Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 118629 dokumen yang sesuai dengan query
cover
Aulia Rahman
"Aktivitas produksi dan ekspor komoditas kelapa sawit terus mengalami ekspansi dan peningkatan. Indonesia memiliki perkebunan kelapa sawit dengan luas mencapai 12.761.586 Hektar. menjadikan Indonesia sebagai salah satu penghasil CPO (Crude Palm Oil) terbesar di dunia. Keberhasilan produksi dari kelapa sawit tidak terlepas dari kegiatan perencanaan dan pengawasan sehingga diperlukan pemantauan secara cepat dan efektif. Penelitian ini dilakukan dengan tujuan untuk mengetahui karakteristik dan pola persebaran umur kelapa sawit berdasarkan nilai backscatter pada citra radar Sentinel-1. Data berupa citra radar Sentinel-1 digunakakan untuk dapat melakukan estimasi terhadap umur kelapa sawit berdasarkan nilai backscatter menggunakan pendekatan machine learning. Hasil pemodelan menunjukan bahwa tren nilai backscatter terhadap umur kelapa sawit memiliki karakter berbanding lurus dengan umur kelapa sawit. Estimasi umur kelapa sawit berdasarkan nilai backscatter pada Sentinel-1 GRD menghasilkan 3 kelas umur kelapa sawit dengan tingkat overall accuracy sebesar 93.3% pada anlisis yang dilakukan secara Single Time, sedangkan pada analisis time series diperoleh nilai overall accuracy sebesar 94.5% Hasil menunjukkan bahwa kelas umur dewasa memiliki nilai z score sebesar -4.190963 dengan pola persebaran clustered (mengelompok), kelas umur taruna dengan z score -8.388942 berpola clustered (mengelompok), dan kelas umur remaja dengan perolehan nilai z score 7.801667 dengan pola persebaran dispersed (seragam).

Production and export activities of palm oil commodities continue to expand and increase. Indonesia has oil palm plantations with an area of ​​12,761,586 hectares. making Indonesia one of the largest CPO (Crude Palm Oil) producers in the world. The success of production from oil palm cannot be separated from planning and monitoring activities so that it is necessary to monitor quickly and effectively. This research was conducted with the aim of knowing the characteristics and patterns of age distribution of oil palms based on the backscatter value on Sentinel-1 radar images. Data in the form of Sentinel-1 radar images are used to estimate the age of oil palms based on the backscatter value using a machine learning approach. The modeling results show that the trend of the backscatter value of the age of the oil palm has a character that is directly proportional to the age of the oil palm. Oil palm age estimation based on the backscatter value on Sentinel-1 GRD resulted in 3 oil palm age classes with an overall accuracy rate of 93.3% in the Single Time analysis, while the time series analysis obtained an overall accuracy value of 94.5%. adults have a z score of -4.190963 with a clustered distribution pattern, the cadet age class with a z score of -8.388942 with a clustered pattern, and the adolescent age class with a z score of 7.801667 with a dispersed distribution pattern."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Rahma
"Aktivitas produksi dan ekspor komoditas kelapa sawit terus mengalami ekspansi dan peningkatan. Indonesia memiliki perkebunan kelapa sawit dengan luas mencapai 12.761.586 Hektar. menjadikan Indonesia sebagai salah satu penghasil CPO (Crude Palm Oil) terbesar di dunia. Keberhasilan produksi dari kelapa sawit tidak terlepas dari kegiatan perencanaan dan pengawasan sehingga diperlukan pemantauan secara cepat dan efektif. Penelitian ini dilakukan dengan tujuan untuk mengetahui karakteristik dan pola persebaran umur kelapa sawit berdasarkan nilai backscatter pada citra radar Sentinel-1. Data berupa citra radar Sentinel-1 digunakakan untuk dapat melakukan estimasi terhadap umur kelapa sawit berdasarkan nilai backscatter menggunakan pendekatan machine learning. Hasil pemodelan menunjukan bahwa tren nilai backscatter terhadap umur kelapa sawit memiliki karakter berbanding lurus dengan umur kelapa sawit. Estimasi umur kelapa sawit berdasarkan nilai backscatter pada Sentinel-1 GRD menghasilkan 3 kelas umur kelapa sawit dengan tingkat overall accuracy sebesar 93.3% pada anlisis yang dilakukan secara Single Time, sedangkan pada analisis time series diperoleh nilai overall accuracy sebesar 94.5% Hasil menunjukkan bahwa kelas umur dewasa memiliki nilai z score sebesar - 4.190963 dengan pola persebaran clustered (mengelompok), kelas umur taruna dengan z score -8.388942 berpola clustered (mengelompok), dan kelas umur remaja dengan perolehan nilai z score 7.801667 dengan pola persebaran dispersed (seragam).

