Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 191576 dokumen yang sesuai dengan query
cover
Bondan Adinugroho
"Kebutuhan listrik dan uap air di Fasilitas Gas Processing Kilang LNG Arun sebesar 158.400.000 kWh/tahun dan uap air 180 ton/jam (TPH) dihasilkan dari 3 (tiga) unit Gas Turbine Generator (GTG) dan 3 (tiga) unit Heat Recovery Steam Generator (HRSG) di Unit pembangkit U-90 di Perta Arun Gas (PAG). Permasalahan dari pembangkitan listrik dan uap saat ini adalah kebutuhan bahan bakar yang besar yaitu 13,14 MMSCFD untuk memproses 30 MMSCFD gas sales. Ketersediaan suku cadang (usang), dan beberapa kali terjadi gangguan operasi (blackout) juga menjadi permasalahan pembangkit eksisting. Tujuan dari penelitian ini adalah untuk memisahkan dari GTG dan HRSG eksisting dan membangun unit pembangkitan baru di Fasilitas Gas Processing Kilang LNG Arun dengan unit pembangkitan listrik dan uap air yang lebih efisien dan tingkat avai;abilitas yang tinggi. Penggantian dilakukan dengan berbagai alternatif yaitu pembelian unit GTG & HRSG + Boiler baru, pembelian unit Gas Engine Generator (GEG) & HRSG + Boiler baru, dan penyambungan listrik ke PLN (Perusahaan Listrik Negara) + Boiler. Salah satu hasil dari penggantian pembangkit adalah dengan penggunaan GTG & HRSG + Boiler baru akan memerlukan bahan bakar gas sebesar 12,88 MMSCFD, dimana terdapat efisiensi gas sebesar 0,26 MMSCFD, dan dengan penambahan biaya pembelian unit dan biaya pemeliharaan akan mendapatkan tarif pembangkitan listrik sebesar 0,221 $/kWh dan tarif pembangkitan uap air sebesar 0,0019 $/ton/tahun dengan metode keeokonomian cash flow. Penggantian GTG dan HRSG eksisting akan lebih ekonomis jika dilakukan kegiatan penurunan uap air di Fasilitas Gas Processing Kilang Arun, hal ini dikarenakan alternatif pembangkitan pengganti membutuhkan konsumsi bahan bakar gas untuk menghasilkan uap air lebih besar dibandingkan dengan pembangkitan listrik.

The demand for electricity and steam at the Arun LNG Refinery Gas Processing Facility is 158,400,000 kWh / year and 180 tons / hour of water vapor (TPH) is produced from 3 (three) units of Gas Turbine Generator (GTG) and 3 (three) units of Heat Recovery Steam Generator (HRSG) at the U-90 generating unit at Perta Arun Gas (PAG). The problem with electricity and steam generation today is the large fuel requirement, namely 13.14 MMSCFD to process 30 MMSCFD of gas sales. The availability of spare parts (obsolete), and several times the operation interruption (blackout) is also a problem in the existing plant. The purpose of this research is to separate from the existing GTG and HRSG and build a new generation unit at the Arun LNG Refinery Gas Processing Facility with a more efficient electricity and steam generation unit and a high level of availability. Replacement is carried out with various alternatives, namely the purchase of a new GTG & HRSG + Boiler unit, the purchase of a new Gas Engine Generator (GEG) & HRSG + Boiler unit, and connecting electricity to PLN (State Electricity Company) + Boiler. One result of the replacement of the generator is that with the use of GTG & HRSG + the new boiler will require a gas fuel of 12.88 MMSCFD, where there is a gas efficiency of 0.26 MMSCFD, and with the