Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155472 dokumen yang sesuai dengan query
cover
Nanda Septian Hogantara
"Gas hidrogen merupakan bahan bakar hijau yang ramah lingkungan karena proses pembakarannya yang tidak menghasilkan gas karbon dioksida (CO2). Di sisi lain, kebutuhan oksigen untuk menangani pasien khusus harus tersedia secara instan. Ketersediaan gas hidrogen harus diproduksi dengan teknologi yang cukup rumit seperti steam reforming, sedangkan produksi oksigen harus menggunakan teknologi yang sangat kompleks yakni teknologi kriogenik. Penelitian ini berupaya memberikan solusi yang sederhana dan mudah dioperasikan untuk memproduksi gas H2 maupun O2 melalui reaksi elektrolisis larutan KOH menggunakan metode elektroda unggun tetap yang tersusun atas stainless steel ball. Rancangan unggun tetap dengan berat unggun 300 gram didapatkan luas permukaan sebesar 362 cm2, tinggi unggun 3,05 cm, yang tersusun atas 286 stainless steel ball ukuran diameter 0,635 cm/ball. Terdapat tiga buah variasi yang dilakukan pada penelitian ini yaitu tegangan listrik (3, 3,5, 4, 4,5, dan 5 V), laju alir sirkulasi elektrolit (100, 200, 300, 400, 500 mL/menit), dan kadar KOH (1%, 2%, 3%, 4%, dan 5% W/W). Hasil percobaan menunjukkan kondisi optimum diperoleh pada tegangan 3 V, laju alir sirkulasi elektrolit 500 mL/menit, dan kadar KOH 3% didapatkan produktivitas gas hidrogen sebesar 0,813 mL/s dan oksigen sebesar 0,409 mL/s serta efisiensi energi sebesar 49,75%
Hydrogen gas is a green fuel that is environmentally friendly because the combustion process does not produce carbon dioxide (CO2) gas. On the other hand, oxygen requirements for treating special patients must be available instantly. The availability of hydrogen gas must be produced with a complicated technology such as steam reforming, while the production of oxygen must use a very complex technology, namely cryogenic technology. This study seeks to provide a simple and easy-to-operate solution to produce H2 and O2 gas through the electrolysis reaction of KOH solution using a fixed bed electrode method composed of stainless steel ball. The fixed bed design with a bed weight of 300 grams obtained a surface area of 362 cm2, a bed height of 3,05 cm, which was composed of 286 stainless steel balls with a diameter of 0,635 cm/ball. There are three variations carried out in this study, namely the electric voltage (3, 3,5, 4, 4,5, and 5 V), the circulation rate of the electrolyte solution (100, 200, 300, 400, 500 mL/minute), and KOH content (1%, 2%, 3%, 4%, and 5% W/W). The experimental results showed that the optimum conditions were obtained at a voltage of 3 V, a circulation rate of 500 mL/minute of electrolyte solution, and a 3% KOH level. The productivity of hydrogen gas was 0,813 mL/s and oxygen was 0,409 mL/s and energy efficiency was 49,75%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa' Fauziyyatul Husna Ramadhani
"Hidrogen merupakan suatu sumber energi alternatif ramah lingkungan yang memiliki potensi sangat besar untuk dikembangkan. Gas hidrogen dapat dihasilkan secara sederhana dengan metode elektrolisis. Pada penelitian ini menggunakan metode elektrolisis NaCl. Proses elektrolisis berlangsung selama 10 menit untuk setiap variasi tegangan listrik. Adapun variabel NaCl nya yaitu NaCl 0,5; 1; 1,5; 2; 2,5; dan 3 M, tegangan listrik 5, 8, 11, 14, 17, dan 20 V, dan variasi elektroda yang meliputi variasi 1 berbentuk potongan - potongan Stainless Steel 316, variasi 2 berbentuk batang Stainless Steel 316 bercabang tiga, dan variasi 3 berbentuk potongan - potongan Stainless Steel 316 – karbon aktif granular. Berdasarkan penelitian yang telah dilakukan membuktikan bahwa semakin tinggi konsentrasi NaCl dan tegangan listrik, maka semakin besar nilai kuat arus listrik, daya listrik, laju produksi gas hidrogen, nilai hambatan listriknya semakin kecil, dan nilai pH larutan elektrolitnya semakin besar yang menunjukkan adanya NaOH sebagai produk samping. Peningkatan daya listrik menyebabkan efisiensi energi sel elektrolisis menurun. Variasi elektroda terbaik yaitu variasi elektroda 2 yang berbentuk batang Stainless Steel 316 bercabang tiga dengan nilai hambatan listrik paling kecil sebesar 5,4216 Ω dan total laju produksi gas hidrogen yang dihasilkan paling besar sebesar 1,328 mL/s dengan yield sebesar 50% pada konsentrasi NaCl 2,5 M, serta menghasilkan nilai efisiensi energi sebesar 39%; 24%; 18%; 14%; 11% dan 10% pada masing – masing variasi tegangan listrik 5, 8, 11, 14, 17, dan 20 V, dengan tingkat kemurnian gas hidrogennya sebesar 97,54%.

