Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 167550 dokumen yang sesuai dengan query
cover
Fathur Nurmahdi
"Sistem penyimpanan energi saat ini telah berkembang pesat dan banyak digunakan pada suatu sistem tenaga listrik seiring berkembangnya teknologi yang masuk ke dalam dunia kelistrikan, salah satunya yaitu penggunaan baterai sebagai media penyimpanannya. Baterai digunakan untuk menyimpan energi yang disimpan pada suatu waktu ketika energi tersebut tidak banyak digunakan dan akan dilepas energinya pada suatu waktu yang sebaliknya. Dengan kata lain, baterai juga dapat digunakan untuk menggantikan pembangkit dengan harga Biaya Pokok Penyediaan (BPP) listrik yang mahal, sehingga anggaran yang dikeluarkan akan lebih hemat. Oleh karena itu, dibutuhkan ilmu tentang pengimplementasian teknologi Battery Energy Storage System (BESS) yang tepat pada suatu wilayah. Perhitungan yang tepat diperlukan untuk menentukan kapasitas baterai yang terpasang, serta besaran biaya finansial yang dikeluarkan. Berdasarkan hasil perhitungan kapasitas baterai yang terpasang, dapat dilakukan shifting pembangkit dengan rentang BPP dari Rp1500/kWh hingga Rp2000/kWh yang membutuhkan kapasitas baterai berkisar antara 606,58 – 882,94 MWh dengan penurunan biaya berkisar antara Rp2,94 hingga Rp3,9 Triliun/tahun. Selain itu, dari segi finansial didapatkan 4 (empat) skenario dengan variasi pada nilai investasi BESS sebesar $400 - $500 dan siklus charging-discharging sebesar 4.000 – 5.000, didapatkan biaya investasi BESS sebesar Rp3,64 hingga Rp6,62 Triliun/tahun, rentang Internal Rate of Return (IRR) berkisar antara 52,02 % - 74,65 %, rentang Net Present Value (NPV) berkisar antara Rp14,19 hingga Rp20,69 Triliun, dan Discounted Payback Period (DPP) selama 2-3 tahun.

Energy storage systems are currently growing rapidly and are widely used in an electric power system as technology develops into the world of electricity, one of which is the use of batteries as storage media. Batteries are used to store energy that is stored at a time when the energy is not used much and will be released energy at a time when it is not. In other words, batteries can also be used to replace generators with cost of electricity supply (BPP), so that the budget spent will be more efficient. Therefore, knowledge about the proper implementation of Battery Energy Storage System (BESS) technology is needed in an area. Precise calculations are needed to determine the capacity of the installed battery, as well as the number of financial costs incurred. Based on the calculation results of the installed battery capacity, it can be done shifting the power plant with a BPP range from Rp1500/kWh to Rp 2000/kWh which requires a battery capacity range from 606,58 – 882,94 MWh with cost reductions range from Rp2,94 to Rp3,9 Trillion/year. Furthermore, from a financial perspective, there are 4 (four) scenarios with variations in the BESS investment value of $400 - $500 and the charging-discharging cycle of 4,000 - 5,000, it gain the BESS investment cost is Rp3.64 to Rp6.62 trillion/year, Internal range Rate of Return (IRR) ranges from 52.02% - 74.65%, Net Present Value (NPV) ranges from Rp.14.19 to Rp.20.69 Trillion, and Discounted Payback Period (DPP) for 2-3 years."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Setiawan
"Skema load shifting merupakan strategi krusial dalam upaya menekan biaya pokok penyediaan (BPP) dalam sistem pembangkitan energi. Penelitian ini mengeksplorasi dua pendekatan utama dalam pelaksanaan load shifting: yang pertama, secara aktif melalui pemanfaatan Battery Energy Storage System (BESS), dan yang kedua, secara partisipatif dengan menerapkan tarif dinamis. Fokusnya adalah pada simulasi kedua skema ini dalam jangka waktu mendatang, khususnya mengantisipasi penetrasi masif PLTS dalam lima tahun ke depan di wilayah Sistem Jawa-Madura-Bali. Hasil analisis menunjukkan bahwa baik implementasi BESS maupun penerapan tarif dinamis Time of Use (TOU) efektif dalam meningkatkan efisiensi pembangkitan listrik. Studi ini juga mengidentifikasi karakteristik unik dalam simulasi tarif dinamis TOU untuk berbagai jenis pelanggan, termasuk rumah tangga, industri, dan komersial. Penelitian ini memberikan metodologi yang praktis dan relevan bagi sistem besar di seluruh dunia, dengan studi kasus pada Sistem Jawa-Madura-Bali yang menyoroti hasil terbaik pada skenario 10.5% load shifting untuk pelanggan rumah tangga.

The load-shifting scheme plays a pivotal role in reducing the cost of electricity provision in power generation systems. This study explores two main approaches to implementing load shifting: firstly, actively through the utilization of Battery Energy Storage System (BESS), and secondly, participatively by applying dynamic tariff schemes. The focus lies on simulating both schemes in future time horizons, particularly anticipating the massive penetration of Photovoltaic Solar (PLTS) within the next five years in the Java-Madura-Bali System. The analysis results demonstrate the effectiveness of both BESS implementation and the Time of Use (TOU) dynamic tariff scheme in enhancing electricity generation efficiency. The study also identifies unique characteristics in the simulation of TOU dynamic tariffs for various types of consumers, including households, industries, and commercial entities. This research provides a practical and relevant methodology for large-scale systems worldwide, with a case study on the Java-Madura-Bali System highlighting household consumers' best outcomes in the 10.5% load-shifting scenario."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Hasudungan, Aldo Bona
"Untuk mengurangi beban impor BBM dan juga emisi GRK, pemerintah Indonesia merasa perlu adanya solusi di sisi transportasi darat yaitu melalui peralihan dari penggunaan Kendaraan Bermotor KBM ke Kendaraan ramah lingkungan (Karling) yaitu Kendaraan Bermotor Listrik Berbasis Baterai (KBL BB). Untuk mempercepat pertumbuhan KBL BB di Indonesia, pemerintah melalui Perpres nomor 55 tahun 2019 memberikan arahan, landasan dan kepastian hukum dalam pelaksanaan percepatan program KBL BB untuk transportasi jalan. Adapun kendala dalam penggunaan KBL BB adalah mahalnya biaya yang harus dikeluarkan konsumen dalam pembelian KBL BB, dimana baterai sebagai media penyimpanan energi listrik yang dibutuhkan KBL BB merupakan salah satu bagian termahal dari kendaraan listrik. Selain itu, waktu yang dibutuhkan untuk melakukan pengisian ulang baterai serta minimnya aksesibilitas pengguna kendaraan listrik menjadi pertimbangan lain yang dapat menghambat pertumbuhan KBL BB. Stasiun Penukaran Baterai Kendaraan Listrik Umum (SPBKLU) merupakan solusi pemecahan beberapa permasalahan di atas. Dengan hadirnya SPBKLU pengguna KBL BB tidak perlu membeli baterai dan juga waktu yang dibutuhkan untuk pengisian ulang daya baterai menjadi lebih singkat, serta area yang dibutuhkan oleh SPBKLU tidak besar sehingga SPBKLU dapat di bangun pada area-area strategis perkotaan yang pada penduduk. Dari kacamata konsumen SPBKLU memiliki nilai-nilai positif yang dibutuhkan. Namun perlu adanya kajian ulang apabila dilihat dari sisi penyedia. Di sini baik studi kelayakan teknis dan ekonomi di uraikan. Kami menggunakan program rumus ekonometrik untuk menghitung penyediaan kabinet beserta baterai sesuai dengan spesifikasi yang dibutuhkan. SPBKLU skema Battery Provider Cabinet Lease (BPCL) memiliki keekonomian yang lebih baik dibanding skema Battery Provider Cabinet Owner (BPCO) dengan asumsi rasio perbandingan jumlah KBL BB terhadap SPBKLU 30:1. Dari hasil perhitungan di dapat Net Present Value (NPV) BPCO sebesar Rp.244.476.350, dengan IRR 8,45% serta Payback Periode selama 5,08 tahun dan Profitability Index (PI) sebesar 1,018. Sedangkan NPV BPCL bernilai positif Rp.127.979.418 dengan IRR 28,73% serta PP 2,53 tahun dan PI 1,898. Studi ini dapat diperluas untuk mengembangkan SPBKLU di Indonesia

To reduce the import burden of fuel and also GHG emissions, the Indonesian government feels the need for a solution on the land transportation side, namely through the transition from using Internal Combustion Engine Vehicle (ICEV) to environmentally friendly vehicles, namely Battery Electric Vehicle (BEV). To accelerate the growth of BEV in Indonesia, the government through Presidential Decree number 55 of 2019 provides direction, foundation and legal certainty in the acceleration of the BEV program for road transportation. The obstacle in using BEV is the high cost that must be incurred by consumers in purchasing BEV, where the battery as a storage medium for electrical energy needed by BEV is one of the most expensive parts of an electric vehicle. In addition, the time needed to recharge the battery and the lack of accessibility for electric vehicle users are other considerations that can hinder the growth of BEV. The Public Electric Vehicle Battery Swapping Station (BSS) is a solution to solving some of the problems above. With the presence of BSS, BEV users do not need to buy batteries and also the time needed to recharge the battery is shorter, and the area required by BSS is not large so that BSS can be built in strategic urban areas with residents. From the consumer's point of view, BSS has the positive values it needs. However, there needs to be a review if it is seen from the provider side. Here both the technical and economic feasibility studies are described. We use an econometric formula program to calculate the supply of cabinets and batteries according to the required specifications. The Battery Provider Cabinet Lease (BPCL) scheme has a better economic value than the Battery Provider Cabinet Owner (BPCO) scheme assuming the ratio of the number of BEV to BSS is 30: 1. From the calculation, the NPV of BPCO is Rp.244.476.350, with an IRR of 8,45% and a payback period of 5,08 years with Profitability Index 1,018. Meanwhile, BPCL's NPV is positive at Rp. Rp.127.979.418 with an IRR of 28,73%, PP 2,53 years and PI of 1,898. This study can be extended to develop BSS in Indonesia"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syahnaz Tiara Putri
"Peningkatan bahan bakar fosil menjadi permasalahan yang perlu diatasi, salah satunya dengan cara penggunaan kendaraan listrik berbasis baterai. Perkembangan dari penggunaan kendaraan listrik, sejalan pula dengan peningkatan lithium-ion battery yang memiliki masa pakai yang pendek, sehingga baterai tersebut perlu diolah untuk mencapai keberlanjutan. Penelitian ini bertujuan untuk menganalisis empat opsi kebijakan pengelolaan baterai kendaraan listrik di beberapa negara yang sudah diimplementasikan. Dengan menggunakan hasil wawancara, kuesioner, dan data sekunder, hasil penelitian menunjukkan skema kebijakan performance standard lebih efektif dilakukan di Indonesia. Selain itu, kebijakan dengan skema deposit sulit untuk diterapkan di negara berkembang yang masyarakat memiliki penghasilan menengah ke bawah.

Increasing fossil fuels is a problem that needs to be addressed, one of which is by using battery-based electric vehicles. The development of the use of electric vehicles is also in line with the increase in lithium-ion batteries which have a short service life, so these batteries need to be processed to achieve sustainability. This study aims to analyze four policy options for managing electric vehicle batteries in several countries that have been implemented. By using the results of interviews, questionnaires, and secondary data, the results of the research show that standard performance policy schemes are more effectively implemented in Indonesia. In addition, policies with deposit schemes are difficult to implement in developing countries where people have middle to lower incomes."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farrel Panca Agung
"Meningkatnya konsumsi energi listrik akan berpengaruh pada peningkatan beban puncak pada sistem ketenagalistrikan di indonesia. Tingginya biaya pokok penyediaan (BPP) pembangkit peaker mengakibatkan mahalnya biaya energi pada suatu sistem. Hal tersebut dapat diatasi dengan pengimplementasian Battery Energy Storage System (BESS) sebagai load shifting. Load shifting merupakan proses pemindahan pembebanan sistem pembangkitan suatu sistem tenaga listrik dari satu periode waktu dimana terdapat pembebanan yang tinggi ke periode waktu lainnya dimana terdapat pembebanan yang lebih rendah pada hari yang sama. BESS juga dapat dimanfaatkan untuk mengatasi intermitensi pembangkit energi terbarukan. Biaya investasi dari BESS semakin menurun setiap tahunnya. Pemanfaatan BESS pada sistem kelistrikan di Indonesia khususnya pada sistem Jawa-Bali terbilang masih kurang dibandingkan dengan potensi pemanfaatan yang ada. Penelitian ini bertujuan untuk menganalisis potensi implementasi BESS sebagai load shifting untuk menurunkan biaya energi pada sistem Jawa-Bali dengan menentukan kapasitas BESS yang akan digunakan dan kelayakan implementasinya secara finansial. Berdasarkan hasil perhitungan kapasitas BESS dengan rentang BPP cut-out sebesar Rp. 1600/kWh sampai Rp. 2200/kWh, menunjukan kapasitas BESS yang dibutuhkan untuk implementasi BESS sebagai load shifting adalah sebesar 1.206,48 - 3.181,12 MWh, dengan penurunan biaya sebesar Rp. 4,67 – 6 Triliun/tahun. Berdasarkan hasil perhitungan finansial untuk skenario 1 – 4 dengan nilai investasi BESS senilai $700 – 1000/kWh membutuhkan biaya invetasi sebesar Rp. 11,96 – 36,04 Triliun, dan menghasilkan Internal Rate of Return sebesar 7,72 - 32,69 %, Net Present Value sebesar Rp. -0,47 – 18.99 Triliun, dan Discounted Payback Period selama 4 – 19 tahun

Increased electricity consumption will influence increasing the peak load on the electricity system in Indonesia. The high cost of Cost of Energy (CoE) of peaker plants results in high energy costs in a system. This can be overcome by implementing the Battery Energy Storage System (BESS) as load shifting. Load shifting is the process of transferring the load of an electrical power system from one period where there is a high load to another period where there is a lower load on the same day. BESS can also be used to overcome the intermittency of renewable energy generator. The cost of investment from BESS is decreasing every year. The utilization of BESS in the electricity system in Indonesia, especially in the Java-Bali system is still less than the potential utilization. This research aims to analyze the potential implementation of BESS as load shifting to lower energy costs on the Java-Bali system by determining the capacity of BESS to be used and the feasibility of its implementation financially. Based on the results of BESS capacity calculation with the range of BPP cut-out of Rp. 1600 / kWh to Rp. 2200 / kWh, show the BESS capacity needed for the implementation of BESS as load shifting is 1,206.48 - 3,181.12 MWh, with a decrease in costs of Rp. 4.67 - 6 trillion / year. Based on the results of financial calculations for scenarios 1 - 4 with a BESS investment value of $ 700 – 1000 / kWh requires investment costs of Rp. 11.96 – 36.04 trillion and generates an Internal Rate of Return of 7.72 - 32.69 %, Net Present Value of Rp. -0.47 – 18.99 trillion, and Discounted Payback Period for 4 - 19 years
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Daffa Burhany Syihab
"Sistem tenaga listrik Sumatra merupakan salah satu sistem tenaga listrik terbesar yang ada di Indonesia. Sistem tersebut terdiri dari gabungan 3 subsistem yaitu Sumatra Bagian Utara (Sumbagut), Sumatra Bagian Tengah (Sumbagteng), dan Sumatra Bagian Selatan (Sumbagsel). Salah satu subsistem tenaga listrik besar di Sumatra adalah sistem tenaga listrik Sumbagsel. Sistem tenaga listrik Sumbagsel disupply dayanya oleh berbagai jenis pembangkit listrik seperti PLTU, PLTA, PLTD, dll. Setiap pembangkit listrik tersebut memiliki BPP (Biaya Pokok Penyediaan) pembangkitan. Pembangkit listrik berbasis fosil dan gas memerlukan BPP yang cukup tinggi. Kemajuan teknologi khususnya teknologi baterai sebagai penyimpan energi memungkinkan pengurangan pengoperasian pembangkit berbasis fosil dan gas dengan menggunakan metode load shifting. Load shifting dilakukan untuk memindahkan daya yang dihasilkan oleh pembangkit listrik dengan BPP pembangkitan yang mahal menjadi daya yang dihasilkan oleh pembangkit listrik dengan BPP yang lebih murah sehingga optimalisasi biaya pun dapat dilakukan. Load shifting tersebut dilakukan dengan menggunakan BESS (Battery Energy Storage System) dimana charging akan dilakukan diluar WBP (Waktu Beban Puncak) dan discharging akan dilakukan pada saat waktu beban puncak. Oleh karena itu, studi BESS untuk load shifting sistem tenaga listrik Sumatra Bagian Selatan perlu dilakukan.

The Sumatran electric power system is one of the largest electric power systems in Indonesia. The system consists of a combination of 3 subsystems, namely Northern Sumatra (Sumbagut), Central Sumatra (Sumbagteng), and Southern Sumatra (Sumbagsel). One of the major power subsystems in Sumatra is the South Sumatra electric power system. The South Sumatra electric power system provides its power by various types of power plants such as PLTU, PLTA, PLTD, etc. Each of these power plants has a BPP (Cost of Provision) generation. Fossil and gas based power plants require a fairly high BPP. Technological advances, especially battery technology as an energy store, allow the reduction of fossil and gas-based operations using load transfer methods. Load transfer is carried out to transfer the power produced by power plants with an expensive generation BPP, while power plants with BPP can be cheaper so that cost optimization is carried out. The load transfer is carried out using BESS (Battery Energy Storage System) where charging will be done outside the WBP (Peak Load Time) and emptying will be carried out during peak load times. Therefore, it is necessary to conduct a BESS study for the Southern Sumatra electric load transfer system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dzulfikar Hanif Maulana
"Penetrasi pembangkit Energi Baru Terbarukan (EBT) pada saat ini di Indonesia semakin meningkat. Peningkatan tersebut disebabkan oleh berbagai macam hal diantaranya adalah cadangan energi fosil yang semakin menurun, emisi polusi yang semakin meningkat, dan juga kesadaran masyarakat akan pentingnya lingkungan tersebut. Meningkatnya penetrasi pembangkit EBT menyebabkan peningkatan penggunaan Battery Energy Storage System (BESS) sebagai Ancillary Service dalam menyeimbangkan frekuensi pada jaringan distribusi. Namun, dengan penggunaan BESS dalam menyeimbangkan frekuensi dapat menurunkan life time BESS akibat dari peningkatan cycle (charge dan discharge) yang mempengaruhi biaya investasi dari BESS. Salah satu upaya yang dapat dilakukan untuk mengatasi polemik tersebut adalah dengan menerapkan BESS sebagai pengoperasian Black start dalam peningkatan back-up sistem pada pembangkit bila terjadi gangguan yang menyebabkan pemadaman (Black Out). Penelitian ini bertujuan untuk mengetahui biaya investasi BESS sebagai Ancillary Service dengan minimum cycle dari baterai dalam penerapan pengoperasian Black Start. Penelitian ini dilakukan dengan menggunakan pendekatan matematis dalam memperhitungkan biaya yang dikeluarkan dalam pengoperasian Black Start tanpa menggunakan BESS dan dengan menggunakan BESS.

The penetration of New and Renewable Energy Generators (EBT) in Indonesia is currently on the rise. This increase is attributed to various factors, including the diminishing fossil energy reserves, escalating pollution emissions, and the growing awareness of environmental importance among the public. The increasing penetration of EBT generators has led to a rise in the utilization of Battery Energy Storage Systems (BESS) as an Ancillary Service for balancing the frequency in the distribution network. However, the use of BESS in frequency balancing can reduce the lifetime of BESS due to increased cycles (charge and discharge), which affects the investment costs of BESS. One approach to address this issue is to implement BESS for Black Start operations to enhance backup systems in power plants in the event of disruptions leading to a blackout. This research aims to determine the investment costs of BESS as an Ancillary Service with a minimum battery cycle in the application of Black Start operations. This study is conducted using a mathematical approach to calculate the expenses incurred in Black Start operations without utilizing BESS and with the use of BESS.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifqi Annas Albasyahri
"Pemerintah Indonesia memiliki target bauran Energi Baru Terbarukan (EBT) sebesar 23% pada tahun 2025 dan 31% pada tahun 2050. Dengan target ini, Indonesia dinilai akan mulai melakukan investasi pada pemasangan energi baru terbarukan untuk menggantikan pembangkit dengan bahan bakar fosil. Dengan perubahan eksistensi pembangkit, pastinya terdapat beberapa kemungkinan permasalahan baru pada sistem kelistrikan di Indonesia yang bersangkutan dengan kualitas daya seperti frekuensi/tegangan yang tidak stabil, perminataan beban yang berlebih, atau fluktuasi daya pembangkitan. Battery Energy Storage System (BESS) atau Pembangkit Listrik Tenaga Diesel (PLTD) merupakan salah satu jenis pembangkit yang dapat memperbaiki kualitas frekuensi sistem. Akan tetapi, pengimplementasian BESS sebagai ancillary services di Indonesia masih diragukan jika dibandingkan PLTD jika hanya dilihat dari aspek finansial. Oleh karena itu, perlu dilakukan kajian lebih lanjut mengenai alternatif yang seharusnya dilakukan untuk memperbaiki frekuensi sistem kelistrikan di Indonesia. Penelitian ini akan menganalisis kedua alternatif tersebut menggunakan analisis biaya dan manfaat dilihat dari aspek finansial dan nonfinansial. Analisis finansial akan mengkaji kedua alternatif melalui perhitungan Internal rate of Return (IRR), Net Present Value (NPV), Discounted Payback Period (DPP), dan Profitability Index (PI) atau Benefit to Cost Ratio (BCR). Sementara itu, analisis nonfinansial akan mengkaji dari segi keteknikan, lingkungan, dan sosial. Dari hasil analisis ini, Penelitian menghasilkan kesimpulan bahwa BESS memiliki untuk diimplementasikan sebagai ancillary services di Indonesia. Proyek BESS pada wilayah TT menghasilkan NPV > 0, IRR 6,09, DPP selama 9 tahun, dan BCR 1,18. Sementara itu, proyek PLTD menghasilkan NPV > 0, IRR 5,64, DPP selama 7 tahun, dan BCR 1,427.

The Indonesia government has set a target of New and Renewable Energy (NRE) sector for about 23% in 2025 and 31% in 2050. Along with this target, Indonesia is expected to start investing in the installation of renewable energy sector to replace conventional power plant (fossil fuel-fired power plant). With the change of existing power plants, there are certainly some new potential problems arised in the Indonesian electricity systems related to the power quality such as unstable frequency/voltage, excessive load demand, or fluctuation of power generation. Battery Energy Storage System (BESS) or Diesel Power Plant are the type of generation plant which can improve the quality of frequency in the system. However, BESS implementation as ancillary services in Indonesia is still doubtful compared to PLTD if only seen by financial analysis. Therefore, several studies need to be carried out to determine the best alternatives to improve the frequency of Indonesia’s electricity system. This research will analyze which is the better implementation (BESS or PLTD) by using cost benefit analysis considering financial and nonfinancial aspects. Financial analysis will analyze the two alternatives by calculating Internal rate of Return (IRR), Net Present Value (NPV), Discounted Payback Period (DPP), dan Profitability Index (PI) atau Benefit to Cost Ratio (BCR). Meanwhile, nonfinancial analysis will analyze in the technical, environment, and social. Along with this analysis, this research generates the conclusion that BESS has the potentials to be implemented as ancillary services in Indonesia’s electricity system. BESS in TT region generates NPV > 0, IRR 6,09, DPP in 9 years, dan BCR 1,18. Meanwhile, Diesel generator generates NPV > 0, IRR 5,64, DPP in 7 years, dan BCR 1,427."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abeltus Reforma Putra
"Selama beberapa waktu terakhir, Battery Energy Storage System (BESS) telah menjadi salah satu komponen penting dalam jaringan listrik pintar untuk meningkatkan kinerja dan keandalan sistem tenaga listrik di beberapa negara. Indonesia yang merupakan negara terpadat nomor empat di dunia tentunya membutuhkan juga teknologi ini untuk memaksimalkan kinerja sistem tenaga listriknya. Namun, harga investasi untuk BESS masih tergolong cukup tinggi untuk saat ini dan dibutuhkan metode yang tepat untuk menentukan kapasitas BESS tersebut. Oleh sebab itu, pendekatan feasibility study digunakan untuk memastikan pemasangan BESS pada jaringan sistem tenaga listrik bisa memberikan keuntungan dari sisi ekonomi. Makalah ini menyajikan metodologi pengukuran dan strategi optimasi biaya BESS untuk aplikasi Load Shifting di sistem tenaga listrik Sumatera Bagian Tengah dengan menggunakan perangkat lunak excel dan phyton serta data beban listrik yang diberikan PLN di wilayah tersebut pada tahun 2019. Energi BESS akan dilepas pada saat Waktu Beban Puncak (WBP) untuk menggantikan pembangkit listrik biaya mahal sehingga dapat megurangi biaya operasional. Hasil optimasi biaya BESS untuk load shifting di Sumbagteng mampu mengurangi PLTMG dan PLTD yang notabene menggunakan BBM sebesar 20% dari kondisi awalnya.

Over the past few years, the Battery Energy Storage System (BESS) has become one of the important components in smart power grids to improve the performance and reliability of electric power systems in several countries. Indonesia, which is the fourth most populous country in the world, certainly needs this technology to maximize the performance of its electric power system. However, the investment price for BESS is still quite high for now and an appropriate method is needed to determine the capacity of the BESS. Therefore, a feasibility study approach is used to ensure that the installation of BESS on the power system network can provide economic benefits. This paper presents the measurement methodology and cost optimization strategy of BESS for Load Shifting applications in the Central Sumatra electric power system using excel and python software as well as electricity load data provided by PLN in the region in 2019. BESS energy will be released at Load Time. The peak (WBP) to replace power plants is expensive so that it can reduce operational costs. The results of the optimization of BESS costs for load shifting in Central Sumatra were able to reduce PLTMG and PLTD which incidentally used fuel by 20% from their initial conditions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tanjung, Riadhi Fairuz
"ABSTRACT
Tarif listrik dimasa yang akan datang diperkirakan akan mengalami kenaikan. Hal ini terlihat dari tren tarif listrik beberapa tahun terakhir yang cenderung mengalami kenaikan dibandingkan penurunan. Berdasarkaan peraturan mentri ESDM no 41 tahun 2017, tarif listrik akan mengalami kenaikan dan penurunan per tiga bulan sekali mengikuti harga minyak mentah Indonesia, tingkat inflasi, dan nilai tukar rupiah terhadap dollar amerika. Akibatnya terjadi ketidakpastian harga tarif listrik khususnya bagi pelanggan non subsidi. Untuk mengatasi ketidakpastian tersebut, muncul gagasan bagaimana rumah dapat menghasilkan listrik sendiri dengan memanfatkan potensi energi matahari. Namun dalam pengimplementasiannya terdapat kendala perbedaan biaya awal pemasangan sistem diberbagai wilayah di Indonesia mengingat Indonesia bukan negara kontinental dan mayoritas pusat penjualan investasi sistem hanya berada pada wilayah tertentu.Tujuan penelitian ini adalah untuk mengetahui pengaruh initial cost terhadap levelized cost of energy yang dihasilkan sistem pada beberapa wilayah di Indonesia. Hasil akhir dari simulasi ini dapat dijadikan sebagai bahan pertimbangan residensial dalam pengimplementasian sistem.Penelitian ini menggunakan perhitungan pengembangan Levelized Cost of Energy dan analisis kelayakan kekonomian melalui perhitungan net present value yang didapatkan oleh masing masing sistem pada wilayah simulasi. Net present value adalah total biaya tarif listrik yang dapat dihemat residensial akibat dilakukannya pengimplementasian sistem. Skenario dilakukan menggunakan perangkat lunak System Advisor Model dengan skema net metering dimana harga tarif listrik cenderung mengalami kenaikan dan harga investasi sistem mengalami penurunan.Kota Manado merupakan kota yang optimum dalam pengimplementasian sistem. Hal ini terlihat dari NPV yang dihasilkan paling besar meskipun initial cost cukup tinggi dibandingkan dengan kota simulasi lainnya.

ABSTRACT
Future electricity tariffs are expected to increase. This is evident from the trend of electricity tariffs in recent years which tend to increase compared to the decline. Based on the Minister of Energy and Mineral Resources Regulation No. 41 of 2017, electricity tariffs will increase and decrease every three months following the Indonesian crude oil price, inflation rate, and the rupiah against the US dollar. As aresult there is uncertainty in the price of electricity tariff especially for nonsubsidized customers. To overcome these uncertainties, came the idea how the house can generate its own electricity by utilizing the potential of solar energy. However, in implementing it there are constraints of the initial cost difference of installation of systems in various regions in Indonesia considering Indonesia is not a continental state and the majority of sales center of system investment is only in certain area.The purpose of this study is to determine the effect of initial cost on the levelized cost of energy produced by the system in some regions in Indonesia. The final result of this simulation can be used as residential consideration in implementing the system.This study uses the calculation of the development of Levelized Cost of Energy and the analysis of economic feasibility through the calculation of net present value obtained by each system in the simulation area. Net present value is the total cost of electricity tariff that can be saved by the implementation of system implementation. Scenario is done using System Advisor Model software with net metering scheme where the price of electricity tariff tends to increase and the investment price of the system decreases.Manado city is the most suitable city in implementing the system. This can be seen from the NPV that produced the greatest although the initial cost is quite high in this city. initial cost will affect the LCoE generated by the system, but if a region has high solar energy potential then the initial cost can be covered by the amount of cash flow generated by the system."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>