Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 135424 dokumen yang sesuai dengan query
cover
Simorangkir, Gracia Monalisa
"

Pada tesis ini, dikonstruksi sebuah model matematika penyebaran TB yang melibatkan relapse, reinfeksi dan kegagalan treatment dan memperkenalkan pula efek dari vaksin jenis terbaru M72/AS01E untuk pencegahan terjadinya relapse. Model yang dibentuk menggunakan persamaan diferensial biasa orde satu. Proses nondimensi dilakukan terhadap model untuk menyederhanakan masalah tanpa kehilangan esensi utama dari tujuan tesis ini. Model yang telah dibentuk dilakukan kajian analitik. Analisa yang dilakukan antara lain adalah eksistensi dan kestabilan titik keseimbangan dan basic reproduction number. Adapun analisis kestabilan dari titik keseimbangan dilakukan menggunakan pendekatan Van den Driessche and Watmough untuk titik keseimbangan bebas penyakit serta Teori Center Manifold oleh Castilo Song disekitar R0=1 untuk titik keseimbangan endemik penyakit. Analisa kestabilan dengan Teorema Center Manifold juga menghasilkan bahwa model yang telah terbentuk mampu menghasilkan bifurkasi mundur, bifurkasi maju dan bifurkasi maju+hysteresis. Kajian yang dilakukan menghasilkan bahwa koefisien saturasi sangat berperan penting dalam terjadinya fenomena bifurkasi dalam model. Lebih jauh, fenomena relapse, reinfeksi dan kegagalan treatment memegang peran penting terhadap peningkatan nilai R0. Namun, hal ini dapat diminimalisir dengan keberadaan vaksin M72/AS01E.

 


In this thesis, a mathematical model of TB spread was constructed involving relapse, reinfection, and failure of treatment. It also introduces the effect of the latest vaccine type M72/AS01E to prevent the occurrence of relapse. The model was formed using firstorder ordinary differential equations. The non-dimensionalization process is carried out on the model to simplify the problem without losing the main essence of the purpose of this thesis. The model that has been formed is an analytical study. The analysis carried out includes the existence and stability of the balance point and the basic reproduction number. The stability analysis of the equilibrium point was carried out using the Van den Driessche and Watmough approach for the disease-free equilibrium point and Castilo Song’s Theory Center around R0=1 for the endemic balance point of the disease. Stability analysis with the Center Manifold Theorem also shows that the established model can produce backward bifurcation, forward bifurcation, and forward + hysteresis bifurcation. The study conducted resulted that the saturation coefficient plays an essential role in the occurrence of the bifurcation phenomenon in the model. Furthermore, the phenomenon of relapse, reinfection, and failure of treatment plays an essential role in increasing the value of R0. However, this can be minimized by the existence of this M72/AS01E vaccine.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Salsabil Felia Armansyah
"Penyakit Tuberkulosis (TB) merupakan salah satu penyakit menular berbahaya yang umumnya menyerang paru-paru dan disebabkan oleh bakteri Mycobacterium tuberculosis (MTB). Penyakit TB ditularkan melalui droplet dari tubuh penderitanya. Oleh karena itu, orang yang melakukan kontak erat dari penderita TB akan berisiko tinggi terjangkit TB. Vaksinasi BCG (Bacillus Calmette-Guerin) dan pengobatan merupakan cara yang dilakukan dalam menekan penyebaran penyakit TB. Seseorang yang terdeteksi terinfeksi TB, bisa segera mendapat pengobatan. Dalam skripsi ini dilakukan analisis kestabilan global model penyebaran penyakit TB dengan intervensi vaksinasi dan pengobatan dini. Analisis kestabilan global pada model penyebaran TB dilakukan untuk mengetahui efek dari intervensi vaksinasi dan pengobatan dini terhadap penyebaran penyakit TB secara umum. Fungsi Lyapunov merupakan fungsi yang digunakan dalam menganalisis kestabilan global pada model TB dalam skripsi ini. Analisis secara analitik pada titik keseimbangan bebas penyakit, titik keseimbangan endemik, dan basic reproduction number (R0) dilakukan untuk memahami dinamika populasi dalam jangka panjang dari model yang telah dikonstruksi. Kemudian melakukan simulasi numerik untuk mengetahui interpretasi dari kajian analitik yang sudah dilakukan sebelumnya.