Hydrogen is an environmentally friendly alternative energy source that has enormous potential to be developed. Hydrogen gas can be produced simply by electrolysis method. In this research using the NaCl electrolysis method. The electrolysis process lasts for 10 minutes for each variation of the electric voltage. The NaCl variable are 0,5; 1; 1,5; 2; 2,5; and 3 M, the electric voltage variables are 5, 8, 11, 14, 17, and 20 V, and variations of the electrodes which include variation 1 in the form of 316 Stainless Steel pieces, variation 2 in the form of three-pronged 316 Stainless Steel rods, and variation 3 in the form of Stainless Steel 316 pieces – granular activated carbon. Based on the research that has been done, it proves that the higher the concentration of NaCl and the electric voltage, the greater the value of the electric current strength, electric power, the rate of production of hydrogen gas, the smaller the value of the electrical resistance, and the greater the pH value of the electrolyte solution which indicates the presence of NaOH as a side product. The increase in electric power causes the energy efficiency of the electrolytic cell to decrease. The best electrode variation is the variation of electrode 2 which is in the form of a three-pronged Stainless Steel 316 rod with the smallest electrical resistance value of 5,4216 Ω and the highest total production rate of hydrogen gas produced is 1,328 mL/s with a yield of 50% at 2,5 M NaCl concentration, and produces an energy efficiency value of 39%; 24%; 18%; 14%; 11% and 10% for each variation of electric voltage 5, 8, 11, 14, 17, and 20 V, with a purity level of hydrogen gas of 97,54%."
Depok: 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Nizar
"Air yang dalam bahasa kimianya adalah H2O disusun oleh 1 molekul Oksigen dan 2 molekul hidrogen, kedua unsur tersebut jika dipisahkan menjadi gas hidrogen dan oksigen merupakan unsur yang ideal untuk pembakaran. Elektrolisa merupakan suatu teknik pemisahan air menjadi gas oksigen dan hidrogen.
Dalam tugas akhir ini akan dihitung seberapa besar efisiensi dari proses tersebut ditambah lagi bagaimana pengaruhnya terhadap penambahan katalisator elektrolit asam, dalam percobaan ini digunakan KOH. Untuk menghitung seberapa besar efisiensi dan juga pengaruh dari persentasi KOH, kami menggunakan sebuah tabung reaktor dimana proses elektrolisa dilakukan. Tabung reaktor tersebut terdiri dari pelat-pelat yang terpisah-pisah dengan jarak yang telah ditentukan, yang dipasang berjajar dan saling bersilangan antara plat positif dan plat negatif dengan jumlah pelat yang dapat ditambah atau dikurangi. Tabung reaktor tersebut diisi oleh air yang kemudian dielektrolisa, dan dimonitor bagaimana kebutuhan energinya (arus, voltase), seiring dengan penambahan waktu dan juga kondisi keluarannya yaitu laju gas oksigen dan hidrogen serta perbedaan temperatur yang terjadi berbanding lurus dengan laju waktu.
Pengujian elektrolisa dilakukan dalam berbagai nilai molar KOH terhadap air. Seiring dengan membesarnya jumlah molar KOH hambatan elektrolisa yang terjadi semakin berkurang sehingga arus yang mengalir semakin besar, berbading lurus dengan volume gas yang dihasilkan. Didalam menghitung volume gas yang dihasilkan penulis menggunakan metode bubble growth, dimana dari perubahan bentuk bubble yang semakin membesar dapat diketahui laju pergerakan gas yang dihasilkan, kesimpulan dari perhitungan yang dilakukan, efisiensi dari proses elektrolisa setelah ditambah dengan konsentrasi KOH berkisar pada angka 17%. Lalu mengaplikasikan hasil gas hidrogen ini pada kendaraan (motor). Data terakhir diperoleh pengiritan rata-rata sebesar 8%.

