Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155867 dokumen yang sesuai dengan query
cover
Yogi Andrian Sidiyanto
"Erupsi gunung api merupakan salah satu bencana alam yang umum terjadi di Indonesia dan telah memakan korban jiwa serta kerugian yang cukup besar. Oleh karena dampak yang mungkin terjadi dari erupsi cukup besar, maka perlu dilakukan pemantauan yang berkelanjutan pada gunung api. Adanya aktivitas gunung api akan mengubah kondisi fisik medium batuan sehingga parameter fisis kecepatan gelombang seismik dan amplitudonya akan berubah. Pengaruh terhadap kecepatan gelombang seismik dan amplitudo dapat dipantau melalui analisis variasi kecepatan semu dengan ambient seismic noise dan Realtime Seismic Amplitude Measurement (RSAM). Pada studi kasus di Gunung Agung Bali pada periode 2017-2019 terdapat tiga rentang waktu yang menunjukkan adanya aktivitas gunung api yang ditandai dengan adanya penurunan pada nilai kecepatan seismik serta peningkatan pada nilai amplitudo. Perubahan pada nilai kecepatan serta amplitudo disebabkan oleh adanya tekanan dari aktivitas magmatik sehingga akan menyebabkan stress dan/atau teraktifkannya rekahan (crack) pada medium. Sehingga, dengan mengetahui adanya perubahan pada nilai kecepatan seismik dan amplitudo dapat dijadikan indikator terjadinya peningkatan aktivitas vulkanik dan sebagai prekursor sebelum terjadinya erupsi.

Volcanic eruption is one of the most common natural disasters in Indonesia and has taken significant casualties and losses. Because the impact of the eruption was quite large, ongoing volcano monitoring was carried out. The existence of volcanic activity will change the physical condition of the rock medium so that the physical parameters such as seismic wave velocity and amplitude will change. The effect on seismic wave velocity and amplitude can be monitored through apparent velocity variation analysis with ambient seismic noise and Realtime Seismic Amplitude Measurement (RSAM). In the case study on Gunung Agung Bali in the period of 2017-2019, there were three time periods that showed the existence of volcanic activity which was marked by a decrease in the seismic velocity value and an increase in the amplitude value. Changes in the velocity and amplitude values are caused by pressure from magmatic activity that will cause stress and / or crack activity on the medium. Thus, knowing changes in seismic velocity and amplitude values can be used as indicators of an increased in volcanic activity and as precursors before an eruption."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adittya Atmadja
"Pada tahun 2018, Merapi kembali memperlihatkan tanda keaktifannya. Letaknya yang dekat dengan area penduduk membuat Gunung Merapi perlu dipantau sebagai langkah mitigasi. Penelitian ini bertujuan untuk menganalisis aktivitas vulkanik yang terjadi dengan metode gravitasi-mikro. Melalui gravitasi-mikro dapat dilihat perubahan nilai gravitasi dari waktu ke waktu, mencerminkan perubahan massa ataupun densitas yang terjadi. BPPTKG telah melakukan pengukuran menggunakan gravimeter Scintrex CG-5 pada 10 titik dari utara ke selatan di bulan April dan Desember 2018; Maret dan Desember 2019; serta Agustus 2020. Analisis hasil perubahan gravitasi juga dikorelasikan dengan catatan kejadian erupsi, data seismisitas, deformasi EDM, emisi gas SO2 serta informasi pendukung lainnya dari Laporan Aktivitas Mingguan. Didapati perubahan nilai gravitasi dari waktu ke waktu akibat aktivitas vulkanik yang terjadi sepanjang April 2018 – Agustus 2020, dengan nilai paling fluktuatif pada area relatif dari puncak ke sisi utara dan diduga sebagai kantung magma dangkal. Kemudian dilakukan juga estimasi perubahan massa material vulkanik pada area tersebut dari setiap periodenya. Pada Desember 2018 terjadi pengurangan massa sebesar 9,148 megaton akibat ekstrusi material vulkanik dari erupsi sebelumnya serta peristiwa pertumbuhan kubah lava. Pada Maret 2019 terjadi proses kristalisasi magma dan pelepasan gas, menyebabkan penambahan massa sebesar 0,658 megaton. Pada Desember 2019 terjadi pengurangan massa sebesar 8,867 megaton setelah kejadian erupsi. Pada Agustus 2020, terjadi penambahan massa akibat injeksi suplai magma baru sebesar 7,13 megaton. Injeksi ini diduga berkaitan erat dengan aktivitas Merapi di tahun 2021.