Tuberculosis (TB) is a dangerous infectious disease that generally attacks the lungs and is caused by the bacterium Mycobacterium Tuberculosis (MTB). TB disease is transmitted through droplets from the sufferer’s body. Therefore, close interaction with TB sufferers will be at high risk of infecting TB. BCG (Bacillus Calmette-Guerin) vaccination and early treatment are ways to suppress the spread of TB. A person with a positive TB can immediately receive treatment. This thesis delivers a global stability analysis for a tuberculosis model with intervention vaccination and early treatment. The global stability of the TB transmission model is evaluated to determine the effect of vaccination and early treatment interventions on the spread of TB disease. The Lyapunov function is a function used to analyze the global stability of the TB model. Analysis of disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R0) are completed to understand population dynamics from the constructed model. Lastly, a numerical simulation is carried out to understand the numerical interpretation from the previous analytical work."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shintia Damayanti
"

Tuberkulosis (TB) merupakan penyakit menular yang disebabkan oleh bakteri Mycrobacterium Tuberculosis. Pada umumnya, penyakit TB menyerang paru-paru manusia. Penyakit ini bisa juga menyerang bagian tubuh lain dari manusia melalui darah. Indonesia merupakan negara ke-3 dengan kasus TB terbesar di dunia. Upaya pencegahan penyebaran TB adalah dengan vaksinasi dan pengobatan yang memadai. Pada penelitian ini, dibentuk model matematika penyebaran TB dengan vaksinasi dan laju pengobatan yang bersaturasi. Pada kasus ini, laju pengobatan menggunakan fungsi saturasi yang menggambarkan efek jenuh akibat dari penundaan pengobatan pasien penderita TB saat sumber daya rumah sakit terbatas. Analisis model terkait eksistensi titik kesetimbangan, kestabilan titik keseimbangan, dan basic reproduction number (Ro) dilakukan secara analitik. Dari analisis titik keseimbangan didapatkan fenomena bifurkasi maju dan juga bifurkasi mundur pada Ro = 1. Bifurkasi mundur didapatkan karena efek dari laju pengobatan yang bersaturasi saat Ro. Oleh karena itu dengan membuat Ro belum cukup untuk mereduksi penyebaran TB. Dengan simulasi numerik dapat menggambarkan fenomena dilapangan, sehingga didapatkan bahwa melakukan vaksinasi, dan memperbesar laju pengobatan maka penyebaran TB dapat dikontrol sehingga lebih efektif untuk mereduksi penyebaran TB.


Tuberculosis (TB) is an infectious disease caused by the bacterium Mycrobacterium Tuberculosis. Generally, this disease attacks the lungs but can attack other parts of the body through the blood. Indonesia is the 3rd country with the most signi�cant TB cases in the world. Efforts to prevent the spread of TB are with vaccination and treatment. In this study, formed a mathematical model of the diseases of tuberculosis with vaccination and saturated treatment rate. In this case, the treatment rate uses the saturation function, which illustrates the saturation effect resulting from treatment delay when there are a large number of TB sufferers with limited hospital resources. Analysis of the model related to the existence of equilibrium points, the stability of equilibrium points, and the analytically basic reproduction number (Ro). The equilibrium point analysis obtained the phenomenon of forward and backward bifurcation at Ro = 1. Backward bifurcation occurs because of the effect of the saturated treatment rate at Ro < 1. It was therefore making Ro < 1 not enough to reduce the spread of TB. With numerical simulations that can illustrate the phenomenon in the reality, so vaccinated, and improving the rate of treatment, the spread of TB can be controlled to reduce the spread of TB.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Laelatul Chasanah
"Penelitian ini menyajikan model matematika penyebaran Tuberculosis TB dengan mempertimbangkan vaksinasi untuk mensimulasikan dinamika TB dan mengevaluasi dampak pada TB aktif dari beberapa strategi vaksinasi. Populasi dibedakan menjadi tujuh yaitu populasi individu susceptible yang dapat divaksin , tidak dapat diberikan vaksin , tervaksin V , exposed lambat L , exposed cepat E , infectious I dan recovery R . Analisis model matematika dilakukan dengan menentukan titik keseimbangan dari model yang dibentuk, menentukan Basic Reproduction Number R0 dan menganalisa kestabilan dari titik keseimbangannya. Selanjutnya, interpretasi numerik diperoleh dari analisis sensitivitas parameter u1, u2 dan ? terhadap R0 dan simulasi model autonomous. Simulasi numerik dari model yang dibentuk menunjukkan bahwa untuk mencapai keadaan bebas penyakit tidak cukup hanya dengan memaksimalkan salah satu dari parameter u1, u2 atau ? . Selain itu, vaksin lebih efektif diberikan kepada individu yang berumur di bawah 30 tahun dibandingkan dengan individu yang baru lahir.