H2O is the chemistry molecular bound the water form, which is build from 1 oxygen molecule and 2 hydrogen molecules, both molecule can be separate to became ideal gas for internal combusting as oxygen gas and hydrogen gas. Electrolysis is one of other method to separating chemically bonded. It separating chemically bonded elements and compounds by passing an electric current through them. It is using to separate water to become oxygen gas and hydrogen gas.
In this last report, we are going to calculate the efficiency from those processes as the effect acid catalyst added using KOH. To calculate the efficiency of the process and the effects of the catalyst, we conduct the electrolysis process using a reactor tube. The tube consists of several metal sheets, placed parallel in a positive - negative positive order with a predetermined space between sheets. The sheets can be added or reduced easily. The tube is then filled with water, and the electrolysis process starts. The energy needs (voltage, ampere) are then monitored, and then over time, the flow of oxygen, hydrogen and the changes in temperature are all measured. All variables here correlate positively to time.
The electrolysis test is carried out with several molar values of KOH. Upon the increase of KOH molar there is a decrease in the electrolysis resistance, resulting in a greater flow and a greater volume of gas produced. In calculating the volume of gas produced, the bubble growth method is used. In this method, the flow of gas produced from the electrolysis process is calculated by examining bubbles formed by the flow of gas from the process. The research reveals that the efficiency rate of the electrolysis process added with KOH catalyst ranges around 17%. And then we try simply using this reactor to the vehicle (motorcycle). Fuel saver means to 8% according to the last data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S38232
UI - Skripsi Open  Universitas Indonesia Library
cover
Darrell Sanjaya
"Hidrogen merupakan salah satu bahan bakar yang diusulkan sebagai energi karena memiliki sifat ramah lingkungan serta memiliki kapasitas penyimpanan energi tinggi (143 MJ/kg). Hidrogen dapat diproduksi melalui proses elektrolisis sehingga lebih ramah lingkungan dibandingkan proses steam methane reforming (SMR). Pada dasarnya, elektrolisis larutan NaCl memiliki prinsip mengubah energi listrik menjadi energi kimia. Beberapa faktor yang mempengaruhi efisiensi energi dalam konversi ini adalah bahan dan geometri elektroda, konsentrasi larutan, pola alir larutan, serta elektron transfer pada permukaan. Untuk memastikan transfer elektron maksimal, tipe aliran yang digunakan adalah elektrolisis kontinyu. Dalam hal ini, larutan yang digunakan adalah larutan NaCl pada konsentrasi 1M dan 2M. Selain itu, terdapat variasi ukuran mesh, yakni 30; 40; 60; 80; dan 100, dengan variasi arus listrik pada 3A dan 5A. Bahan elektroda yang digunakan adalah lembaran Stainless Steel (SS316) yang digulung sehingga membentuk elektroda sirkular. Didapatkan hasil laju produksi gas hidrogen tertinggi pada 2 gulung mesh untuk konsentrasi 2M hingga 40mL/s dibandingkan dengan 1 gulung mesh yang hanya 35mL/s. Efisiensi energi tertinggi didapat pada mesh 60 (35,7%), disusul dengan mesh 80 (29,8%). Pada mesh 100 terdapat penurunan efisiensi (27,9%). Hal ini diakibatkan karena pembentukkan senyawa Fe yang mengendap pada permukaan aktif elektroda.