In 2018, Merapi volcano begin to show volcanic activity. It is located near densely populated area and need to be monitored for mitigation. The purpose of this research is to analyze the volcanic activities using microgravity method. Changes in gravity values from time-to-time reflecting changes in subsurface mass and density, can be seen through microgravity. A total of 10 stations measurement from north to south were acquired by BPPTKG using Scintrex CG-5 gravimeter in April 2018 and December 2018; March 2019 and December 2019; and August 2020. Analysis of changes in gravity value also corelated to eruption log, seismic activities, emission of SO2 gas, EDM deformation, and other supporting information stated in Weekly Activity Report. Changes in gravity values were found from time-to-time due to volcanic activities during April 2018 - August 2020 with the most fluctuating values found in the area relative from the peak to the northside and suspected to be a shallow magma pocket. Then the estimation of changes in the mass of volcanic material in that area also conducted from each period. In December 2018, there was a 9,148 megatons mass deficit due to the extrusion of volcanic material following to prior eruptions and growth of the lava dome. Magma crystallization and degassing process occurred in March 2019, lead to 0,658 megatons increased mass. 8,867 megatons mass deficit occurred in December 2019, following to the prior eruptions. In August 2020, there was a 7,13 megatons mass increased due to injection of new magma supply. This injection is expected correlate to Merapi activity in 2021.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Daffa Shidqi
"Gunung Slamet merupakan gunung aktif tipe A, dengan catatan sejarah letusan terbaru yaitu pada Mei 2009. Sejarah letusan memiliki tempo yang berulang. Sejarah letusan Gunung Slamet ditandai dengan letusan abu vulkanik, cinder, dan juga dapat menyemburkan lava. Penelitian ini bertujuan untuk mengetahui kondisi deformasi dan magmatisme pada tahun 2019-2021 dengan data Sentinel-1 menggunakan metode InSAR dan analisis petrografi. Hasil data olahan InSAR terbagi menjadi tiga citra yaitu citra koherens, citra interferogram dan citra displacement yang menentukan inflasi dan deflasi permukaan Gunung Slamet. Berdasarkan data kondisi deformasi Gunung Slamet pada Januari 2019 hingga Desember 2021 mengalami penurunan sebesar -0.020 m. Terdapat lima sampel batuan yang selanjutnya dilakukan analisis sayatan tipis untuk mengetahui kandungan mineral menggunakan point counting dan juga tekstur mineral. Hasil analisis sayatan tipis didominasi oleh kandungan mineral plagioklas yang memiliki mikrotekstur seperti Coarse-Sieve, Fine-Sieve, Fine-scale oscillatory zoning, Resorption surface, Synneusis, Glomerophyric, Shallow-tail, Microlites, dan Broken plagioclase crystal. Berdasarkan mineral dan tekstur yang berada pada mineral dapat diinterpretasikan bahwa, magma ini mengalami perpindahan dari dasar menuju dapur magma dangkal dan mengalami proses fraksinasi yang bersatu membentuk satu kesatuan mineral secara spasial, setelah itu magma mengalami proses pemanasan. Diinterpretasikan terjadi magma mixing selanjutnya ada proses konveksi sehingga terjadi diferensiasi magma yang mengganggu keseimbangan unsur kimia, lalu magma mengalami proses undercooling sehingga terjadi pelepasan tekanan.