Production and export activities of palm oil commodities continue to expand and increase. Indonesia has oil palm plantations with an area of 12,761,586 hectares. making Indonesia one of the largest CPO (Crude Palm Oil) producers in the world. The success of production from oil palm cannot be separated from planning and monitoring activities so that it is necessary to monitor quickly and effectively. This study was conducted with the aim of knowing the characteristics and patterns of age distribution of oil palms based on the backscatter value on Sentinel-1 radar images. Data in the form of Sentinel-1 radar images are used to estimate the age of oil palms based on the backscatter value using a machine learning approach. The modeling results show that the trend of the backscatter value of the age of the oil palm has a character that is directly proportional to the age of the oil palm. Oil palm age estimation based on the backscatter value on Sentinel-1 GRD resulted in 3 oil palm age classes with an overall accuracy rate of 93.3% in the Single Time analysis, while the time series analysis obtained an overall accuracy value of 94.5%. adults have a z score of -4.190963 with a clustered distribution pattern, the cadet age class with a z score of -8.388942 with a clustered pattern, and the adolescent age class with a z score of 7.801667 with a dispersed distribution pattern (uniform)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Rahman
"Aktivitas produksi dan ekspor komoditas kelapa sawit terus mengalami ekspansi dan peningkatan. Indonesia memiliki perkebunan kelapa sawit dengan luas mencapai 12.761.586 Hektar. menjadikan Indonesia sebagai salah satu penghasil CPO (Crude Palm Oil) terbesar di dunia. Keberhasilan produksi dari kelapa sawit tidak terlepas dari kegiatan perencanaan dan pengawasan sehingga diperlukan pemantauan secara cepat dan efektif. Penelitian ini dilakukan dengan tujuan untuk mengetahui karakteristik dan pola persebaran umur kelapa sawit berdasarkan nilai backscatter pada citra radar Sentinel-1. Data berupa citra radar Sentinel-1 digunakakan untuk dapat melakukan estimasi terhadap umur kelapa sawit berdasarkan nilai backscatter menggunakan pendekatan machine learning. Hasil pemodelan menunjukan bahwa tren nilai backscatter terhadap umur kelapa sawit memiliki karakter berbanding lurus dengan umur kelapa sawit. Estimasi umur kelapa sawit berdasarkan nilai backscatter pada Sentinel-1 GRD menghasilkan 3 kelas umur kelapa sawit dengan tingkat overall accuracy sebesar 93.3% pada anlisis yang dilakukan secara Single Time, sedangkan pada analisis time series diperoleh nilai overall accuracy sebesar 94.5% Hasil menunjukkan bahwa kelas umur dewasa memiliki nilai z score sebesar -4.190963 dengan pola persebaran clustered (mengelompok), kelas umur taruna dengan z score -8.388942 berpola clustered (mengelompok), dan kelas umur remaja dengan perolehan nilai z score 7.801667 dengan pola persebaran dispersed (seragam).

Production and export activities of palm oil commodities continue to expand and increase. Indonesia has oil palm plantations with an area of ​​12,761,586 hectares. making Indonesia one of the largest CPO (Crude Palm Oil) producers in the world. The success of production from oil palm cannot be separated from planning and monitoring activities so that it is necessary to monitor quickly and effectively. This research was conducted with the aim of knowing the characteristics and patterns of age distribution of oil palms based on the backscatter value on Sentinel-1 radar images. Data in the form of Sentinel-1 radar images are used to estimate the age of oil palms based on the backscatter value using a machine learning approach. The modeling results show that the trend of the backscatter value of the age of the oil palm has a character that is directly proportional to the age of the oil palm. Oil palm age estimation based on the backscatter value on Sentinel-1 GRD resulted in 3 oil palm age classes with an overall accuracy rate of 93.3% in the Single Time analysis, while the time series analysis obtained an overall accuracy value of 94.5%. adults have a z score of -4.190963 with a clustered distribution pattern, the cadet age class with a z score of -8.388942 with a clustered pattern, and the adolescent age class with a z score of 7.801667 with a dispersed distribution pattern."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Pramayuda
"Kelapa sawit merupakan tanaman budidaya penghasil minyak nabati yang mempunyai nilai ekonomis tinggi. Di Indonesia, Provinsi Riau tercatat sebagai provinsi yang memiliki luas perkebunan terbesar. Dengan luas lahan kelapa sawit di Provinsi Riau yang begitu besar, maka penting untuk mengetahui kondisi terkini umur dari tanaman kelapa sawit. Tujuan dari penelitian ini adalah untuk mengestimasi umur tanaman dengan metode regresi polinomial kuadratik serta menganalisis pola spasial sebaran umur tanaman kelapa sawit di Provinsi Riau. Penelitian ini menggunakan transformasi indeks vegetasi NDVI dan EVI yang diekstraksi dari Citra Landsat 8 – OLI Surface Reflectance. Proses akuisisi data, pengolahan data, analisis data hingga pemetaan menggunakan platform Google Earth Engine (GEE). Metode klasifikasi menggunakan Machine Learning, seperti; SVM, Random Forest dan CART untuk kemudian dibandingkan tingkat akurasinya. Estimasi umur tanaman didapatkan dari hasil pemodelan regresi polinomial kuadratik. Hasil penelitian menggunakan Machine Learning didapatkan hasil berupa tingkat akurasi yang berbeda, yakni: SVM untuk akurasi keseluruhan sebesar 98,6 % dan akurasi kappa sebesar 0,979, Random Forest untuk akurasi sebesar 97,43 % dan 0.96, CART akurasi sebesar 97,43 % dan 0.96. Sebaran umur berdasarkan faktor fisik ketinggian didominasi oleh kelompok umur dewasa terutama pada ketinggian 0-5 mdpl. Begitu pula dengan faktor fisik kemiringan lereng yang di dominasi oleh kelompok umur dewasa dan muda terutama pada kemiringan lereng 0-8 % dan 15-30 %. Sementara pada faktor fisik jarak dari sungai setiap jarak 2000meter secara keseluruhan didominasi oleh kelompok umur dewasa namun pada jarak terdekat dengan sungai yakni 0-2000meter didominasi oleh kelompok umur muda.

Oil palm is a cultivated plant that produces vegetable oil that has high economic value. In Indonesia, Riau Province is listed as the province with the largest plantation area. With the large area of ​​oil palm in Riau Province, it is important to know the current condition of the age of the oil palm plantation. The purpose of this study was to estimate the age of the plant by using quadratic polynomial regression method and to analyze the spatial pattern of the age distribution of oil palm plants in Riau Province. This study uses the transformation of the NDVI and EVI vegetation indices extracted from Landsat 8 – OLI Surface Reflectance Imagery. The process of data acquisition, data processing, data analysis to mapping using the Google Earth Engine (GEE) platform. The classification method uses Machine Learning, such as; SVM, Random Forest and CART to then compare the level of accuracy. The estimated age of the plant was obtained from the results of quadratic polynomial regression modeling. The results of the research using Machine Learning obtained results in the form of different levels of accuracy, namely: SVM for an overall accuracy of 98.6% and kappa accuracy of 0.979, Random Forest for an accuracy of 97.43% and 0.96, CART accuracy of 97.43% and 0.96. The age distribution based on the physical height factor is dominated by the adult age group, especially at an altitude of 0-5 meters above sea level. Likewise with the physical factor of the slope which is dominated by the adult and young age groups, especially on the slopes of 0-8% and 15-30%. Meanwhile, on the physical factor, the distance from the river every 2000 meters is dominated by the adult age group, but at the closest distance to the river, 0-2000 meters, it is dominated by the young age group. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michelle Madeira Anggita Putri
"Perkebunan sawit merupakan sektor dengan jumlah konflik agraria tertinggi di Indonesia. Konflik yang terjadi pada sektor perkebunan sawit kerap memunculkan aktivitas yang didalamnya melibatkan penggunaan kekerasan. Tugas Karya Akhir ini bertujuan untuk menganalisis konflik kebun sawit di Desa Bangkal dan mengidentifikasi kekerasan yang muncul sebagai bagian dari proses eskalasi konflik. Dalam tulisan ini, data terkait kasus konflik kebun sawit PT. HMBP 1 dan Masyarakat Desa Bangkal dikumpulkan melalui kajian kepustakaan dan dianalisis dengan menggunakan Teori Segitiga Konflik. Hasil analisis menemukan bahwa kedua aktor yang berkonflik mengembangkan sikap negatif terhadap satu sama lain akibat adanya pertentangan terkait pengelolaan tanah yang diwujudkan dalam berbagai bentuk perilaku, baik koersif maupun non koersif. Konflik ini bereskalasi melalui lima tahapan, yaitu mobilisasi, perluasan, polarisasi, disosiasi, dan jebakan. Dari lima tahap tersebut, empat diantaranya melibatkan dua jenis kekerasan, yakni kekerasan struktural dan kekerasan langsung, seperti ancaman kekerasan, penembakan gas air mata, dan penembakan menggunakan senjata api.

Oil palm plantations are the sector with the highest number of agrarian conflicts in Indonesia. Conflicts in the oil palm sector often involve activities that include the use of violence. This Final Project aims to analyze the oil palm plantation conflict in Bangkal Village and identify the violence that emerged as part of the conflict escalation process. In this paper, data related to the palm oil plantation conflict between PT. HMBP 1 and The Bangkal Village Community were collected through literature review and analyzed using the Conflict Triangle Theory. The analysis found that both conflicting parties developed negative attitudes towards each other due to disagreements over land management, manifested in various forms of behavior, both coercive and non-coercive. This conflict escalated through five stages, namely mobilization, enlargement, polarization, dissociation and entrapment. Among this five stages, four of them involve two types of violence, structural violence and direct violence, such as threats of violence, tear gas and firearms shootings.
"
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Bernadeta Nafirsta Ayu Nareswari
"Curah hujan merupakan unsur iklim yang memiliki keragaman dan fluktuasi yang tinggi di Indonesia. Hal ini membuat curah hujan merupakan unsur iklim yang paling dominan untuk mencirikan iklim di Indonesia. Berdasarkan gerakan udara naik untuk membentuk awan, terdapat tiga tipe hujan yaitu konvektif, orografik, dan gangguan. Pengukuran terhadap curah hujan dapat dilakukan dalam berbagai metode, salah satunya dengan menggunakan pengukuran jarak jauh yaitu radar (Radio Detecting and Ranging). Pada studi ini dilakukan perhitungan radar cuaca dengan menggunakan machine learninguntuk mengkaji keakuratan perhitungan data radar cuaca terhadap estimasi curah hujan di Pulau Biak, Indonesia. Produk dari radar cuaca merupakan data reflektifitas (Z). Penggunaan machine learning ini diterapkan pada data reflektifitas radar cuaca dimana data yang digunakan adalah C-MAX atau Column Maximum. Data curah hujan pada periode Desember 2021 sampai Februari 2022 di Kabupaten Biak diolah menggunakan algoritma yang berbeda, yaitu Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting Extreme Gradient Boosting. Hasil dari studi ini akan menunjukkan algoritma terbaik yang dapat digunakan untuk memprediksi estimasi curah hujan konvektif di Pulau Biak, Indonesia. Berdasarkan penelitian yang sudah dilakukan, didapatkan hasil R2 pada algoritma Decision Tree sebesar 0,70; Random Forest 0,60; Adaptive Boosting sebesar 0,42; Gradient Boosting sebesar 0,71 dan Extreme Gradient Boosting sebesar 0,73. Hasil analisis menunjukkan bahwa algoritma Extreme Gradient Boosting dapat memberikan estimasi curah hujan paling baik di Pulau Biak, Indonesia.

Rainfall is an element of climate with high diversity and fluctuation in Indonesia. This makes rainfall the most dominant climate element to characterize the climate in Indonesia. Based on the movement of rising air to form clouds, there are three types of rain: convective, orographic, and disturbance. Rainfall can be measured in various methods, one of which is by using remote measurement, namely radar (Radio Detecting and Ranging). In this study, weather radar calculations were carried out using machine learning to assess the accuracy of weather radar data calculations on the estimated rainfall value on Biak Island, Indonesia. The product of weather radar is reflectivity (Z) data. The use of machine learning is applied to weather radar reflectivity data where the data used is C-MAX or Column Maximum. Rainfall data from December 2021 to February 2022 in Biak Regency is processed using five different algorithms: Decision Tree, Random Forest, Adaptive Boosting, Gradient Boosting, and Extreme Gradient Boosting. The result of this study will show the best algorithm that can be used to predict convective rainfall estimation in Biak Island, Indonesia. Based on the research that has been done, the R2 results obtained on the Decision Tree algorithm of 0.70; Random Forest 0.60; Adaptive Boosting of 0.42; Gradient Boosting of 0.71 and Extreme Gradient Boosting of 0.73. The analysis shows that the Extreme Gradient Boosting algorithm can estimate the best rainfall in Biak Island, Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Linda Kumalasari
"Laporan magang ini menjelaskan tentang perlakuan akuntansi aset perkebunan, risiko bisnis bawaan dan siklus audit atas aset perkebunan kelapa sawit pada PT XYZ. Perlakuan akuntansi atas aset perkebunan PT XYZ didasarkan pada PSAK No. 16 Revisi 2014 atas Aset Tetap. Analisis perlakuan akuntansi atas aset perkebunan PT XYZ dibandingkan dengan peraturan dalam IAS 41. Auditor melaksanakan test of control, membuat lead schedule, test of additions plantation assets, test of capitalization cost, test of impairment assessment dan test of borrowing cost. Prosedur audit yang digunakan auditor mengacu pada standar yang berlaku di Indonesia. Hasil laporan magang memberikan saran kepada PT XYZ dalam mencatat biaya-biaya pada saat Tanaman Belum Menghasilkan (TBM) langsung menambah nilai TBM, memperbaiki dan memperbarui peta blok lahan tanam dan mengintegrasikan sistem informasi kantor kebun dengan kantor pusat.

This internship report explains the accounting treatment of plantation assets, inherent risk of business cycle and audits of palm oil plantation assets in PT XYZ. Accounting treatment over plantation assets PT XYZ based on PSAK No. 16 Revision of 2014 of Fixed Assets. Analysis accounting treatment over plantation assets PT XYZ compared with the provisions of IAS 41. The auditors have carried out test of control, make lead schedule, test of additions plantation assets, test of capitalization cost, test of impairment assessment and test of borrowing cost. Auditor used audit procedures based on standards that prevail in Indonesia. The audit report give advice to PT XYZ in posting costs of Immature Plantation immediately increase the Immature Plantation value, improve and update a map of block land cropping and integrate information system of garden office with its head office.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rashifa Khairani Setianegara
"Curah hujan mempunyai dampak yang signifikan terhadap berbagai sektor kehidupan dan lingkungan. Misalnya, curah hujan membantu meningkatkan produktivitas pertanian, menjamin cadangan pangan dan air. Selain itu, curah hujan juga mempengaruhi kekeringan dan siklus air tanah. Oleh karena itu, mengetahui cara memperkirakan curah hujan di suatu daerah secara akurat sangat penting. Salah satu cara memperkirakan curah hujan adalah dengan menggunakan radar cuaca yang mengukur nilai reflektivitas, kemudian menggunakan persamaan Z-R untuk menghitung curah hujan yang terjadi. Namun, beberapa penelitian sebelumnya telah menggunakan model estimasi curah hujan kuantitatif dengan machine learning dari data radar hujan karena dapat memberikan prediksi yang lebih akurat dibandingkan persamaan Z-R. penelitian lain menyatakan bahwa gradient boosting menghasilkan estimasi curah hujan yang lebih akurat dibandingkan beberapa algoritma lainnya. Pada penelitian ini, estimasi curah hujan dilakukan pada satu wilayah dengan tipe curah hujan lokal di Kota Gorontalo. Estimasi ini dilakukan dengan membandingkan keakuratan dua metode: persamaan Z-R dan algoritma machine learning. Persamaan Z-R yang digunakan adalah persamaan Z-R oleh Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) dan Rosenfeld (𝐴 = 250, 𝑏 = 1.2), sedangkan algoritma machine learning yang digunakan adalah gradient boosting. Hasil perbandingan menunjukkan bahwa gradient boosting memberikan estimasi yang lebih akurat dibandingkan dengan kedua persamaan Z-R tersebut. Hasil estimasi algoritma gradient boosting memberikan nilai RMSE, MAE, dan R 2 masing-masing sebesar 0,61, 0,17, dan 0,86. Persamaan Marshall-Palmer Z-R menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,14, 3,66, dan -0,19. Estimasi persamaan Z-R Rosenfeld menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,18, 3,71, dan -0,20. Dari ketiga metrik tersebut, dapat disimpulkan bahwa gradient boosting memberikan estimasi yang paling akurat untuk curah hujan di wilayah dengan tipe hujan lokal di Kota Gorontalo.

Rainfall has a significant impact on various sectors of life and the environment. For example, rainfall helps increase productivity in agriculture, ensuring food reserves and water. In addition, rainfall also affects drought and the soil water cycle. Therefore, knowing how to estimate rainfall in an area accurately is essential. One way to estimate rainfall is to use a weather radar that measures reflectivity values, then use the Z-R equation to calculate the rainfall that occurs. However, Several previous studies have used machine learning quantitative rainfall estimation models from rain radar data because it can provide more accurate predictions than the Z-R equation. Another study state that gradient boosting provides more accurate rainfall estimation than several other algorithms. In this study, rainfall estimation was carried out in an area with local rainfall types in Gorontalo City. This estimation is done by comparing the accuracy of two methods: the Z-R equation and machine learning algorithms. The Z-R equation used is the Z-R Equation by Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) and Rosenfeld (𝐴 = 250, 𝑏 = 1.2), while the machine learning algorithm used is gradient boosting. The comparison results show that gradient boosting provides a more accurate estimation than the two ZR equations. The gradient boosting algorithm estimation results provide RMSE, MAE, and R 2 values of 0.61, 0.17 and 0.86, respectively. The Marshall-Palmer Z-R equation obtained RMSE, MAE, and R 2 values of 8.14, 3.66, and -0.19. The estimation of Rosenfeld's Z-R equation resulted in RMSE, MAE, and R 2 values of 8.18, 3.71, and - 0.20. From these three metrics, it is concluded that gradient boosting provides the most accurate estimate for rainfall in areas with localized rainfall types in Gorontalo City."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Destohalgia Amaanullah
"Analisis harga Crude Palm Oil (CPO) merupakan langkah krusial dalam perencanaan strategis industri minyak kelapa sawit untuk mengantisipasi fluktuasi harga. Metode analisis harga awalnya berbasis statistik, namun seiring perkembangan teknologi dan kompleksitas data, metode machine learning mulai diterapkan untuk hasil lebih akurat. Harga CPO dipengaruhi oleh faktor eksternal seperti curah hujan dan nilai tukar mata uang, yang membuat prediksi harga menjadi tantangan tersendiri. Penelitian ini menganalisis harga CPO menggunakan metode deret waktu, Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX), dan metode Machine Learning, Random Forest. Data yang digunakan meliputi harga CPO, nilai tukar rupiah terhadap dollar, dan inflasi di Indonesia dari Januari 2010 hingga Januari 2024. Evaluasi performa model menggunakan Mean Absolute Percentage Error (MAPE) menunjukkan bahwa Random Forest memiliki performa lebih baik dengan nilai MAPE 18,92%, dibandingkan SARIMAX dengan nilai MAPE 19,07%. Hasil penelitian ini diharapkan dapat membantu pelaku industri CPO dalam pengambilan keputusan strategis dan perencanaan bisnis yang lebih baik.

Crude Palm Oil (CPO) price analysis is a crucial step in the strategic planning of the palm oil industry to anticipate price fluctuations. Price analysis methods were originally based on statistics, but with the development of technology and data complexity, machine learning methods began to be applied for more accurate results. CPO prices are affected by external factors such as rainfall and currency exchange rates, which makes price prediction a challenge. This research analyzes CPO prices using the time series method, Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX), and the machine learning method, Random Forest. The data used includes CPO prices, rupiah exchange rate against the dollar, and inflation in Indonesia from January 2010 to January 2024. Evaluation of model performance using Mean Absolute Percentage Error (MAPE) shows that Random Forest has better performance with a MAPE value of 18.92%, compared to SARIMAX with a MAPE value of 19.07%. The results of this study are expected to help CPO industry players in making strategic decisions and better business planning."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febrianti Komala Sari
"ABSTRAK
Maraknya kegiatan industri dan perdagangan minyak sawit di dunia menjadikan tanaman kelapa sawit sebagai sorotan dalam agroindustri global saat ini. Tesis ini bertujuan untuk mengetahui metode yang digunakan untuk mendapatkan nilai wajar biological asset tanaman kelapa sawit serta mengetahui besarnya nilai wajar biological asset tanaman kelapa sawit tersebut. Hal ini dilakukan dalam upaya persiapan adopsi International Accounting Standard 41 (IAS 41) sebagai rangakaian konvergensi International Financial Reporting Standard (IFRS) di Indonesia.
Pengukuran nilai wajar biological asset menurut IAS 41 masih terbentur oleh absennya pasar aktif dan benchmark sector dari tanaman perkebunan kelapa sawit, akhirnya penggunaan metode alternatif lain digunakan untuk bisa mengukur nilai wajar biological asset tanaman kelapa sawit tersebut yaitu dengan menggunakan DCF Model dan Cost Approach.

ABSTRACT
The rise of industrial activity and trade of palm oil in the world, make oil palm plantations as highlighted in today's global agro-industry. This thesis aims to determine the method used to obtain the fair value of biological assets of oil palm plantations as well as knowing the amount of the fair value of biological assets of the oil palm plantations. This is done in order to prepare the adoption of International Accounting Standard 41 (IAS 41) as the set of International Financial Reporting Standard (IFRS) convergence in Indonesia.
Measuring the fair value of biological assets under IAS 41 was hit by the absence of an active market and sector benchmark of oil palm plantations, eventually use other alternative methods can be used to measure the fair value of the palm trees biological assets by using DCF model and the Cost Approach."
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2013
T34796
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>