Hydrogen is proposed as a fuel source due to its high energy storage capacity (143 MJ/kg).Although commonly produced through steam methane reforming, production through electrolysis is more evironmentally friendly. The electrolysis of NaCl solution has a principle of turning electrical into chemical energy in the form of hydrogen gas. Several factors that influence the efficiency energy of this conversion is the raw material, electrode geometry, solution concentration, solution flow pattern, and electron transfer on the surface. To ensure maximum surface reaction, the type of flow used is continuous electrolysis. Several variations made in this research include concentration of 1M and 2M, mesh sizes of 30; 40; 60; 80; and 100, and electric current variations at 3A and 5A. The electrodes utilized are made of Stainless Steel (SS316) wrapped to form a circular electrode. The results indicates that the flow rate of hydrogen is highest at 2 layers of mesh reaching up to 40mL/s compared to 1 layer of mesh at only 35mL/s. The highest energy efficiency is obtained at 60 mesh (35,7%), followed by mesh 80 (29,8%). At 100 mesh, there is a decline of energy efficiency (27,9%). This is due to the formation of Fe which deposits at the active surface of the electrode."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ayu Ardani
"Amonia dan nitrat yang dapat diolah menjadi pupuk dapat dihasilkan sekaligus dalam satu reaktor yang sama menggunakan metode elektrolisis plasma dengan injeksi udara. Salah satu permasalahan dalam proses elektrolisis plasma adalah erosi elektroda. Melalui penelitian ini, kinerja dan efektivitas stainless steel sebagai elektroda tempat terbentuknya plasma diamati dengan meninjau yield produk, konsumsi energi, dan erosi elektroda. Penelitian ini menguji pengaruh variasi konsentrasi larutan elektrolit Na2SO4 (0,01; 0,02; dan 0,04 M) dan konsentrasi aditif Fe2 (0; 15; 30; dan 45 ppm) pada daya 500; 600; dan 700 watt dengan bantuan injeksi udara 0,4; 0,6; 0,8; 1; dan 1,2 lpm terhadap efektivitas proses. Pengujian dilakukan pada rangkaian reaktor elektrolisis plasma yang dilengkapi trap cell untuk menangkap gas yang terlepas selama proses. Pada penelitian ini, kondisi operasi optimum untuk membentuk nitrat dicapai dengan menggunakan 0,01 M Na2SO4 pada laju alir udara 1 lpm, daya 600 watt, dan penambahan Fe2 30 ppm. Kondisi tersebut mampu menghasilkan 31,91 mmol nitrat dan 0,3 mmol amonia dan juga didapatkan produk samping 0,052 hidrogen peroksida dan 0,332 mmol hidrogen dengan energi spesifik 33,84 kJ/mmol dan erosi elektroda 0,12 gram. Selain itu, melalui penelitian ini, kinerja dan efektivitas elektroda stainless steel sebagai elektroda tempat terbentuknya plasma telah terbukti dan menjanjikan untuk digunakan dalam elektrolisis plasma.

This study investigates the simultaneous production of ammonia and nitrate, both essential components of fertilizers, through plasma electrolysis with air injection. The erosion of electrodes poses a significant challenge in the plasma electrolysis process. The performance and effectiveness of stainless steel electrodes in plasma formation are examined, considering aspects such as product yield, energy consumption, and electrode erosion. The research explores the impact of varying concentrations of Na2SO4 electrolyte solution (0.01 M, 0.02 M, and 0.04 M) and Fe2+ ion concentrations (0 ppm, 15 ppm, 30 ppm, and 45 ppm) at different power levels (500 W, 600 W, and 700 W) with air injection rates of 0.4 lpm, 0.6 lpm, 0.8 lpm, 1 lpm, and 1.2 lpm on the effectiveness of the plasma electrolysis process. Experimental tests are conducted using a plasma electrolysis reaktor equipped with a gas trap cell for precise gas collection. The optimal operating conditions for nitrate synthesis are identified as a Na2SO4 electrolyte concentration of 0.01 M, an air flow rate of 1 lpm, a power level of 600 W, and a Fe2+ addition of 30 ppm. Under these optimized conditions, the plasma electrolysis process successfully yielded 31.91 mmol of nitrate and 0.3 mmol of ammonia. Additionally, by-products of 0.052 mmol of hydrogen peroxide and 0.332 mmol of hydrogen were obtained. The specific energy consumption for the process is measured as 33.84 kJ/mmol and the electrode erosion is determined to be 0.12 grams. The findings of this study demonstrate the excellent performance of stainless steel electrodes and their potential for practical applications in plasma formation."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firman Akbar Reza
"Elektrolisis plasma menjadi metode sintesis green hydrogen dan hidrogen peroksida yang memisahkan air menjadi gas H2 dan O2 dengan plasma katodik pada tegangan di atas elektrolisis konvensional akibat rekombinasi radikal H• dan •OH. Laju erosi elektroda akibat suhu plasma yang tinggi menjadi keterbatasan pada proses ini sehingga Stainless Steel SS – 201 yang memiliki laju erosi lebih kecil dibandingkan tungsten (Lukkes, et al. 2006) diteliti efektivitasnya dari jumlah mmol produk, energi spesifik (Wr), dan laju erosi. Penelitian dilakukan dengan melakukan uji rancang bangun reaktor elektrolisis plasma dan karakterisasi arus tegangan untuk menentukan kondisi operasi menggunakan elektrolit NaOH 0,02 M dan Na2SO4 pada konduktivitas serupa, serta konsentrasi aditif metanol sebagai scavenger radikal •OH.
