Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 138170 dokumen yang sesuai dengan query
cover
Afiten Rahmin Sanjaya
"Pada penelitian ini preparasi komposit busa nikel termodifikasi mangan oksida dan graphene dan uji performanya sebagai elektroda untuk superkapasitor telah berhasil dilakukan. Karakterisasi menggunakan SEM-EDX dan spektroskopi Raman menunjukkan morfologi berupa bercak putih dari keberadaan mangan oksida pada kerangka busa nikel. Sedangkan karakterisasi dengan Spektroskopi Raman menunjukkan adanya puncak peak yang mengindikasikan D band dan G band dengan rasio ID/IG yang dapat menentukan keberadaan material elektroaktif graphene. Uji elektrokimia menggunakan teknik Cyclic Voltammetry (CV) menunjukkan nilai kapasitansi spesifik tertinggi pada Busa nikel/MnO2/Graphene dalam electrolit hydrogel PVA-Na2SO4 yaitu sebesar 806,16 F/g pada scanrate optimum 25 mV.s-1. Uji elektrokimia menggunakan teknik Electrochemical Impedance Spectroscopy (EIS) menunjukkan performa terbaik adalah pada Busa nikel/MnO2/Graphene dalam electrolit Na2SO4 sebesar 348,42 F/g .Uji elektrokimia menggunakan teknik Galvanostatic Charge- discharge (GCD) menunjukkan performa terbaik adalah pada Busa nikel/MnO2/Graphene dalam electrolit PVA-Na2SO4 pada arus yang diberikan sebesar 2 mA, dengan nilai kapasitansi spesifik mencapai 1680,67 F/g, densitas energi sebesar 43,60 Wh/kg dan densitas daya sebesar 838,8 W/kg.

In this study, the preparation of a modified nickel foam composite of manganese oxide and graphene and its performance test as an electrode for a supercapacitor have been successfully carried out. Characterization using SEM- EDX and Raman spectroscopy showed morphology in the form of white spots from the presence of manganese oxide in the nickel foam framework. Meanwhile, the characterization using Raman Spectroscopy showed the presence of peaks indicating D band and G band with ID/IG ratio which can determine the presence of graphene electroactive material. Electrochemical test using Cyclic Voltammetry (CV) technique showed the highest specific capacitance value in nickel/MnO2/Graphene foam in hidrogel electrolyte PVA-Na2SO4, which was 806,16 F/g at an optimum scanrate of 25 mV.s-1. The electrochemical test using the Electrochemical Impedance Spectroscopy (EIS) technique showed the best performance was on nickel/MnO2/Graphene foam at 348,42 F/g. The electrochemical test using the Galvanostatic Charge-discharge (GCD) technique showed the best performance was on nickel/MnO2/Graphene in hidrogel electrolyte PVA-Na2SO4 at a given current of 2 mA, with a specific capacitance value of 1680,67 F/g, an energy density of 43,60 Wh/kg and a power density of 838,8 W/kg."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Salsabila Dinitasari
"Pada penelitian ini preparasi komposit busa nikel termodifikasi mangan oksida dan graphene dan uji performanya sebagai elektroda untuk superkapasitor telah berhasil dilakukan. Karakterisasi menggunakan SEM-EDX menunjukkan morfologi berupa bercak putih dan terbentuknya lapisan berupa lembaran yang menyelimuti kerangka busa nikel menunjukkan keberadaan mangan oksida dan graphene. Sedangkan karakterisasi dengan Spektroskopi Raman menunjukkan adanya peak yang mengindikasikan D band dan G band  dengan rasio ID/IG yang dapat menentukan keberadaan material elektroaktif graphene. Uji elektrokimia menggunakan teknik Cyclic Voltammetry (CV) menunjukkan nilai kapasitansi spesifik tertinggi pada Busa nikel/MnO2/Graphene yaitu sebesar 1117,32 F/g pada scanrate optimum 5 mV.s-1. Uji elektrokimia menggunakan teknik Galvanostatic Charge-discharge (GCD) menunjukkan performa terbaik adalah pada Busa nikel/MnO2/Graphene pada arus yang diberikan sebesar 2 mA, dengan nilai kapasitansi spesifik mencapai 977,77 F/g, densitas energi sebesar 27,5 Wh/kg dan densitas daya sebesar 4500 W/kg. Uji elektrokimia menggunakan teknik Electrochemical Impedance Spectroscopy (EIS) menghasilkan Nyquist plot. Nilai Rct  diperoleh untuk masing-masing elektroda busa nikel/MnO2, busa nikel/graphene, dan busa nikel/MnO2/graphene adalah sebesar 415 Ω; 580,58 Ω; dan 1460 Ω.

