di dalam satu reaktor.

Dimethyl ether is an organic compound with the chemical formula CH3OCH3 which can be used as an alternative fuel for LPG. The objective of this study is to obtain a valid heterogeneous fixed bed reactor model for DME synthesis from CO2 on a Cu-Fe-Zr/HZSM-5 catalyst to obtain the kinetic parameters and used to design a commercial scale fixed bed reactor. The developed model was simulated using COMSOL Multiphysics 5.5 software. Model validation was carried out under isothermal conditions so there is no energy balance. Model validation was carried out by fitting the simulation and experimental concentration reactor output by varying the kinetic parameters. The pre-exponential factors obtained for CO2 hydrogenation, CO hydrogenation, RWGS, and methanol dehydration were 6.3376 x 103 mol/kg.s, 5.12 x 10-2 mol/kg.s, 1.20863 x 105 mol/kg.s, and 6 x 1029 mol/kg.s and the activation energies were 1.8919 x 104 J/mol, 0 J/mol, 7.629 x 103 J/mol, dan 1 x 105 J/mol with the AARD range (average absolute relative deviation) between 6,3111-13,4582%.These kinetic parameters are used to design a commercial scale fixed bed reactor for a DME production target of 150,000 ton per year by varying temperature, pressure, GHSV (gas hourly space velocity), H2/CO2 ratio, catalyst diameter, and reactor geometry to obtain the lowest reactor volume. Temperature variation of 240-280 oC, pressure variation of 1-5 MPa, GHSV variation of 500-2500 mL/g.h, H2/CO2 ratio variation of 1:1-7:1, catalyst diameter variation of 1-5 mm, reactor diameter variation of 5-20 cm, and reactor length variation of 8-16 m is used. Optimal results were obtained at 260 oC, pressure 3 MPa, GHSV 2000 mL/g.h, H2/CO2 ratio 4:1, catalyst diameter 2 mm, reactor diameter 10 cm, and reactor length 12 m with DME concentration of 12.1 mol/m3, mass flow rate of 107.3 kg/d, and pressure drop of 0.20384 bar with 3995 tubes in one reactor."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wihardi Setyo Wicaksono
"Carbon nanotube (CNT) adalah bentuk baru dari karbon murni yang memiliki banyak kegunaan. Perengkahan metana adalah salah satu proses untuk sintesis hidrogen dan CNT yang memiliki kelebihan tidak menghasilkan karbon monoksida dan karbon dioksida. Sebelum memproduksi CNT dan hidrogen berbasis reaksi dekomposisi katalitik metana dengan skala pabrik, diperlukan simulasi dan pemodelan dari hasil eksperimen reaktor lab.
Tujuan dari penelitian ini adalah untuk mendapatkan model matematika tak berdimensi reaktor unggun tetap yang valid dan menganalisis pengaruh dari variasi kondisi operasi terhadap konversi metana. Metode untuk penelitian adalah mengembangkan model persamaan-persamaan matematika berdasarkan neraca massa, momentum, dan energi. Persamaan-persamaan tersebut kemudian di-running pada perangkat lunak COMSOL Multiphysics® versi 4.4.
Konversi metana pada waktu reaksi 315 menit adalah 97,1% dan yield karbon yang didapatkan setelah 315 menit adalah 1,12 g karbon/g katalis. Kenaikan pada tekanan umpan, laju alir umpan, dan fraksi mol hidrogen akan memperkecil konversi metana. Kenaikan temperatur dinding reaktor dan panjang reaktor akan memperbesar konversi metana.

Carbon Nanotube (CNT) is a new form of pure carbon that have a lot of usefulness. Methane cracking is one of process for the synthesis of hydrogen and CNT which have advantage to not produce carbon monoxide and carbon dioxide. Before producing CNT and hydrogen base on the reaction of methane catalytic decomposition in plant scale, it is needed to done simulation and modelling from result of lab reactor experiment.
Purpose of this research is to get valid dimensionless model of fixed bed reactor and to analyze the variation effect of operation condition to methane conversion. Method for this research is develop model of mathematic equations based on mass, momentum, and energy balance. Software COMSOL Multiphysics® version 4.4 then used to running the equations.
Methane conversion at 315 minutes reaction time is 97.1% and carbon yield obtained after 315 minutes reaction time is 1.12 g carbon/g catalyst. Increasing feed pressure, velocity, and hydrogen mole fraction will decrease methane conversion. Increase of reactor wall temperature and reactor length will increase methane conversion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59617
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>