Hasil penelitian menunjukkan bahwa SS – 201 memiliki erosi yang lebih kecil sebesar 0,07 gram dibandingkan tungsten sebesar 1,05 gram setelah 60 menit proses. Pembentukan lapisan oksida pasif SS – 201 menambah luas kontak elektroda dan menghasilkan gas H2 sebanyak 104,55 mmol dibandingkan tungsten sebanyak 94,95 mmol. Penelitian ini juga membandingkan pengaruh penggunaan NaOH dan Na2SO4 dengan konduktivitas serupa yang menunjukkan NaOH menghasilkan lebih banyak H2 dibandingkan Na2SO4 sebanyak 97,55 mol karena cenderung mengarah pada produksi hidrogen peroksida karena komposisi elektrolit yang mendorong pembentukan radikal •OH. Selain itu, pengaruh variasi metanol diuji yang menunjukkan bahwa penambahan aditif metanol tidak hanya berperan sebagai scavenger radikal •OH namun terdekomposisi akibat plasma menghasilkan gas hidrogen dan radikal H•.

Plasma electrolysis is a green hydrogen and hydrogen peroxide synthesis method that separates water into H2 and O2 gases with cathodic plasma at a voltage above conventional electrolysis due to the recombination of H• and •OH radicals. The electrode erosion rate due to high plasma temperature is a limitation in this process so that Stainless Steel SS – 201 which has a lower erosion rate than tungsten (Lukkes, et al. 2006) was examined for its effectiveness from the number of mmol of product, specific energy (Wr), and rate of erosion. The research was carried out by conducting design tests for plasma electrolysis reactors and characterizing current voltages to determine operating conditions using electrolytes of 0.02 M NaOH and Na2SO4 with similar conductivity, as well as the concentration of methanol additive as an •OH radical scavenger.
The results showed that SS-201 had less erosion of 0.07 gram compared to 1.05 gram of tungsten after 60 minutes of process. The formation of the SS-201 passive oxide layer increased the contact area of the electrodes and produced 104.55 mmol of H2 gas compared to 94.95 mmol of tungsten. This study also compared the effect of using NaOH and Na2SO4 with similar conductivity which showed that NaOH produced more H2 than Na2SO4 of 97.55 mmol because it tends to produce of hydrogen peroxide due to the electrolyte composition which encourages the formation of •OH radicals. In addition, the effect of methanol variations was tested which showed that the addition of additive methanol did not only act as an •OH radical scavenger but decomposed due to plasma to produce hydrogen gas and H• radicals.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mardiansyah
"ABSTRAK
Gas hidrogen banyak diperoleh dari proses elektrolisis yang memerlukan energi listrik
yang besar. Elektrolisis plasma adalah teknologi baru dalam meningkatkan produktifitas
hidrogen sekaligus menekan kebutuhan listrik. Penelitian ini dilakukan untuk menguji
efektivitas proses elektrolisis plasma dengan penambahan aditif (larutan metanol dan
etanol) yang dinyatakan sebagai jumlah produk hidrogen per satuan energi listrik yang
dikonsumsi dengan memvariasikan temperatur, tegangan listrik dan konsentrasi larutan
KOH. Efektivitas proses ini dibandingkan dengan efektivitas elektrolisis Faraday dan
elektrolisis plasma tanpa penambahan aditif. Hasil percobaan menunjukkan kenaikan
konsentrasi KOH dan tegangan listrik menyebabkan kenaikan jumlah produk hidrogen.
Proses elektrolisis plasma pada penelitian ini dapat meningkatkan efektivitas proses
hingga 5 kali lipat lebih tinggi dibandingkan dengan elektrolisis plasma tanpa
penambahan aditif.

ABSTRACT
Hydrogen is commonly produced by electrolysis which consumes a great deal of energy.