In this research, the preparation of nickel foam composites modified with manganese oxide and graphene and its performance test as electrodes for supercapacitor has been successfully carried out. Characterization using SEM-EDX showed morphology in the form of white spots and the formation of a layer in the form of a sheet covering the nickel foam framework indicating the presence of manganese oxide and graphene. Meanwhile, the characterization using Raman spectroscopy showed that there was a peak indicating the D band and G band with the ID/IG ratio which could determine the presence of graphene electroactive material. The electrochemical test using the Cyclic Voltammetry (CV) technique showed the highest specific capacitance value for MnO2/graphene/Ni foam, which was 1117.32 F/g at an optimum scan rate of 5 mV.s-1. The electrochemical test using the Galvanostatic Charge-discharge (GCD) technique shows that the best performance is on MnO2/graphene/Ni foam at a given current of 2 mA, with a specific capacitance value of 977.77 F/g, an energy density of 27.5 Wh/kg and a power density of 4500 W/kg. Electrochemical tests using the Electrochemical Impedance Spectroscopy (EIS) technique produced a Nyquist plot. The Rct value obtained for each electrode of MnO2/Ni foam , graphene/Ni foam, and MnO2/graphene/Ni foam is 415 Ω; 580.58 Ω; and 1460 Ω."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Imam Hidayat Nurwahid
"Superkapasitor merupakan perangkat penyimpanan energi yang belakangan ini banyak dikembangkan karena mempunyai kelebihan dibandingkan perangkat lainnya. Pengembangan perangkat ini utamanya dilakukan terhadap material elektrodanya. Material elektroda yang umum digunakan pada superkapasitor adalah karbon. Karbon dapat diperoleh dari limbah biomassa, seperti ampas kopi. Pada penelitian ini, telah berhasil memanfaatkan ampas kopi sebagai prekursor karbon melalui proses pirolisis dan dikarakterisasi menggunakan X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Raman Spectroscopy, dan Transmission Electron Microscopy (TEM). Berdasarkan hasil karakterisasi XRF, diketahui bahwa karbon dari ampas kopi memiliki pengotor berupa mineral atau makronutrien serta mikronutrien, serta data FTIR menunjukkan bahwa karbon ampas kopi memiliki gugus fungsi dengan kandungan oksigen yang lebih banyak daripada karbon komersial yang menandakan bahwa masih terdapat senyawa organik yang tersisa. Data karakterisasi XRD dan Raman spektrometri mengkonfirmasi bahwa karbon ampas kopi memiliki struktur amorf. Mikrograf SEM menggambarkan karbon ampas kopi memiliki morfologi seperti lembaran tidak beraturan yang bertumpuk tidak rapi. Karbon ampas kopi dan karbon komersial disintesis menjadi grafena oksida (GO) melalui metode Hummer yang dimodifikasi. Data XRD menunjukkan bahwa hasil sintesis GO ampas kopi memiliki struktur kristalinitas yang berbeda dari GO komersial. Berdasarkan mikrograf FE-SEM dan TEM, dapat diketahui bahwa GO ampas kopi dan komersial memiliki morfologi lembaran-lembaran, namun terjadi penggumpalan pada GO ampas kopi. Hasil analisis BET didapatkan luas permukaan GO komersial yang lebih tinggi dari pada GO ampas kopi. Karbon dan GO dari kedua jenis karbon tersebut kemudian dijadikan komposit dengan penambahan nanopartikel SiO2 menggunakan metode sonokimia. Berdasarkan data karakterisasi XRD, FTIR, dan Raman spektroskopi, dapat diketahui bahwa proses sintesis komposit telah berhasil. Mikrograf FE-SEM dan TEM menunjukkan bahwa nanopartikel SiO2 tersebar di permukaan karbon dan GO, serta terjadi peningkatan luas permukaan BET. Pengujian elektrokimia dengan menggunakan cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS) telah dilakukan terhadap kedelapan material dan dapat disimpulkan bahwa perubahan struktur karbon menjadi GO dan modifikasi dengan penambahan nanopartikel SiO2 dapat meningkatkan nilai kapasitansi spesifik dan hambatan/resistansi dari karbon komersial dan karbon ampas kopi.

Supercapacitors are energy storage devices that have recently been developed because they have advantages over other devices. The development of this device is mainly carried out on the electrode material. The electrode material commonly used in supercapacitors is carbon. Carbon can be obtained from biomass waste, such as coffee grounds. In this study, coffee grounds have been used as carbon precursors through the pyrolysis process and were characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Raman Spectroscopy, and Transmission Electron Microscopy (TEM). Based on the results of XRF characterization, it is known that carbon from coffee grounds has impurities in the form of minerals or macronutrients and micronutrients, and FTIR data shows that coffee grounds carbon has a functional group with more oxygen content than commercial carbon, which indicates that there are still organic compounds remaining. XRD and Raman spectrometric characterization data confirmed that coffee grounds carbon had an amorphous structure. SEM micrographs depict coffee grounds carbon having a morphology like irregular sheets stacked untidily. Coffee grounds carbon and commercial carbon were synthesized into graphene oxide (GO) by a modified Hummer method. XRD data showed that the synthesized GO coffee grounds had a different crystallinity structure from commercial GO. Based on the FE-SEM and TEM micrographs, it can be seen that the GO coffee grounds and commercially have a sheet morphology, but there is agglomeration in the GO coffee grounds. BET analysis showed that commercial GO surface area was higher than GO coffee grounds. Carbon and GO from the two types of carbon are then synthesized into composites with the addition of SiO2 nanoparticles using sonochemical methods. Based on XRD, FTIR, and Raman spectroscopy characterization data, it can be seen that the composite synthesis process has been successful. FE-SEM and TEM micrographs show that SiO2 nanoparticles are dispersed on the carbon surface, and an increase in the surface area of the BET. Electrochemical tests using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have been carried out on the materials, and the result can be concluded that changes in the carbon structure to GO and modifications with the addition of SiO2 nanoparticles can increase the specific capacitance and resistance/resistance values of commercial carbon and coffee grounds carbon"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2003
S41320
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afif Wardana
"Grafit dari biomassa sebagai elektroda alternatif untuk baterai sudah banyak dikembangkan untuk menghasilkan kapasitansi energi yang tinggi dan siklus penggunaan yang lama. Penelitian ini menentukan dan membandingkan jenis grafit NiO dan Non NiO terbaik untuk dijadikan katoda superkapasitor yang bersumber dari biomassa Tempurung Kelapa Sawit, Tempurung Kemiri, dan Tandan Kosong Kelapa Sawit (TKKS). Optimalisasi dilakukan dengan mengkombinasi proses aktivasi kimia (KOH) menggunakan konsentrasi  5 molar pada rasio 1 : 5 dan aktivasi fisika (Ar) menggunakan injeksi 0,2 L/min pada temperatur 950°C selama 45 menit. Modifikasi sampel dilakukan dengan impregnasi prekrusor Ni(NO2)3pada grafit, yang di ubah menjadi NiO melalui penguraian termal pada temperatur 300°C selama 90 menit. Dari hasil karakterisasi XRF ditemukan senyawa NiO dan menunjukan rendahnya persentase kehadiran logam alkali dan alkali tanah pada seluruh sampel grafit kecuali K+ dan Cl-. Hasil XRD menunjukan struktur yang masih didominasi grafit amorfus dengan chemical formula C16.00 (Orthorombik) yang ditemukan pada interval 25-27o . Hasil EIS menunjukan nilai Rp terendah dimiliki oleh superkapasitor AW 3 sebesar 79,62, nilai tersebut sesuai dengan hasil pengujian CV yang memiliki Kapasitansi Spesifik (Cp) tertinggi sebesar 7,39748, tetapi nilai Cp teringgi berbanding terbalik dengan hasil BET yang menunjukan luas permukaan terbesar dimiliki oleh TKKS Non-NiO sebesar 319,298 m2/g. Untuk memperdalam analisis dilakukan karakterisasi FTIR dengan tujuan mengetahui pengaruh kehadiran ikatan OH, C=C, dan C-O dan gugus fungsi lainnya terhadap peforma superkapasitor. Jadi, penggunaan grafit sebagai (katoda) dan LTO sebagai (anoda) sebagai bahan superkapsitor menjadi pilihan yang paling tepat jika penggunaan parameter scan rate (mV/s) optimal.

Graphite from biomass as an alternative electrode for batteries has been widely developed to produce high energy capacitance and long cycle usage. This research determines and compares the best types of NiO and Non-NiO graphite to be used as supercapacitor cathodes sourced from biomass such as Palm Kernel Shell, Candlenut Shell, and Empty Fruit Bunch (EFB). Optimization is done by combining chemical activation processes (KOH) using a 5 molar concentration at a 1:5 ratio and physical activation (Ar) using an injection of 0.2 L/min at a temperature of 950°C for 45 minutes. Sample modification is carried out by impregnating Ni(NO2)3 precursor on graphite, which is converted into NiO through thermal decomposition at a temperatur of 300°C for 90 minutes. From XRF characterization results, NiO compounds were found, indicating a low percentage of alkali and alkaline earth metal presence in all graphite samples except K+ and Cl-. The XRD results show a structure still dominated by amorphous graphite with a chemical formula of C16.00 (Orthorhombic) found in the 25-27o interval. The EIS results show the lowest Rp value is owned by supercapacitor AW 3 at 79.62, and this value corresponds to the CV testing results, which have the highest Specific Capacitance (Cp) at 7.39748. However, the highest Cp value is inversely proportional to the BET results, which show that the largest surface area is owned by Non-NiO EFB at 319.298 m2/g. To deepen the analysis, FTIR characterization is carried out to determine the influence of the presence of OH, C=C, and C-O bonds, and other functional groups on supercapacitor performance. So, the use of graphite as a cathode and LTO as an anode for supercapacitor material becomes the most appropriate choice with optimal scan rate parameters (mV/s)."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riyani Tri Yulianti
"Tesis ini membahas tentang karbon aktif berpori yang berasal dari tandan kosong kelapa sawit (TKKS) sebagai bahan elektroda untuk superkapasitor, dengan tujuan untuk mendapatkan parameter proses yang tepat melalui metode sederhana (karbonisasi dan aktivasi) agar menghasilkan karbon aktif berpori dengan kapasitansi spesifik yang tinggi. Pada penelitian ini, kami berhasil mengubah biomassa TKKS menjadi karbon aktif berpori dengan kinerja tinggi, dengan nilai kapasitansi spesifik sebesar 452,71 ± 6.5 F/g pada 0,5 A/g, serta luas permukaan spesifik (SSA) yang moderat, sebesar 1215,38 m2/g. Selain itu, superkapasitor yang dirakit dari sampel AC700 menunjukkan kepadatan energi yang sangat baik, mencapai 15,39 Wh/kg pada kepadatan daya 50 W/kg. Selain itu, superkapasitor AC700 juga menunjukkan kestabilan siklus yang tinggi, dengan retensi kapasitansi sebesar 93% setelah 10.000 siklus. Pada penelitian ini, KOH digunakan sebagai agen aktivasi dengan variasi suhu aktivasi 600 °C, 700 °C, dan 800 °C selama 2 jam di bawah atmosfer N2. Kinerja kapasitif superior dari sampel AC700 dikaitkan dengan efek gabungan dari SSA yang tinggi, gugus fungsional pada permukaan karbon, dan distribusi ukuran pori yang optimal. Selain itu, sampel AC700 menunjukkan kandungan SiO2 tertinggi, yaitu sebesar 34,33%, dimana SiO2 dalam kerangka karbon mempromosikan pembentukan situs aktif yang lebih hidrofilik, sehingga meningkatkan kinerja pseudokapasitansi.

This thesis discusses porous activated carbon derived from oil palm empty fruit bunches (EFB) as an electrode material for supercapacitors, with the aim of obtaining the proper process parameters using a simple method (carbonization and activation) to produce porous activated carbon with high specific capacitance. In this research, we successfully transformed EFB biomass into porous activated carbon with outstanding performance, achieving a very high specific capacitance of 452.71 ± 6.5 F/g at 0.5 A/g, and a moderate specific surface area (SSA) of 1215.38 m2/g. Furthermore, the supercapacitor assembled from the AC700 sample exhibited excellent energy density, reaching 15.39 Wh/kg at a power density of 50 W/kg. Additionally, the AC700 supercapacitor also demonstrated remarkable cycle stability, with a capacitance retention of 93% after 10,000 cycles. In this study, KOH was used as the activation agent with activation temperature variations of 600°C, 700°C, and 800°C for 2 hours under N2 atmosphere. The superior capacitive performance of the AC700 sample was attributed to the combined effect of its high SSA, functional groups on the carbon surface, and optimal pore size distribution. Moreover, the AC700 sample showed the highest SiO2 content, amounting to 34.33%, where SiO2 in the carbon framework promoted the formation of more hydrophilic active sites, thereby enhancing pseudocapacitance performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Khatarina Mada Regita Cahya Kusuma
"Konsumsi bahan bakar fosil mengakibatkan peningkatan CO2 di atmosfer dan memicu perubahan iklim yang sangat signifikan salah satunya pemanasan global. Solusi untuk menanggulangi pemanasan global adalah dengan menerapkan metode penangkapan CO2 telah dianggap sebagai strategi yang paling menjanjikan dalam mengatasi masalah tersebut. Adsorben CO2 dapat digunakan sebagai solusi untuk meminimalisir peningkatan CO2 di atmosfer. Pada penelitian ini berhasil dilakukan sintesis grafena oksida (GO), magnesium oksida (MgO) dan MgO/GO dari ampas kopi sebagai adsorben CO2. Grafena oksida (GO) disintesis dari grafit yang telah dipirolisis ampas kopi menggunakan metode hummers termodifikasi. MgO disintensis dengan menggunakan metode hidrotermal. Hasil sintesis GO kopi kemudian didispersikan dengan magnesium oksida (MgO) membentuk komposit MgO/GO ampas kopi. Hasil sintesis GO Kopi, MgO, dan nanokomposit MgO/GO kopi berhasil disintesis. Nanokomposit MgO/GO kopi memiliki potensi sebagai adsorben CO2 dengan luas permukaan yang besar yaitu 113,81 m2/g dan kapasitas adsorpsi CO2 sebesar 0,3339 mmol/g.

The consumption of fossil fuels increases atmospheric CO2, triggering significant climate changes, including global warming. A solution to mitigate global warming is the implementation of carbon capture methods, considered the most promising strategy to address this issue. CO2 adsorbents can be utilized to minimize the rise of CO2 in the atmosphere. This study employed graphene oxide (GO), magnesium oxide (MgO), and MgO/GO synthesized from coffee grounds as CO2 adsorbents. Graphene oxide (GO) was synthesized from graphite pyrolyzed coffee grounds using a modified Hummers method. MgO was synthesized through a hydrothermal method. The synthesized GO coffee was then dispersed with magnesium oxide (MgO) to form the MgO/GO coffee composite. The synthesis of GO Coffee, MgO, and the MgO/GO coffee nanocomposite was successful, for synthesis. The MgO/GO coffee nanocomposite demonstrates potential as a CO2 adsorbent due to its large surface area of 113.81 m2/g and a CO2 adsorption capacity of 0.3339 mmol/g."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rohimmahtunnissa Azhar
"Penelitian tesis ini berbasis pada dekomposisi ozon keluaran reaktor pengolahan air minum kemasan, proses desinfeksi pada industri susu dan makanan yang dapat membahayakan kesehatan makhluk hidup dan merusak lingkungan. Dekomposisi ozon menggunakan katalis berinti aktif MnOx dengan loading nominal 0?2%. Sebagai komparasi digunakan penyangga katalis seperti Zeolit Alam Lampung, Karbon Aktif Granular dan Pasir Hijau dengan diameter 18?100 mesh. Katalis dipreparasi dengan cara incipient wetness impregnation dan kalsinasi pada temperatur 300°C.
Kinerja katalis sebagai konversi dekomposisi ozon diuji dalam reaktor unggun tetap secara kontinu. Diketahui bahwa katalis berpenyangga Karbon Aktif Granular berdiameter 60?100 mesh dan konsentrasi loading nominal 1% lebih efektif dan efisien dibandingkan yang lain dengan konversi dekomposisi 100% selama 24 jam. Kualitas katalis dikarakterisasi dengan metode BET dan SEM EDX dengan hasil luas permukaan 558,754 m2/g dan loading aktual 0,47%.

This thesis based on ozone decomposition from water bottled processing reactor, desinfection in dairy and food industry emissions which its dangerous for the living things and destruct the environment. Ozone decomposition use MnOx as active site with nominal loading 0?2%. Catalyst support as comparative study use Lampung Natural Zeolite, Granular Activated Carbon and Green Sand with 18 ? 100 mesh in diameter. Catalyst is prepared by incipient wetness impregnation and calcination at 300°C.
Catalyst performance as ozone decomposition conversion is tested in continue fixed bed reactor. It knew that Granular Activated Carbon as catalyst support with 60?100 mesh in diameter and 1% loading nominal has decomposition conversion 100% for 24 hours, is the most effective and efficient than others. The catalyst quality is characterized by BET methode and SEM EDX which the surface area is 558.754 m2/g and actual loading 0.47%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45764
UI - Tesis Membership  Universitas Indonesia Library
cover
Yola Yolanda
"Fuel cell urea membutuhkan katalis berbasis logam Ni. Tetapi logam Ni memiliki sifat over potensial yang tinggi sehingga menurunkan efisensi fuel cell. Doping dengan MnO2 dapat menurunkan over potensial Ni. Oleh karena itu pada penelitian ini NiMn2O4 dideposisi dengan metode hidrotermal pada permukaan busa nikel untuk digunakan sebagai katalis pada anoda fuel cell urea. Pendeposisian dilakukan pada struktur busa nikel yang berpori menggunakan larutan Mn(NO3)2.6H2O dan Ni(NO3)2.6H2O sebagai prekusor nikel dan mangan dengan kehadiran urea. Reaksi dilakukan autoclave dan dipanaskan di dalam furnace dengan suhu 180° C selama 24 jam. Dilanjtkan dengan annealing pada 400° C selama 2 jam. Hasil penelitian menunjukkan bahwa busa nikel telah berhasil dimodifikasi dengan NiMn2O4. NiMn2O4/busa nikel menunjukkan densitas arus yang baik untuk fuel cell urea berdasarkan hasil cyclic voltammetry. Variasi konsentrasi prekusor nikel dan mangan pada rasio 1:1 menunjukkan hasil terbaik dengan densitas arus sebesar 206.453 mA cm-2 didalam larutan 2 M KOH dan 0.33 M Urea. Aplikasi pada Direct Urea Fuel Cell menunjukkan densitas daya yang dihasilkan adalah 0.304 mW cm-2 dengan mengunakan larutan 2 M KOH dan 0.33 M Urea dalam anoda dan larutan 2 M H2O2 dan 2 M H2SO4 pada katoda.

ABSTRACT
Urea fuel cells require a Ni metal-based catalyst. However, Ni metal has high over potential properties, thus reducing fuel cell efficiency. Doping with MnO2 can reduce the over potential of Ni. Therefore, in this study NiMn2O4 was deposited by hydrothermal method on the surface of nickel foam to be used as a catalyst in the urea fuel cell anode. The deposition was carried out on the porous nickel foam structure using a solution of Mn(NO3)2.6H2O and Ni(NO3)2.6H2O as a precursor to nickel and manganese in the presence of urea. The reaction is autoclaved and heated in a furnace at 180 ° C for 24 hours. Continued with annealing at 400 ° C for 2 hours. The results showed that nickel foam was successfully modified with NiMn2O4. NiMn2O4 / nickel foam shows good current density for urea fuel cells based on cyclic voltammetry results. The variation in the concentration of nickel and manganese precursors at a 1: 1 ratio showed the best results with a current density of 206,453 mA cm-2 in a 2 M KOH solution and 0.33 M Urea. Application to the Direct Urea Fuel Cell shows that the resulting power density is 0.304 mW cm-2 using a 2 M KOH solution and 0.33 M Urea in the anode and a 2 M H2O2 and 2 M H2SO4 solution at the cathode.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Atik Suhrowati
"ABSTRAK
Preparasi graphene dari limbah elektroda grafit terdiri dari tiga tahap, yaitu sintesis grafit oksida menggunakan metode Hummers termodifikasi, kemudian grafit oksida dikelupas menggunakan gelombang ultrasonik 54.000 Hz menjadi graphene oksida, dan graphene oksida yang dihasilkan direduksi menggunakan serbuk zink. Hasil karaktersasi XRD grafit oksida menunjukkan bahwa reaksi oksidasi tidak sempurna karena tidak terdapat difraksi pada posisi 2? = 10,5? yang merupakan peak dari grafit oksida. Hasil karakterisasi SEM-EDS graphene menunjukkan bahwa struktur morfologi dari graphene yang dihasilkan terdapat tumpukan lapisan yang berarti bahwa graphene tidak terbentuk. Ketidaksempurnaan reaksi oksidasi dan reduksi disebabkan oleh unsur-unsur pengotor yang ada didalam limbah elektroda grafit, karena grafit karbon merupakan unsur yang tidak reaktif dan sulit untuk bereaksi karena memiliki ikatan yang stabil, bila dibandingkan dengan pengotor yang terkandung. Sehingga unsur-unsur logam yang lebih reaktif bereaksi terlebih dahulu dengan pereaksi yang digunakan untuk oksidasi dan reduksi grafit menyebabkan proses oksidasi dan reduksi tidak sempurna.

ABSTRACT
Graphene preparation from electrode graphite waste consists of three stages, graphite oxide synthesis using modified Hummers method, then graphite oxide is exfoliated using 54,000 Hz ultrasonic waves into graphene oxide, and the resulting graphene oxide is reduced using zinc powder. The graphite oxide XRD characterization result show that oxidation reaction is not perfect because there is no diffraction at position 2 10,5 which is peak of graphite oxide. The graphene SEM EDS characterization results show that the morphological structure of the resulting graphene is a layer stack which means that graphene is not formed. The imperfections of the oxidation and reduction reactions are caused by impurity elements present in the electrode waste of graphite, because graphite carbon is an element that is not reactive and difficult to react because it has a stable bond, when compared with the impurity contained. Thus more reactive metal elements react first with reagents used for oxidation and graphite reduction causing oxidation and reduction processes to be inperfect."
2017
S67113
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>