Mount Slamet is an active volcano type A, with the most recent historical eruption recorded in May 2009. The history of Mount Slamet eruptions is marked by eruptions of volcanic ash, cinders, and can also lava. This study is to determine the conditions of deformation and magmatism in 2019 – 2021 with Sentinel-1 data using the InSAR method and petrographic analysis. The results of InSAR processed data are divided into three images, coherence images, interferogram images and displacement images. This three images, its possible to determine inflation and deflation on the surface of Mount Slamet. Based on data on the deformation conditions of Mount Slamet from January 2019 to December 2021 it has decreased by -0.020 m.. There are five rock samples subjected to thin section analysis to determine mineral content using point counting and also mineral texture. The results of thin section analysis are dominated by plagioclase mineral content which has microtextures such as Coarse-Sieve, Fine-Sieve, Oscillatory zoning, Resorption, Synneusis, Glomerophyric, Shallow-tail, Microlites, and Broken crystals. Based on minerals and textures, it can be interpreted that magma has moved from the deep magma chamber to shallow magma chamber and has being fractionation process that unites to form a spatial unit of minerals, after which the magma have heating process. It is interpreted that magma mixing occurs the convection process causes differentiation magma which disrupts the balance of chemical elements, then the magma has being undercooling process so that pressure is released."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aldin Faturrahman
"Klasifikasi tipe gunungapi di Indonesia dibagi menjadi tiga berdasarkan sejarah letusannya, yaitu tipe A, B , dan C. Lokasi penelitian merupakan Gunung Karang, Kabupaten Pandeglang, Provinsi Banten yang merupakan gunungapi tipe B. Selain itu, ditambahkan gunungapi tipe A untuk melihat perbedaan penggunaan metode, yaitu Gunung Raung, Kabupaten Banyuwangi, Kabupaten Bondowoso, dan Kabupaten Lumajang, Provinsi Jawa Timur. Lalu, untuk melihat perubahan deformasi pada gunung tersebut dari tahun 2015 hingga 2020 digunakan metode Interferometric Synthetic Aperture Radar (InSAR). Hasil dari pengolahan data dengan menggunakan teknik InSAR menunjukan bahwa di Gunung Karang dari tahun 2015 hingga 2020 tidak menunjukan adanya deformasi yang terbentuk. Teknik ini akan lebih baik digunakan pada daerah yang minim vegetasi, karna citra interferogram yang terbentuk tidak akan menunjukan informasi jika digunakan pada daerah yang memiliki vegetasi yang tinggi.

Classification of volcanic types in Indonesia is divided into three based on the history of eruptions, namely types A, B, and C. The research location is Mount Karang, Pandeglang Regency, Banten Province which is a type B volcano. In addition, type A volcano is added to see the differences in the use of the method, namely Mount Raung, Banyuwangi Regency, Bondowoso Regency, and Lumajang Regency, East Java Province. Then, to see changes in deformation on the mountain from 2015 to 2020, the method was used Interferometric Synthetic Aperture Radar (InSAR). The results of data processing using the technique InSAR show that at Mount Karang from 2015 to 2020 there is no deformation formed. This technique would be better used in areas with minimal vegetation, because the formed interferogram image will not show information if used in areas with high vegetation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Taviana
"Potensi material vulkanik hasil letusan Gunung Sinabung memberikan manfaat bear untuk pemenuhan pembangunan infrastruktur. Material vulkanik secara kualitas memiliki kandungan silika yang relatif kuat sebagai material pengisi dan sudah memenuhi standard kualitas sebagai bahan pengisi campuran betan. Dalam proses pengerasan beton dari umur 1 hari sampai dengan mencapai umur 28 hari perlu adanya perlakuan pada beton sehingga kekuatan yang diharapkan akan tercapai. Hal tersebut dikarenakan terjadinya proses hidrasi pada semen akibat adanya penguapan air dengan temperatur di atas 10 C."