This study presents a mathematical model of Tuberculosis TB transmission considering vaccination to simulate the TB dynamic and evaluate the impact on active TB of several vaccination strategies. The population was divided into seven populations, i.e., susceptible individuals population that can be vaccinated, can't be vaccinated, vaccinated V, slow L and fast E exposed, infectious I and recovery R. The mathematical model analysis was done by determining the equilibrium point of the model, determining the Basic Reproduction Number Basic Reproduction Number R0, and analyzing the stability of the equilibrium point. Then, some numeric interpretations were given by sensitivity analysis of parameters u1, u2 and to R0 and autonomous model simulations. Numerical simulations of the model show that to reach a disease free equilibrium point is not enough by maximizing one of the parameters u1, u2 or Moreover, the vaccine is also more effective given to individuals under 30 years than the newborn.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50963
UI - Tesis Membership  Universitas Indonesia Library
cover
Tiara Ayumi
"Tuberkulosis (TB) merupakan salah satu penyakit menular yang menyebabkan kematian di dunia. TB disebabkan oleh Mycobacterium tuberculosis dan umumnya menyerang paru-paru. Berbagai pendekatan matematika telah dilakukan dalam menganalisis penyebaran TB. Pada skripsi ini, dikonstruksi model matematika penyebaran TB dengan pendekatan sistem persamaan diferensial dimana populasi manusia dibagi menjadi empat kompartemen. Fakta penting yang dipertimbangkan dalam model ini adalah adanya manusia yang terinfeksi TB laten dan intervensi perawatan terpantau. Selanjutnya, model tersebut dikembangkan menjadi masalah kontrol optimal untuk memperoleh strategi intervensi yang optimal dalam mengendalikan sistem dinamik yang digambarkan oleh variabel state (manusia) dan variabel kontrol (intervensi perawatan terpantau). Masalah kontrol optimal dikonstruksi dengan menggunakan prinsip minimum Pontryagin. Kajian analitik meliputi analisis eksistensi dan kestabilan secara lokal dan global dari titik-titik keseimbangan model dan hubungannya dengan bilangan reproduksi dasar (R_0). Selanjutnya, simulasi numerik terhadap model dengan membuat berbagai skenario kontrol dan analisis efektivitas biaya untuk mengetahui strategi yang terbaik. Analisis efektivitas biaya pada skripsi ini menggunakan dua pendekatan, yaitu IAR (Infection Averted Ratio) dan ACER (Average Cost-Effectiveness Ratio). Dari hasil simulasi numerik, diperoleh bahwa skenario terbaik dalam upaya mereduksi kasus infeksi TB dengan biaya yang efektif adalah melakukan intervensi perawatan terpantau sejak awal infeksi dengan kontrol bergantung waktu.

Tuberculosis (TB) is one of the infectious diseases that causes death worldwide. TB is caused by Mycobacterium tuberculosis which commonly attacks the lungs. Various mathematical approaches have been used to analyze the spread of TB. In this thesis, the mathematical model of TB transmission is constructed using the approach of an ordinary differential equation system, where the human population is divided into four subpopulations. Important facts considered in the model are the existence of latent TB and monitored treatment intervention. Furthermore, the model was developed into an optimal control problem to obtain the optimal intervention strategy in controlling the dynamic system described by state variables (humans) and control variables (monitored treatment intervention). The optimal control problem is constructed by using Pontryagin minimum principle. Analytical study including an analysis of the existence of equilibrium points, local and global stability of the equilibrium points, and how they related to the basic reproduction number (R_0). Then, numerical simulations were carried out by making several control scenarios and cost-effectiveness analysis to find out the best strategy. Cost-effectiveness analysis in this thesis used two approaches, namely IAR (Infection Averted Ratio) and ACER (Average Cost-Effectiveness Ratio). From the results of the numerical simulation, the best strategy to reduce TB infection with effective cost is to do the monitored treatment in the early infection with time dependent control.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aanisah Rizka Qurrota
"Tuberkulosis (TB) merupakan salah satu penyakit menular yang menyebabkan kematian. TB disebabkan oleh bakteri Mycobacterium tuberculosis yang umumnya menyerang paru-paru. Berbagai pendekatan matematika telah dilakukan dalam menganalisis penyebaran TB. Pada skripsi ini, dikonstruksi model penyebaran TB dengan pendekatan sistem persamaan diferensial, dimana populasi manusia dibagi ke dalam beberapa kompartemen berdasarkan status kesehatannya. Beberapa fakta penting yang dipertimbangkan dalam model di skripsi ini antara lain keberadaan manusia yang terinfeksi TB laten, keterbatasan kapasitas rumah sakit, serta intervensi di lapangan, yaitu vaksinasi dan perawatan terpantau. Dari model yang telah dibangun, dilakukan kajian analitik yang meliputi analisis eksistensi serta kestabilan dari titik-titik keseimbangannya dan hubungannya dengan bilangan reproduksi dasar (R0). Kemudian, dilakukan simulasi numerik yang mencakup analisis sensitivitas dan elastisitas (R0) serta simulasi autonomous dari model. Berdasarkan kajian analitik dan kajian numerik yang telah dilakukan, didapatkan informasi bahwa vaksinasi dan perawatan terpantau sukses mereduksi penyebaran TB. Lebih jauh, didapatkan bahwa intervensi vaksinasi jauh lebih menjanjikan dalam upaya eradikasi TB dibandingkan dengan perawatan terpantau.

Tuberculosis (TB) is an infectious disease that causes death. TB is caused by Mycobacterium tuberculosis bacteria which commonly attack the lungs. Various mathematical approaches have been done to analyze the spread of TB. In this study, the mathematical model of TB transmission is constructed using the approach of an ordinary differential equation system, where the human population is divided into several sub-populations based on their health status. Several important facts considered in the model's construction are the existence of latent TB, the limit of the hospital's capacity, and some of the interventions applied; vaccination and observed treatment. From the constructed model, an analytical study that covers the existence as well as the stability analysis of the equilibrium points, and determining the basic reproduction number (R0) is performed. Moreover, a numerical study that covers the elasticity analysis of R0 and autonomous simulations is performed in this thesis. Based on the analytical and numerical study, it is known that both vaccination and observed treatment successfully reduce TB transmission. Furthermore, it is known that vaccination intervention is way more promising in eradicating TB compared to observed treatment."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hauwla Husnulkhotimah
"ABSTRAK
Influenza merupakan penyakit menular yang dapat mengancam nyawa kelompok orang dengan resiko tinggi terkena komplikasi. Karena vaksin merupakan cara ampuh mencegah suatu penyakit termasuk influenza, maka pada skripsi ini dibahas model SVIRS yang merupakan model penyebaran penyakit influenza yang mempertimbangkan vaksinasi dan penjagaan jarak sosial. Populasi manusia dibagi menjadi empat subpopulasi, yaitu manusia rentan terhadap penyakit influenza, manusia yang telah diberi vaksin influenza, manusia terinfeksi influenza, serta manusia yang sembuh dari influenza. Subpopulasi manusia yang telah diberi vaksin dan manusia yang sembuh dari influenza diasumsikan dapat kembali rentan karena efektivitas vaksin tidak sempurna. Karena kami berasumsi bahwa daya tahan tubuh tidak bertahan untuk waktu yang panjang, maka ada kemungkinan individu yang sembuh dapat terinfeksi kembali. Kajian analitik mengenai proses nondimensionalisasi, eksistensi dan kestabilan titik keseimbangan juga dilakukan terhadap model. Berdasarkan kajian analitik yang dilakukan, (R0) dapat menjadi penentu strategi terbaik untuk mencegah penyebaran influenza pada populasi. Terakhir, beberapa simulasi numerik dilakukan untuk beberapa skenario vaksinasi dan strategi penjagaan jarak sosial.

ABSTRACT
Influenza is an infectious disease that can threaten the lives of a group of people at high risk of complications. Since vaccines are a powerful way of preventing disease including influenza, then this research discusses the SVIRS model which is a model of the spread of influenza disease which consider vaccination and social distancing. The human population is divided into four subpopulations, namely humans susceptible to influenza, humans who have been given influenza vaccines, humans infected with influenza, and humans who recover from influenza. Subpopulations of people who have been given the vaccine are assumed can be infected by influenza because of the imperfect vaccine effectiveness. Since we assume that the immunity is not for long-life, then there is a possibility that recovered individual may get re-infected. Analytical studies of the nondimensionalization process, the existence and stability of the equilibrium points are carried out on the model. Based on the analytical studies, (R0) give an insight to determine the best strategies to prevent the spread of influenza among the population. At last, some numerical simulations were carried out using for several scenarios of vaccination and social distancing strategy."
2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harits Ghiffari Hanif
"Kusta adalah penyakit menular kronis yang disebabkan oleh bakteri M. leprae. Kusta mempengaruhi kulit dan saraf manusia yang infeksinya melalui droplet dari hidung dan mulut. Gejala klinis kusta disebabkan oleh respon imun tubuh serta dapat diklasifikasikan menjadi dua jenis, paucibacillary dan multibacillary. Kusta dapat disembuhkan dengan multidrug therapy (MDT). Penderita kusta yang telah menyelesaikan pengobatan dapat kembali terjangkit kusta. Sebuah model deterministik yang diadaptasi dari model-model matematika yang sudah ada dikonstruksi untuk mensimulasikan dinamika penyebaran penyakit kusta. Model tersebut dianalisis kestabilan global titik ekuilibriumnya menggunakan fungsi Lyapunov dan memanfaatkan basic reproduction number. Hasil analisis menunjukkan titik ekuilibrium bebas penyakit dari model bersifat stabil asimptotik global. Kemudian dilakukan simulasi pada model untuk melihat pengaruh variasi nilai parameter laju infeksi dan laju pemberian obat. Dari simulasi dapat diinterpretasikan bahwa laju infeksi yang lebih tinggi atau laju pemberian obat yang lebih rendah akan menyebabkan kusta tidak akan hilang dan jumlah individu yang terinfeksi semakin banyak.

Leprosy is an infectious chronic disease which is cause by M. leprae bacteria. Leprosy affects the human skin and nerve where the infection is caused through droplets from the nose and mouth. Leprosy clinical symptoms are caused by the body immune response and can be classified to two types, paucibacillary and multibacillary. Leprosy is curable with multidrug therapy (MDT). Leprosy patients that have completed treatments may get infected again. A deterministic model was constructed by adapting some existing leprosy mathematical models to simulate the spread of leprosy. The model is analyzed for the global stability of the equilibrium points using Lyapunov function and utilizing basic reproduction number. The result of the analysis is a global asymptotic stability for the disease-free equilibrium. Then, simulations were done on the model with various parameters value of the infection rate and drug-administering rate to see the effects of those variety on the model. From the simulations, it can be interpreted as the higher the infection rate or the lower the drug-administering rate, leprosy will prevail and more individuals will be infected."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rishad Rizky Aulady
"ABSTRAK
Kolera adalah penyakit diare akut yang disebabkan oleh bakteri Vibrio cholerae. Penyakitkolera pada suatu populasi dapat dikendalikan dengan memberikan vaksinasi berupavaksin kolera oral. Pada penulisan skripsi ini, dibentuk model matematika pengaruhvaksinasi pada upaya pengendalian penyebaran penyakit kolera. Model yang dibangunadalah sistem persamaan diferensial tidak linier 5 dimensi. Dari analisis model, diperolehtitik keseimbangan bebas penyakit kolera dan titik keseimbangan endemik. DigunakanBasic reproduction number pada model untuk menunjukkan apakah penyakit koleradalam populasi akan menghilang, tidak menyebar tetapi bertahan dalam populasi, atau penyakit kolera akan menyebar. Simulasi numerik pada model dilakukan untukmemberikan interpretasi hasil analisis model lebih lanjut.

ABSTRACT
Cholera is a severe diarrhoea disease caused by Vibrio cholerae bacteria. Cholera diseasein a population can be controlled by giving oral cholera vaccine as vaccination. Here inthis undergraduate thesis, mathematical model of vaccination effect in controlling thespread of cholera is constructed. The model which is constructed is a five dimensionalnon linear ordinary differential equation. From model analysis, cholera disease freeequilibrium and endemic equilibrium is obtained. Basic reproduction number is usedin the model to show whether the cholera disease in population will disappear, remainsin population but not spreading, or the disease will spread. Numerical simulation in themodel is done to give further interpretation of model analysis result."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahra Alya Sari Ryanto
"ABSTRAK
Pada penelitian ini, dibahas mengenai konstruksi dan analisis terhadap sebuah model matematika penggunaan vaksinasi dengan kelas umur pada pencegahan penyakit tuberkulosis. Model tersebut dikonstruksi berdasarkan model SEIR dengan sistem persamaan diferensial biasa berdimensi sepuluh. Setiap populasi diklasifikasi berdasarkan kelompok usia anak-anak

ABSTRACT
In this article, a new mathematical model for the transmission dynamics of tuberculosis TB with the intervention of vaccination in age structured susceptible population is designed and analyzed. The model is constructed as an SEIR based system of ten dimensional ordinary differential equation. Each population is then further classified according to its age class children."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>