addition of unit purchase costs and maintenance costs will get electricity generation tariff of 0.221 $ / kWh and steam generation tariff of 0.0019 $ / ton / year using the cash flow economic method. Replacement of the existing GTG and HRSG will be more economical if steam reduction activities are carried out at the Arun Refinery Gas Processing Facility, this is because the alternative generation of replacement requires higher gas fuel consumption to produce steam compared to electricity generation."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahpudi Baisir
"Langkah konservasi energi penelitian ini mengupayakan peningkatan efisiensi pada teknik co-firing yang sudah umum dilakukan di Indonesia melalui sistem pengering biomassa. Percobaan dilakukan melalui pengujian salah satu pembangkit PLTU di area Jawa Barat dengan daya terpasang 3 x 350 MW yang sudah menerapkan co-firing sejak tahun 2021. Sistem pengering dipilih menggunakan jenis Rotary Drum Dryer dengan media pemanas berupa limbah panas gas buang exit boiler yang diambil setelah IDF #1 dengan tekanan ± 20 pa dan temperature 150 oC. Tekanan keluaran IDF #1 sangat rendah membutuhkan energi tambahan besar centrifugal fan dalam menyalurkan flue gas melalui pipa sepanjang ± 500 m sampai menuju lokasi dryer di area coal yard, dekat penyimpanan biomassa dan conveyor batu bara penyuplai bahan bakar ke sistem pembangkit. Biomassa disupplai dari pengusaha lokal sekitar lokasi pembangkit antara lain terdiri dari 90% sawdust dan 10% sekam padi. Memiliki kandungan rata-rata moisture campuran ( 44,57% dan rata-rata calorific value campuran ( 2.673,72 Kcal/Kg. Kapasitas pengering disesuaikan dengan kemampuan supplai biomassa sebesar 200 t/day. Pengujian dilakukan menggunakan simulasi pengering rotary dryer pada Aspen Plus dengan memvariasikan flow inlet biomass 8, 9 dan 10 t/h, flue gas flow 70, 80 dan 90 t/h serta residence time 15, 20 dan 25 menit. Moisture produk dry biomass terendah diperoleh 6,54% pada pengujian flow inlet biomass 8 t/h, flue gas flow 90 t/h dan residence time 25 menit. Hasil simulasi Aspen kemudian dibandingkan pada 5 kriteria penilaian kelayakan investasi yaitu NPV, IRR, Payback Period (PBP), Benefit and Cost (B/C) Ratio dan ROI. Hasilnya walaupun moisture produk dry biomass diperoleh lebih besar 10,9%, namun nilai NPV, IRR dan PBP, masing-masing sebesar Rp. 116.445.284.041,63, 150,32% dan 0,67 tahun, diperoleh sebagai yang terbaik pada pengujian flow inlet biomass 10 t/h, flue gas flow 90 t/h dan residence time 25 menit. Hal ini karena flow rate produk dry biomass lebih besar sehingga mampu membangkitkan selisih energy output yang lebih besar pula pada generator pembangkit. Sedangkan hasil terbaik B/C Ratio dan ROI, masing-masing sebesar 4,14 dan 314,12%, didapatkan saat pengujian flow inlet biomass 10 t/h, flue gas flow 80 t/h dan residence time 25 menit, hal ini karena energi tambahan untuk mendorong flue gas lebih kecil sehingga mempengaruhi B/C Ratio dan ROI. Penurunan energy output dan operational duration harus sedapat mungkin dihindari karena dampaknya sangat significant dalam menurunkan nilai 5 kriteria penilaian investasi. Validasi desain sistem pengering pada Aspen juga dilakukan untuk mengetahui akurasi.

This energy-conservation research aims to improve the efficiency of the cofiring process, which is widely utilized in Indonesia, using a biomass drying system. The experiment was conducted on a steam-coal power station in the West Java area with an installed power of 3 x 350 MW, which has been using cofiring since 2021. The drying method was selected utilizing a Rotary Drum Dryer type with a heating medium from waste heat of exhaust boiler flue gas obtained after IDF # 1, with pressure ± 20 pa and temperature 150 oC. The output pressure of IDF #1 is very low, requiring large additional energy from the centrifugal fan to flow the flue gas through a pipe measuring ± 500 m long to the dryer location in the coal yard area, near the biomass storage and coal conveyor that supplies fuel to the boiler system. Biomass is supplied from local suppliers around power plant location, consisting of 90% sawdust and 10% rice husks. It has an average mixed moisture content  44.57% and an average mixed calorific value  2,673.72 Kcal/Kg. The dryer capacity is adjusted to the biomass supply capability of 200 t/day. Experiments were carried out using a rotary dryer simulation on Aspen Plus by varying biomass inlet flow of 8, 9 and 10 t/h, flue gas flow of 70, 80 and 90 t/h and residence time of 15, 20 and 25 minutes. The lowest dry   biomass product moisture was obtained at 6.54% in the biomass inlet flow test of 8 t/h, flue gas flow of 90 t/h and residence time of 25 minutes. The results from Aspen simulation then compared with 5 investment assessment criteria: NPV, IRR, Payback Period (PBP), Benefit and Cost (B/C) Ratio and ROI. Even though the moisture content of the dry   biomass product was 10.9%, which was higher than the smallest value, the biomass inlet flow test yielded the best NPV, IRR, and PBP values, including Rp. 116,445,284,041.63 for NPV, 150.32% for IRR, and 0.67 years for PBP, with a biomass inlet flow test of 10 t/h, a flue gas flow of 90 t/h, and a residence time of 25 minutes. This is because the flow rate of the dry   biomass product is greater, so it can generate a larger energy output in the power plant generator. Meanwhile, the best B/C Ratio and ROI findings, including 4.14 and 314.12%, were obtained by testing the biomass inlet flow of 10 t/h, flue gas flow of 80 t/h, and residence period of 25 minutes, this is because the additional energy to push the flue gas is smaller, thus affecting the B/C Ratio and ROI. Decreasing energy output and operational duration must be avoided wherever possible because the impact is very significant in reducing the value of the 5 investment assessment criteria. Validation of the drying system design for Aspen was also carried out to determine accuracy."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Robby Muliadi
"Skripsi ini membahahas studi analisis kinerja dari mesin propulsi kapal LNG Tanker menggunakan Combined cycle yang komponennya terdiri dari Turbin gas, Turbin uap, dan Heat recovery steam generator HRSG . Langkah pertama adalah menentukan hambatan tipikal dari kapal LNG Tanker 125.000 m3 menggunakan software ldquo;Maxsurf Resistance 20 rdquo; kemudian dirancang sistem propulsi untuk memenuhi kebutuhan daya dari hambatan tersebut menggunakan software ldquo;Cycle Tempo 5.0 rdquo; dari hasil simulasi didapatkan daya maksimum sistem sebesar 28122.23 kW dengan konsumsi bahan bakar 1.173 Kg/s dan effisiensi sistem sebesar 48.49 pada kondisi muat, kapal dapat mencapai kecepatan 20.67 knot.

This study explains about performance analysis of a propulsion system engine of an LNG Tanker Ship using Combined Cycle which the components are Gas Turbine, Steam Turbine and Heat Recovery Steam Generator. The first step is to determine the general resistance of an LNG Tanker Ship 125.000 m3 by using Maxsurf Resistance 20 then designing the propulsion system to fulfill the necessary power from the resistance by using Cycle Tempo 5.0 software. The simulation results can indicate the maximum power of system about 28122.23 kW with the fuel consumption about 1.173 Kg s and the system efficiency about 48.49 in full loaded condition, the ship speed can reach up to 20.67 knot."
Depok: Universitas Indonesia, 2017
S68162
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zaili Musa
"Kemajuan kebudayaan sesuatu bangsa terutama dalam hal tingkat kehidupan serta derajat industrialisasi akan diikuti dengan meningkatnya konsumsi energi. Kondur Petroleum S.A. salah satu perusahaan yang memproses minyak bumi saat ini tengah melakukan pencarian sumber minyak baru yangjuga berarti memerlukan energi listrik tambahan untuk mendukung program pengelnoran serta produksinya.
Turbin Gas Centaur tipe T-4500 berporos tunggal sebagai pendukung utama proses produksi terutama dilapangan Kurau yang merupakan unit konversi energi dengan sendirinya perlu dikaji. Apakah peningkatan i 2500 kW tenaga listrik dapat didukung oleh unit Turbin yang ada, atau harus membeli unit yang baru. Sehubungan dengan hal ini diatas, maka diupayakan mengkaji ulang proses - proses termodinamikanya secara langsung dilapangan dengan hasil yang didapat tidak menyimpang jauh dari yang ada di di literatur."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S36743
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Handayani Lulun Lande
"Perencanaan dan pengadaan fasilitas pembangkit listrik berikut fasilitas terminal LNG masih dilakukan terpisah. Dari sudut pandang teori, integrasi sistem pembangkit listrik dengan sistem regasifikasi pada terminal LNG masih belum optimal karena masih terdapat potensi pemanfaatan energi terbuang baik energi panas maupun energi dingin yang merupakan peluang perbaikan untuk meningkatkan efisiensi sistem keseluruhan. Integrasi sistem dapat dilakukan dengan memanfaatkan energi panas pada air pendingin mesin dan pada gas buang dari proses pembangkitan energi listrik, sekaligus memanfaatkan energi dingin dari proses regasifikasi LNG untuk mendinginkan air pendingin mesin. Melalui metode analisis teknis, simulasi rancangan dengan pemanfaatan energi panas dari mesin pembangkit dapat dilakukan pada LNG Vaporizer tipe shell and tube.
Dari hasil simulasi teknis dapat diketahui dengan flow rate LNG sebesar 4 MMSCFD akan menghasilkan daya sebesar 17230 kW dengan efisiensi 35,2%, dimana efisiensi tersebut lebih tinggi apabila dibandingkan dengan efisiensi sistem yang tidak terintegrasi. Dalam analisis ekonomi pada pola pembebanan mesin pembangkit dengan faktor kapasitas 80% dan asumsi harga listrik yang digunakan sebesar cent US$ 12 /kWh, diperoleh nilai IRR 19,7% dimana nilai IRR tersebut lebih besar dari nilai WACC (7,49%) sehingga pengembangan disain integrasi sistem layak untuk dilakukan.

Planning and procurement process of electricity generation facilities and LNG terminal facilities are still carried out separately. From a theoretical point of view, the integration of the power plant system with the regasification system at the LNG terminal is not optimal because there is still potential utilization of wasted energy both heat and cold energy which is an opportunity to improve overall system efficiency. System integration can be done by utilizing heat energy in engine cooling water and exhaust gas from the electricity generation process, while utilizing the cold energy from the LNG regasification process to decrease temperature of engine cooling water. Through a technical analysis method, design simulation with the utilization of heat energy from the gas engine can be carried out on the shell and tube type LNG Vaporizer.
The results of the technical simulation can be seen that the LNG flow rate of 4 MMSCFD will produce power of 17230 kW with an efficiency of 35.2%, where the efficiency is higher compared to the efficiency of a standalone system. In the economic analysis, base on loading profile of gas engine with a capacity factor of 80% and the assumption of the electricity price at cent US $ 12 / kWh, an IRR value of 19.7% was obtained where the IRR value was greater than the WACC value (7.49%), the result shows that development of system integration design is feasible.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52637
UI - Tesis Membership  Universitas Indonesia Library
cover
Meisy Ariani
"Penelitian ini berfokus pada pengembangan formulasi tarif angkut gas bumi melalui pipa transmisi. Perhitungan tarif angkut gas melalui pipa transmisi ini dilakukan dengan dua skenario. Skenario 1 adalah perhitungan tarif angkut gas melalui pipa yang berdasarkan PBPH Migas No. 34 tahun 2019 dan Skenario 2 adalah perhitungan tarif yang mempertimbangkan kapasitas dan komoditas. Dari hasil analisa dan sensitivitas pada volume gas yang diangkut melalui pipa, maka tarif akan semakin kecil dengan peningkatan volume gas. Tarif Skenario 2 memberikan nilai tarif 8% lebih besar dari pada tarif Skenario 1, dimana nilai tarif ini nantinya akan memberikan penambahan pendapatan bagi pemilik pipa (Transporter). Untuk hasil analisa dan sensitivitas pada nilai IRR, semakin besar nilai IRR maka besaran tarif akan semakin besar sehingga waktu pengembalian modal akan semakin cepat. Hasil perbandingan analisa tarif Skenario 2 dan Tarif Seddon adalah 0.003 USD/MSCF dimana membuktikan bahwa besaran tarif Skenario 2 masih memiliki nilai kewajaran. Pengembangan formula tarif angkut gas yang baru ini diharapkan bisa menjadi masukan bagi Badan Regulator dan menjadi usulan tarif angkut gas yang baru bagi pemilik pipa (Transporter) yang memberikan penambahan pendapatan dalam pengembalian modal investasi, serta tetap memberikan keadilan bagi pengguna pipa (Shipper).

This research will be focusing on the formula modification for gas transportation tariff calculation through transmission pipeline. The calculation of gas toll fee will be done using 2 (two) scenarios. The first scenario is to define the gas toll fee based on the BPH Migas Regulation No. 34 of 2019. The second scenario is to define the gas toll fee using Capacity Charge and Commodity Charge. The same sensitivity will be done for both scenarios. For the gas volume sensitivity analysis, it is concluded that the increasing of pipeline gas capacity volume, the gas toll fee will be decreasing. The gas toll fee rate results from scenario 2 are 8% bigger compare to the gas toll fee in scenario 1. The 8% tarif differences will provide additional revenue for transporter annually. For the IRR sensitivity, it is concluded that the greater of the IRR value, the gas toll fee will be increasing and will caused faster Break Even Point (BEP) from the investment. By comparing the tariff results from scenario 2 and Seddon formula, the tariff difference is 0.003 USD/MSCF which shows that the tariff results from scenario 2 has fairness value. The research is expected to be an input for the Regulatory and as tariff proposal for the Transporters that provides additional incomes, as well as providing fair pricing for gas transport service through transmission pipeline for the Shipper."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Awaludin Martin
"The performance of a 20 MW gas turbine power plant was described by using the exergy analysis and data from the plant’s record books. The first and second laws of thermodynamics, as well as the mass and energy conservation law, were applied in each of the components. The results show that more exergy destruction occured in the combustion chamber up to 71.03% or 21.98 MW. Meanwhile, the lowest exergy occured in the compressor at 12.33% or 3.15 MW. Thermal efficiency of the gas turbine power plant, according to the first law, was 33.77%, and exergy efficiency was 32.25%."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:5 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1992
S35815
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marpaung, Sugiarto
"Skripsi ini membahas pemanfaatan refinery off gas sebagai sumber energi listrik dan termal menggunakan Gas Turbine Generator dan Exhaust Boiler pada pengolahan minyak mentah. Refinery off gas merupakan gas sisa hasil destilasi minyak mentah.
Refinery plant membutuhkan energi listrik dan uap panas selama proses destilasi berlangsung. Refinery off gas digunakan sebagai bahan bakar gas turbine generator dalam menghasilkan energi listrik dan energi termal pada gas buang dapat dikonversi menjadi uap panas menggunakan exhaust boiler. System ini dikenal sebagai combine heat and power system atau co-generation system.
Energi listrik dan uap panas yang dihasilkan sebagai energi dalam menunjang proses destilasi minyak mentah pada refinery plant, sehingga penyediaan energi pada refinery dengan pemakaian produk minyak dapat dikurangi. Energy kimia yang terkandung dalam refinery off gas dapat dimanfaatkan dengan combine heat and power system yang direncanakan memiliki efisiensi 74,97% pada beban listrik 100%, efisiensi energi listrik 22,63% dan efisiensi energi termal 52,33 %.

Thesis is arranged to utilize refinery off gas as source of electricity and thermal energy using gas turbine generator and exhaust boiler in refinery plant. Refinery off gas is residual gas yield of distillation of crude oil.
Refinery plant needs electricity and steam during distillation process. Refinery off gas is used as fuel of gas turbine generator to generate electricity then thermal energy of exhaust gas can be converted to be steam using exhaust boiler. This system is known as combine heat and power system or co-generation system.
Generated electricity and steam will be utilized for distillation process of crude oil in refinery plant, it means provision of energy in refinery plant by consuming oil products can be reduced. Chemical energy content of refinery off gas can be utilized by combine heat and power system which is planned to have efficiency 74.97% at 100% electricity load, electrical energy efficiency 22.63%, and thermal energy efficiency 52.33%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>