Bandung: Pusat Penelitian dan Pengembangan permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum , 2020
690 MBA 55:1 (2020)
Artikel Jurnal  Universitas Indonesia Library
cover
Hanifa Sekar Ulima
"ABSTRAK
Gunung Endut merupakan salah satu wilayah kerja panas bumi prospektif di Provinsi Banten, Indonesia. Namun, karakteristik batuan vulkanik di daerah ini relatif masih jarang diketahui, terutama untuk batuan piroklastiknya, karena minimnya kegiatan eksplorasi. Karakteristik batuan piroklastik yang telah diidentifikasi, seperti jenis dan ukuran material, distribusi ukuran butir, tekstur, dan tekstur mikro dalam plagioklas, dapat digunakan sebagai data tambahan untuk kegiatan eksplorasi di daerah ini. Dari penelitian ini, ada dua puluh tujuh sampel batuan piroklastik, dengan lima sampel dari Formasi Bojongmanik, sembilan sampel dari Formasi Genteng, dan tiga belas sampel dari Satuan Batuan Gunung Endut. Semua sampel telah dianalisis dengan pendekatan petrologi dan petrografi. Hasil penelitian menunjukkan bahwa karakteristik utama yang secara efektif membedakan batuan piroklastik dari tiga formasi yang berbeda adalah jenis material batuan piroklastik dan tekstur mikro dalam plagioklas. Distribusi tuf vitrik, tuf litik, dan tuf kristal di area penelitian meluas dengan orientasi barat-timur. Diperkirakan bahwa batuan piroklastik di tiap formasi memiliki proses magmatik yang berbeda berdasarkan analisis tekstur mikro dalam plagioklas.

ABSTRACT
Endut Mountain is one of the prospective geothermal working areas in Banten Province, Indonesia. However, the characteristic of volcanic rocks in this area are still less known, particularly for its pyroclastic rocks, due to its low exposure and minimum exploration activities. The characteristics of pyroclastic rocks that have been identified, such as type and size of material, grain-size distribution, texture, and micro-texture in plagioclase, can be used as an additional data for the exploration activities in this area. From this study, there are twenty seven samples of pyroclastic rocks, with five samples from Bojongmanik formation, nine samples from Genteng formation, and thirteen samples from Endut Mountain formation. All samples have been analyzed by petrology and petrography approaches. The results show that the main characteristics that effectively distinguish the pyroclastic rocks from the three different formations are the type of pyroclastic rocks material and micro-texture in plagioclase. The distribution of vitric tuff, lithic tuff, and crystal tuff in the research area extends by running west-east. It is predicted that pyroclastic rocks in each formation have different magmatic processes based on micro-textures analysis in plagioclase."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanjuntak, Eduardo Meyrianso
"The increased volcanic activity of Mount Anak Krakatau has raised the awareness of the potential tsunami impact for the construction of National Capital Integrated Coastal Development (NCICD) Project. This research is aimed to evaluate the tsunami impact on the outer sea dike of NCICD. The 1883 Krakatau tsunami was used as reference to evaluate the coastal infrastructure. Time series data from the 1883 Krakatau tsunami is extracted as an input to calculate the wave force. There are three different methods used such as Rule of Thumb (wave force is twice that of hydrostatic force), Linear Theory, Sainflou method. The results show that the tsunami will hit the outer sea dike with at least force about 70 kN. The outer sea dike OSD-1A is the least impacted sea dike while OSD-3A is the most impacted. For OSD-1A, Rule of Thumb and Linear Theory estimate 303.30 kN of wave force while Sainflou method predicts only 73.45 kN. On the other hand, OSD-3A endured wave force of 131.91 kN (Sainflou method) or 531.91 kN (Rule of Thumb and Linear Theory). Sainflou method is for efficient design while the other methods have the benefit of safety factor."
Bandung: Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2020
627 JTHID 11:2 (2020)
Artikel Jurnal  Universitas Indonesia Library
cover
Suryanti
"Bencana alam yang banyak terjadi belakangan ini menyebabkan kualitas udara pada daerah setempat menjadi terganggu dan dapat menyebabkan berbagai macam penyakit. Salah satu contoh bencana alam yang sangat mempengaruhi kondisi kualitas udara adalah adanya letusan Gunung berapi. Seperti diketahui bersama bahwa Indonesia memiliki beberapa Gunung Berapi, salah satu diantaranya adalah Gunung Kelud . Gunung Kelud yang berlokasi didaerah Jawa Timur, meletus pada tanggal 13 Februari 2014 sekitar pukul 22.50 WIB. Debu vulkanik yang keluar akibat meletusnya Gunung Kelud tersebut memiliki dampak terhadap kesehatan manusia dan lingkungan sekitar. Pada manusia dapat mengakibatkan terjangkitnya beberapa penyakit seperti Infeksi Saluran Pernapasan, Gatal-gatal, Batuk, Iritasi pada mata dan lainnya.
Telah dilakukan studi pemantauan sampel serta analisis parameter kualitas udara yaitu konsentrasi Total Suspended Partikulat (TSP), analisis kandungan senyawa kimia TSP serta bentuk morfologi dari TSP akibat pengaruh debu vulkanik dari letusan Gunung Kelud tersebut. Selain itu dilakukan juga analisis parameter kualitas udara yang lain yaitu kandungan SO42- dan NO3- yang terlarut dalam air hujan. Sampel telah diambil dari 6 lokasi yang diperkirakan terkena dampak dari debu vulkanik letusan Gunung Kelud yaitu daerah Semarang, Yogyakarta, Malang, Surabaya, Bandung, dan Bogor.
Dari hasil pengamatan dan analisis pada keenam daerah tersebut, diperoleh hasil konsentrasi TSP yang cukup tinggi akibat pengaruh letusan Gunung Kelud pada daerah Yogyakarta sebesar 4.418.757 μg/m3 . Analisis konsentrasi dan kandungan senyawa kimia TSP serta kandungan SO42- dan NO3- yang terlarut dalam air hujan diamati pada saat sebelum dan sesudah letusan Gunung Kelud, sedangkan analisis bentuk morfologi diamati pada periode waktu saat terjadi letusan Gunung Kelud.

Natural disaster has frequently happened in Indonesia that affects the air quality is the presence of a volcanic eruption. Kelud is one of the volcanoes in Indonesia, located in East Java, erupted on February 13, 2014 at around 22:50 pm. Volcanic ash that comes out from the eruption of Mount Kelud can lead to outbreaks of diseases such as respiratory diseases, rashes, cough, irritation of the eyes, destroy the environment and others.
This research have been conducted to monitoring and analysis of air quality parameters, namely the concentration of Total Suspended Particulate (TSP), the analysis of chemical compounds TSP and TSP morphology due to the influence of volcanic ash from the eruption of Mount Kelud. Furthermore, this research was also analyzes for other air quality parameters, namely the content of SO42- and NO3- were dissolved in rainwater. The Samples have been taken from an estimated six locations affected by volcanic ash eruption of Mount Kelud; they are Semarang, Yogyakarta, Malang, Surabaya, Bandung and Bogor.
From the observation and analysis of the six regions, the result shows that TSP concentrations are quite high due to the influence of the eruption of Mount Kelud in the Yogyakarta area of 4,418,757 g / m3. Analysis of concentration and content of chemical compounds TSP and SO42- and NO3- content dissolved in rain water was observed at the time before and after the eruption of Mount Kelud, while the analysis of the morphology observed in the period of time when the eruption of Mount Kelud.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T43100
UI - Tesis Membership  Universitas Indonesia Library
cover
Andini Fitriastuti
"Lapangan geotermal WA merupakan lapangan geotermal yang memiliki sistem vulkanik. Secara geologi, batuan di daerah ini didominasi oleh batuan vulkanik diantaranya lava dan piroklastik yang berumur kuarter. Terdapat dua gunung utama pada lapangan geotermal WA yaitu Gunung W dan Gunung A. Terdapat manifestasi berupa fumarol di puncak Gunung W sehingga dikategorikan menjadi zona upflow sedangkan zona outflow berada di bagian barat dan barat laut Gunung W yang ditandai dengan adanya manifestasi mata air panas Cgr, Cbn, dan Pds. Inversi 3-D magnetotellurik dilakukan untuk mengidentifikasi deep seated heat source yang bertujuan untuk mengetahui hubungan sumber panas Gunung W dan Gunug A apakah merupakan satu bodi atau tidak, serta pengaruhnya terhadap sistem geotermal lapangan WA. