Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 93525 dokumen yang sesuai dengan query
cover
Deju Kevin Paulus
"Gas alam merupakan campuran gas yang mudah terbakar dari senyawa hidrokarbon sederhana. Gas alam sudah menjadi sumber energi alternatif yang banyak digunakan banyak kalangan. LNG merupakan salah satu contoh gas alam. Tahapan pendistribusian LNG diawali dengan mengeksplor gas alam, lalu menyaring hingga sesuai dengan spesifikasi yang dikehendaki, setelah itu ada proses liquefaction yang bertujuan untuk mengubah fase gas menjadi fase cair. Setelah gas sudah menjadi cair, LNG akan ditransportasikan dengan kapal tanker khusus. Ketika sampai tujuan, LNG akan dimasukan kedalam tangka penyimpanan (storage). Sebelum didistribusikan, LNG akan diubah lagi fasenya menjadi gas kembali dengan proses regasifikasi. Proses regasifikasi ini melibatkan air laut atau fluida lain dalam proses peningkatan suhu LNG. Dalam prosesnya banyak sekali energi dingin dari proses regasifikasi yang terbuang. Energi dingin yang terbuang ini dapat dimanfaatkan sebagai alat penukar kalor yang ada pada organic rankine cycle. Organic rankine cycle menggunakan fluida propane sebagai fluida kerjanya dikarenakan titik didih lebih rendah daripada air. Perancangan ORC ini dilakukan dengan cara mendesain alat penukar kalor yang ada pada rancangan tersebut. Hasil rancangan alat penukar kalor memiliki batas agar tidak over design dan minimnya pressure drop. Hasil rancangan alat penukar kalor dari siklus ORC ini memiliki effisiensi 75% hingga 99%.

Natural gas is a flammable mixtured gas of simple hydrocarbon compounds. Natural gas has become an alternative energy source that is commonly used. LNG is one of natural gas. The LNG distribution stage begins with exploring natural gas, then filtering it according to the desired specifications, then there is a liquefaction process that aims to change the gas phase into a liquid phase. After the gas has become liquefied, the LNG will be transported by special tankers. When it reaches its destination, LNG will be included in the storage tank. Before being distributed, LNG will be converted into gas again by a regasification process. This regasification process involves seawater or other fluids in the process of increasing the temperature of LNG. In regasification process, a lot of cold energy is wasted. This wasted cold energy can be used as a heat exchanger in the organic rankine cycle. Organic rankine cycle uses propane as its working fluid because its boiling point is lower than water. The design of this ORC, started in heat exchanger of ORC. The results of the design of the heat exchanger have a limit so heat exchanger not to get over design and minimalize pressure drop. The design results of the heat exchanger from the ORC cycle have an efficiency of 75% up to 99%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dian Handayani Lulun Lande
"Perencanaan dan pengadaan fasilitas pembangkit listrik berikut fasilitas terminal LNG masih dilakukan terpisah. Dari sudut pandang teori, integrasi sistem pembangkit listrik dengan sistem regasifikasi pada terminal LNG masih belum optimal karena masih terdapat potensi pemanfaatan energi terbuang baik energi panas maupun energi dingin yang merupakan peluang perbaikan untuk meningkatkan efisiensi sistem keseluruhan. Integrasi sistem dapat dilakukan dengan memanfaatkan energi panas pada air pendingin mesin dan pada gas buang dari proses pembangkitan energi listrik, sekaligus memanfaatkan energi dingin dari proses regasifikasi LNG untuk mendinginkan air pendingin mesin. Melalui metode analisis teknis, simulasi rancangan dengan pemanfaatan energi panas dari mesin pembangkit dapat dilakukan pada LNG Vaporizer tipe shell and tube.
Dari hasil simulasi teknis dapat diketahui dengan flow rate LNG sebesar 4 MMSCFD akan menghasilkan daya sebesar 17230 kW dengan efisiensi 35,2%, dimana efisiensi tersebut lebih tinggi apabila dibandingkan dengan efisiensi sistem yang tidak terintegrasi. Dalam analisis ekonomi pada pola pembebanan mesin pembangkit dengan faktor kapasitas 80% dan asumsi harga listrik yang digunakan sebesar cent US$ 12 /kWh, diperoleh nilai IRR 19,7% dimana nilai IRR tersebut lebih besar dari nilai WACC (7,49%) sehingga pengembangan disain integrasi sistem layak untuk dilakukan.

Planning and procurement process of electricity generation facilities and LNG terminal facilities are still carried out separately. From a theoretical point of view, the integration of the power plant system with the regasification system at the LNG terminal is not optimal because there is still potential utilization of wasted energy both heat and cold energy which is an opportunity to improve overall system efficiency. System integration can be done by utilizing heat energy in engine cooling water and exhaust gas from the electricity generation process, while utilizing the cold energy from the LNG regasification process to decrease temperature of engine cooling water. Through a technical analysis method, design simulation with the utilization of heat energy from the gas engine can be carried out on the shell and tube type LNG Vaporizer.
The results of the technical simulation can be seen that the LNG flow rate of 4 MMSCFD will produce power of 17230 kW with an efficiency of 35.2%, where the efficiency is higher compared to the efficiency of a standalone system. In the economic analysis, base on loading profile of gas engine with a capacity factor of 80% and the assumption of the electricity price at cent US $ 12 / kWh, an IRR value of 19.7% was obtained where the IRR value was greater than the WACC value (7.49%), the result shows that development of system integration design is feasible.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52637
UI - Tesis Membership  Universitas Indonesia Library
cover
Decky Ambarbawono
"Tesis ini merupakan kajian mengenai nilai keekonomian dari pembangkit listrik energi dingin dan upaya pengembangan supaya memiliki nilai ekonomis yang lebih baik dengan cara meningkatkan efisiensi siklus dari pembangkit listriknya. Batasan mengenai lokasi terminal yang ada di lepas pantai mendorong penelitian ini. Sehingga dibutuhkan sebuah pemanfaatan Energi dingin yang akan digunakan untuk pembangkitan listrik yang terintegrasi dengan terminal.
Dalam prosesnya energi akan digunakan sebagai pendinginan untuk mengkondensasikan fluida kerja yang akan digunakan berupa propane dan gas alam itu sendiri sebelum dikontakkan langsung dengan air laut sebagai sumber panas menggunakan penukar panas. Proses yang ditampilkan dalam tesis ini disimulasikan dengan software HYSIS. Dengan menggunakan 2 fluida kerja maka energi listrik dapat dibangkitkan dari 2 turbin (High Pressure dan Low Pressure), sehingga dapat meningkatkan efisiensi dan menghasilkan energi listrik yang lebih besar.
Selain itu pemanfaatan energi ini mengurangi penurunan suhu air laut yang digunakan dalam proses regasifikasi secara signifikan. Karena sumber energi bukan berasal dari energi fosil maka pembangkit ini nol emisi CO2 sehingga merupakan energi ramah lingkungan.
Analisis resiko kepastian investasi yang digunakan dalam tesis ini menggunakan software Crystal Ball. Dan kelayakan ekonomi berdasarkan parameter-parameter yaitu nilai bersih sekarang (NPV), Internal rate of return (IRR), periode pengembalian (Payback Period), dan Benefit Cost Ratio (BCR).

This thesis is a study of economic value of cold energy powerplant and development of this powerplant to increase the economic value by increasing powerplant's cycle efficiency. The boundary is location of LNG terminal that located on offshore will encourage this research. With that reason, it needs to develop a utilization of cold energy that will be used to generate power integrated with terminal.
On the process cold energy will be used as cooler for condensation working fluid that using propane and natural gas itself before directly contact with seawater as a heat source at heat exchanger. Process on this thesis will simulate using HYSIS software. With Utilising 2 (two) working fluid then electrical power may be generate from 2 (two) turbine (High Pressure and Low Pressure) that will increase powerplant cycle efficiency and produce more electrical power.
In the other hand, utilization of this energy significantly decreace temperature of seawater that use on regasification process. Because the source of energy not from fossil then this powerplant is zero CO2 emission so it can be determined as environment friendly power.
Return of Investment analysis use on this thesis using Crystal Ball software. And economics feasibility based on parameters as Net Presentt Value (NPV), Internal Rate of Return (IRR), Payback Period and Benefit Cost Ratio (BCR).
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29929
UI - Tesis Open  Universitas Indonesia Library
cover
Naufal Muflih Ramadhon
"Transesterifikasi adalah reaksi kimia yang digunakan untuk mengubah minyak hewani menjadi biodiesel yang dapat digunakan. Pada penelitian ini, bahan bakar biodiesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO yang disintesis dari cangkang telur bebek. Katalis CaO berbasis limbah disintesis dari cangkang telur bebek melalui proses kalsinasi pada suhu 900 OC selama 2 jam. Transesterifikasi dilakukan pada suhu 55 OC pada 6 sampel dengan variasi penggunaan jumlah katalis (1.5 wt%, 6.5 wt%, dan 10 wt%) serta variasi katalis CaO komersial dan limbah. Katalis yang disintesis dari cangkang telur itik menghasilkan kadar Kalsium Oksida (CaO) sebesar 93.2%. Hasil pengujian sampel terbaik diperoleh untuk biodiesel dengan katalis 6.5% berbahan dasar limbah dan 10% katalis komersial. Untuk biodiesel dengan katalis berbasis limbah 6.5%, rendemen 90.75%, densitas 855.1 kg/m3, viskositas 5.73 mm2/cst, keasaman 1.69 mg-KOH/g, dan bilangan yodium 30.87 g-I2/100g. Untuk biodiesel dengan katalis berbasis limbah 10%, rendemen 90.81%, densitas 860.5 kg/m3, viskositas 6.52 mm2/cst, keasaman 2.03 mg-KOH/g, dan bilangan yodium 27.51 g-I2/100g. Angka keasaman standar tidak tercapai dimana maksimumnya adalah 0.5 mg-KOH/g.

Transesterification is a chemical reaction used to convert animal oils into usable biodiesel. In this study, biodiesel fuel was synthesized from beef tallow in a reactor using a CaO catalyst which also synthesized from duck eggshells. Waste-based CaO catalyst synthesized from duck eggshells through a calcination process at 900 OC for 2 hours. Transesterification carried out at a temperature of 55 OC on 6 samples with variations in the use of the amount of catalyst (1.5 wt%, 6.5 wt%, and 10 wt%) as well as variations of commercial and waste based CaO catalysts. The catalyst synthesized from duck eggshells obtained a yield of 93.2% amount of Calcium Oxide (CaO). The synthesized biodiesel also tested for its chemical and physical properties to fulfill the Indonesian National Standard (SNI). The best sample test results were obtained for biodiesel with 6.5% catalyst from waste-based and 10% catalyst from commercial. For biodiesel with 6.5% waste-based catalyst, 90.75% yield, 855.1 kg/m3 density, 5.73 mm2/cst viscosity, 1.69 mg-KOH/g acidity, and 30.87 g-I2/100g iodine number. For biodiesel with 10% waste-based catalyst, 90.81% yield, 860.5 kg/m3 density, 6.52 mm2/cst viscosity, 2.03 mg-KOH/g acidity, and 27.51 g-I2/100g iodine number. The standard acidity number is not reached where the maximum is 0.5 mg-KOH/g."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Abdullah Barii Redhanta
"Tingginya kebutuhan gas bumi yang di sertai menurunnya pasokan dari sumur migas sekitarnya diperkirakan akan membuat terjadinya defisit neraca gas sebesar 1.322 MMSCFD untuk wilayah Jawa Bagian Barat di tahun 2020. Oleh karena itu, Jawa Barat membutuhkan Fasilitas Regasifikasi LNG untuk menerima gas bumi dari luar daerah untuk dapat masuk ke jaringan pipa. Dalam penelitian dilakukan perbandingan efisiensi pemanfaatan energi dingin LNG untuk gudang pendingin dengan kapasitas 200 ton ikan dan pembangkit listrik dengan kapasitas 70% pemanfaatan energi dingin dari terminal apabila diterapkan di wilayah Jawa Bagian Barat. Regasifikasi dengan pemanfaatan energi dingin LNG menggunakan siklus rankine dan brayton untuk pembangkit listrik combined cycle dan sebagai media pendingin gudang pendingin. Selain dari itu dilakukan perbandingan nilai ekonomi untuk aplikasi dari masing-masing fasilitas yang terintegrasi.
Perhitungan teknis dilakukan menggunakan perangkat lunak proses simulasi dengan hasil dari analisa simulasi terminal regasifikasi efisiensi thermal didapatkan sebesar 58,44% dengan 70,05% gudang pendingin, 67,67% pembangkit listrik dan 97,61% regasifikasi. Sedangkan efisiensi energi listrik yang didapatkan adalah sebesar 58,21% dengan energi listrik yang dihasilkan 186 MW. Pada nilai ekonomi dilakukan perhitungan levelized cost untuk biaya produksi regasifikasi pada gudang pendingin yaitu sebesar 0,73 $/MMBtu, pada pembangkit listrik sebesar 0,75 $/MMBtu dan regasifikasi sebesar 1,20 $/MMBtu. Biaya pembangkitan listrik didapatkan sebesar 0,08$/kWh dan biaya penyimpanan gudang pendingin sebesar 0,67 $/pallet hari.

The high demand of natural gas which is accompanied by a declining supply of oil and gas wells surrounding areas is expected to create a deficit gas balance by 1.322 MMSCFD for the region of Western Java in 2020. Therefore, West Java requires LNG Regasification facilities to receive natural gas from outside of the region to be able to get into the pipeline network in this study, a comparison of efficiency cold energy LNG utilization for refrigeration warehouse with capacity of 200 tons fish and power plant with 70% capacity of cold energy utilization from terminal when applied in Western Java area. Regasification with LNG cold energy utilization using rankine and brayton cycles for combined cycle power plants and as cooling cooler medium for cold storage. In addition, economic value comparisons for applications of each integrated facility are performed.
Technical Calculations are performed using process simulation software with the result of regasification terminal simulation analysis of thermal efficiency which are 58,44% with 70,05% for cold storage, 67,67% for power plant and 97,61% for regasification. While the electrical energy efficiency obtained is 58.21% with electric energy generated 186 MW. The economic value of regasification are calculated by using levelized cost to obtain production cost in for cold storage that is equal to 0.73 $ / MMBtu, for power plant equal to 0,75 $ / MMBtu and regasification equal to 1,20 $ / MMBtu. Electricity generation costs were obtained at 0.08 $ / kWh and cooling storage cost of 0.67 $ / pallet days.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50372
UI - Tesis Membership  Universitas Indonesia Library
cover
Gilang Arief Wibowo
"Peningkatan kebutuhan energi listrik di Pulau Sulawesi menjadi alasan perlunya penambahan sumber tenaga listrik baru, dengan luas wilayah 193,846 KM2 dan jumlah penduduk mencapai 16 juta jiwa, kebutuhan energi listrik di Pulau ini tumbuh 11% per tahun, dimana kebutuhan energi listrik sebesar 11,672 GWh pada tahun 2015 diperkirakan meningkat menjadi 30,308 GWh pada tahun 2024, sehingga Pulau Sulawesi berpotensi mengalami defisit energi listrik di beberapa daerahnya. Sesuai RUPTL tahun 2016-2025, PT X berencana memanfaatkan LNG sebagai bahan bakar pembangkit listrik (PLTG/MG) yang sedang dipersiapkan seiring dengan program 35.000 MW. Untuk itu, optimasi penting dilakukan untuk mendapatkan biaya distribusi LNG yang minimum. Metode penelitian yang digunakan menggunakan model optimasi perangkat lunak solver (Microsoft excel) dengan objective function meminimalkan biaya distribusi LNG.
Dari hasil optimasi berdasarkan empat skenario distribusi LNG yang dipilih dan dari tiga sumber LNG yang akan di distribusikan ke tujuh lokasi pembangkit listrik berbahan bakar gas di Pulau Sulawesi dalam periode satu tahun didapatkan bahwa, metode transportasi yang menghasilkan biaya minimum adalah dengan menggunakan skenario Milk Run untuk masing-masing sumber LNG. Biaya transportasi terendah dari setiap sumber LNG didapatkan dari skenario 1 Bontang, yaitu dengan biaya transportasi diperoleh sebesar 0,81 USD/MMBTU sedangkan jumlah kapal yang digunakan pada metode Milk Run untuk seluruh sumber LNG berjumlah satu buah kapal LNG dengan kapasitas 19.500 m3.

Increasing the demand of electric energy in Sulawesi Island is the reason for the need for additional new power source, with the area of 193,846 KM2 and the total population reaches 16 million, the need of electric energy in this island grows 11% per year, where the need of electrical energy is 11,672 GWh in year 2015 is expected to increase to 30,308 GWh in 2024, so that Sulawesi Island has potential to deficit electrical energy in some areas. In accordance with RUPTL 2016-2025, PT X plans to utilize LNG as fuel for power plant (PLTG / MG) which is being prepared along with the 35,000 MW program. Therefore, optimization is important to obtain minimum LNG distribution costs. The research method used using software solver optimization model (Microsoft excel) with objective function minimize LNG distribution cost.
From the optimization results based on the four selected LNG distribution scenarios and from the three LNG sources that will be distributed to seven gas-fired power plant sites on Sulawesi Island within the one-year period it is found that the transportation method that generates the minimum cost is to use the Milk Run scenario for each LNG source. The lowest transportation cost of each LNG source is obtained from scenario 1 Bontang, with transportation cost is 0.81 USD / MMBTU while the number of vessels used in Milk Run method for all LNG sources amounts to one LNG vessel with capacity of 19,500 m3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50811
UI - Tesis Membership  Universitas Indonesia Library
cover
Triana Yusman
"ABSTRAK
Berdasarkan data kebutuhan energi di Indonesia, pembangunan pembangkit listrik di beberapa wilayah sedang dicanangkan. Perencanaan sistem logistik yang optimal akan mendapatkan manfaat. PLN melalui RUPTL tahun 2016-2025 melaporkan rencana pengembangan pembangkit listrik bermesin/berbahan bakar gas PLTG/MG di wilayah Sumatera. PLTG/MG akan beroperasi dengan suplai gas bumi dari Floating Storage Regasification Unit FSRU Arun, kemudian didistribusikan menggunakan Small Scale LNG Carrier SSLC menuju terminal penerima Receiving Terminal yang melayani pembangkit listrik di wilayah Sumatera. Pada penelitian ini dilakukan perancangan distribusi LNG dari FSRU Arun dengan SSLC menuju terminal penerima yang melayani pembangkit listrik tenaga gas yang berada di wilayah Sumatera. Optimasi distribusi LNG dilakukan dengan menggunakan Algoritma Greedy dan Pemrograman Linear dengan fungsi keputusan memaksimalkan muatan kapal. Variabel masukan berupa kebutuhan LNG dari terminal penerima, kapal dengan variasi kapasitas muat, kecepatan kapal, jarak distribusi dan biaya transportasi akan menjadi masukan dalam optimasi yang akan dilakukan. Dari proses optimasi didapatkan hasil dimana kapal 2.500 cbm dengan kecepatan 15 knot melayani rute Arun-Sabang-Nias-Arun dan kapal ukuran 7.500 cbm dengan kecepatan 13 knot melayani rute Arun-Bangka-Belitung-Lamoung-Arun. Estimasi Capital Expenditure CAPEX terbesar adalah di wilayah Nias dan terkecil di wilayah Sabang. Dari perhitungan yang dilakukan, diketahui bahwa Operational Expenditure OPEX kapal 7.500 cbm lebih besar dibandingkan kapal 2.500 cbm.

ABSTRACT
Based on data of energy needs in Indonesia, the construction of power plants in some areas is being declared. Planning an optimal logistics system will benefit. PLN through RUPTL 2016 2025 reported the development plan of gas fired power plant PLTG MG in Sumatera area. PLTG MG designed to operate by burning natural gas which supplied from Floating Storage Regasification Unit FSRU in Arun and will be transported using Small Scale LNG Carrier SSLC to each receiving terminal that serving several PLTG MG. This research proposed LNG distribution network from Arun to receiving terminals in Sumatera. Optimization of LNG distribution done by using Greedy Algorithm and Linear Programming with maximum capacity as the objective function. Variable input for the optimization namely power plant LNG demand, vessel capacity, vessel speed, matix distance and transportation cost. Optimization results showed there are two vessels should utilized for optimum LNG Distribution. 1st vessel with capacity 2,500 cbm 15 knot serving for LNG distribution routes from Arun Sabang Nias Arun and the 2nd vessel with 7,500 cbm 13 knot serving LNG distribution routes from Arun Bangka Belitung Lampung Arun. The largest estimate of Capital Expenditure CAPEX is in Nias area and the smallest is in Sabang area. From the calculations, it is known that Operational Expenditure OPEX ship 7,500 cbm larger than ship 2,500 cbm. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Citra Kusumadewi
"Salah satu pemanfaatan gas suar bakar adalah sebagai bahan bakar pembangkit. Pembangkit Listrik X adalah PLTGU existing yang menghasilkan daya listrik 410 MW dengan menggunakan bahan bakar gas alam sebanyak 87,74 MMSCFD. Pada penelitian ini gas suar bakar akan dijadikan bahan bakar pengganti gas alam untuk membangkitkan listrik 410 MW. Total maksimum laju alir gas suar bakar yang tersedia adalah 7,9 MMSCFD. Pemanfaatan gas suar bakar sebagai bahan bakar pembangkit listrik akan menurunkan biaya bahan bakar namun juga menambah biaya investasi berupa alat kompresor.
Dalam penelitian ini dilakukan dua skenario, yaitu skenario existing menggunakan bahan bakar gas alam dan skenario menggunakan variasi laju alir gas suar bakar terhadap laju alir gas alam sebagai bahan bakar Pembangkit Listrik X. Skenario yang paling memberikan keuntungan dari pada desain existing adalah saat menggunakan laju alir gas suar bakar sebesar 7,9 MMSCFD dengan laju alir gas alam sebesar 79,06 MMSCFD. NPV skenario desain tersebut 56.976.160,22 dengan pay back period 14,84 tahun.

Utilization of flare gas is as fuel for power plants. Power plant X is the existing gas and steam power plant that generates 410 MW of electrical power using natural gas fuel as much as 87.74 MMSCFD. In this study flare gas will be used as fuel instead of natural gas to generate 410 MW of electricity. The maximum total flare gas flow rate provided is 7.9 MMSCFD. Utilization of flare gas as power plant fuel will reduce fuel costs but also add to the cost of investment of compressor tool.
In this study two scenarios will be compared, the existing scenarios using natural gas fuel and scenarios using a variation of the flow rate of gas flaring on the flow rate of natural gas as fuel for power plants X. Scenario would benefit from the existing design are currently using flow rate gas flare 7,9 MMSCFD and natural gas with flow rate 79,06 MMSCFD. The design scenarios NPV is 56.976.160,22 with a payback period of the plant investation is 14,84 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47340
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>