Plasma electrolysis is a new technology that can increases hydrogen productivity while
lowering electrical energy needs. This research aimed to test the effectiveness of the
plasma electrolysis process with methanol and ethanol addition which is expressed as the
number of products of hydrogen per unit of electrical energy consumed by investigated
temperature, electrical voltage and the concentration of KOH solution. Then, the
effectiveness of this process compared with the effectiveness of electrolysis Faraday.
Results showed an increase of KOH concentration and the voltage causes an increase in
the hydrogen product. Plasma electrolysis process in this research can improve the
effectiveness of processes to 5 fold higher compared plasma electrolysis without
methanol and ethanol addition."
Fakultas Teknik Universitas Indonesia, 2011
S1156
UI - Skripsi Open  Universitas Indonesia Library
cover
Hana Julia
"ABSTRAK
Asam klorida dapat dimanfaatkan sebagai larutan yang dapat menghasilkan hidrogen dan klor. Sektor industri yang menghasilkan gas klor adalah industri klor-alkali sedangkan industri menghasilkan gas hidrogen adalah steam reforming dan elektrolisis air. Industri klor dan hidrogen mengonsumsi energi dalam jumlah tinggi. Metode elektrolisis plasma dengan asam klorida dapat meningkatkan produksi gas klor dan hidrogen dengan konsumsi energi yang lebih sedikit. Adanya perbedaan tegangan yang sangat tinggi akan menghasilkan spesi radikal pada kedua elektroda. Tegangan, konsentrasi dan kedalaman sangat mempengaruhi produksi gas yang dihasilkan. Selain itu penambahan gas oksigen dapat meningkatkan produksi gas hidrogen 17 kali, sedangkan untuk gas klor dapat meningkat 6 kali lebih banyak dibandingkan elektrolisis Faraday. Sedangkan tanpa injeksi gelembung udara produksi gas hidrogen meningkat 5 kali sedangkan untuk gas klor tidak dapat terdeteksi. Fenomena pembentukan plasma secara simultan dapat dilakukan dengan kondisi kedalaman elektroda dibuat sama dan minimum. Produksi gas yang dihasilkan pada keadaan simultan tidak lebih banyak dibandingkan gas yang dihasilkan secara parsial pada jumlah energi yang sama.

ABSTRACT
Hydrochloric acid can be used as a solution that can produce hydrogen and chlorine. The industrial sector that produces chlorine gas is the chlor-alkali industry, while industry generates hydrogen gas is the steam reforming and electrolysis of water. Industrial chlorine and hydrogen consumed energy in high amounts. Plasma electrolysis with hydrochloric acid can increase the production hydrogen and chlor with less energy consumption. The existence of a very high voltage difference will generate radical species at both electrodes. Applied voltage, concentration of electrolye and depth of anode have important influences on the amount of gas resulted. Addition of oxygen can increase hydrogen gas 17 times much more, and can increase chlor 6 times much more than Faraday electrolysis. While without oxygen, hydrogen gas only 5 times much more, and chlor could not detected. Phenomenon of plasma simultaneously could occur if the depth of anode and cathode alike and minimum. In the equal energy total, the amount of gas in simultan method less than the amount of gas in partial methode.
"
2016
S63390
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karina Diah Rosa Ekawati
"Dalam langkah transisi energi, gas hidrogen menjadi salah satu senyawa penting yang berpotensi sebagai bahan bakar dan bahan baku proses industri. Kajian tesis ini akan menganalisis konsumsi energi spesifik dari proses steam reforming dan elektrolisis dalam memproduksi gas hidrogen dengan menentukan kemurnian gas hydrogen >90%. Metode yang dilakukan yaitu menyusun model flowsheet dan simulasi proses produksi gas hidrogen menggunakan software simulasi Aspen HYSYS. Untuk melakukan simulasi, variabel yang digunakan pada proses steam reforming yaitu komposisi umpan metana 85,78, 90, 95, dan 100 %mol. Selain itu juga divariasikan laju alir produksi gas hidrogen dengan rentang 3000 - 12000 lb/hr. Untuk laju alir produksi gas hidrogen yang sama, pada proses elektrolisis akan divariasikan komposisi umpan brinewater 10, 15, 20, dan 25 %wt NaCl. Hasil yang diperoleh yaitu proses elektrolisis memiliki konsumsi energi spesifik 0,214-0,256 (106 Btu/lb) dan konsumsi energi spesifik pada steam reforming yaitu 0,084-0,107 (106 Btu/lb). Konsumsi energi spesifik elektrolisis lebih besar karena energi yang dibutuhkan untuk memecah molekul air yang kuat hanya mengandalkan listrik konvensional yang berasal pemerintah. Primary reformer dan electrolyzer adalah alat yang paling banyak mengonsumsi energi. Dari segi ekonomi, dibandingan nilai investasi CAPEX (Capital Expenditure) dan OPEX (Operational Expenditure) untuk masingmasing proses. Untuk produksi gas hidrogen menggunakan teknologi steam reforming nilai CAPEX sebesar USD 215.731.465 dan OPEX USD 1.723.279/tahun dan nilai investasi pada proses elektrolisis sebesar CAPEX USD 127.045.825 dan OPEX USD 180.408.705/tahun.

In the energy transition phase, hydrogen gas has become a key compound with potential as both a fuel and a raw material for industrial processes. This thesis study analyzes the specific energy consumption of the steam reforming and electrolysis processes in producing hydrogen gas, aiming for a hydrogen gas purity of >90%. The method involves developing a flowsheet model and simulating the hydrogen gas production process using Aspen HYSYS simulation software. For the simulation, the variables used in the steam reforming process include methane feed compositions of 85.78, 90, 95, and 100 mol%. Additionally, the hydrogen gas production rates are varied at 3000, 6000, 9000, and 12000 lb/hr. For the same hydrogen gas production rates, the electrolysis process will vary the brine water feed compositions at 10, 15, 20, and 25 wt% NaCl. The results showed that the electrolysis process has a specific energy consumption of 0.214-0.256 (106 Btu/lb) and the steam reforming process has a specific energy consumption of 0.084-0.107 (106 Btu/lb). The specific energy consumption of electrolysis is higher because the energy required to break the strong water molecules relies solely on conventional electricity from the government. The primary reformer and electrolyzer are the most energy-consuming equipment. Economically, the investment for hydrogen gas production using steam reforming technology is CAPEX USD 215,731,465 and OPEX USD 1,723,279 per year and for electrolysis is CAPEX USD 127,045,825 and OPEX USD 180,408,705 per year."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Arandityo Narutomo
"ABSTRAK
Elektrolisis adalah suatu proses penguraian senyawa air menjadi gas hidrogen dan gas oksigen. Gas hidrogen hasil elektrolisis air diharapkan mampu memberikan dampak yang positif terhadap kinerja motor bakar 4 langkah. Gas hidrogen hasil elektrolisis air tersebut dapat digunakan untuk bahan bakar tambahan sehingga penggunaan bahan bakar fosil diharapkan dapat dikurangi. Penggunaan gas hidrogen juga diharapkan mampu memperbaiki kualitas pembakaran di dalam ruang bakar sehingga emisi gas buang yang dihasilkan menjadi lebih baik. Pemasukan gas hidrogen ke dalam ruang bakar juga merupakan faktor yang vital untuk memperbaiki kinerja motor bakar. Pemasukan gas hidrogen dilakukan baik menggunakan injektor hidrogen maupun mixer hidrogen. Hasil pengujian secara eksperimental kemudian divalidasi menggunakan sumber referensi yang didapat dari jurnal yang berkaitan dengan topic penelitian yang dilakukan. Validasi dilakukan untuk menjelaskan dan menjawab fenomena yang terjadi terhadap hasil eksperimen yang telah dilakukan sehingga dapat dilihat trend yang terjadi sehingga dapat dianalisis dan diambil kesimpulan.

ABSTRACT
Electrolysis is a process that can break chemical bonding of water into hydrogen and oxygen. Hydrogen, the result of electrolysis process, is expected giving positive impact in 4 stroke combustion engine performance. Hydrogen from electrolysis process can be used as additive fuel so it can reduce fossil fuel utilization. Hydrogen utilization is also expected improving combustion quality in combustion chamber so exhaust emission is better. Hydrogen injection to combustion chamber is the important factor to improve 4 stroke engine performance. Hydrogen injection uses either hydrogen injector or hydrogen mixer so hydrogen flow can be entered into intake manifold. Then the experimental results will be validated using international journal and the other references. Validation is important to explain the phenomena in combustion chamber based on experimental data after hydrogen addition so that can be analysed and the conclusion can be drawn.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T31331
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>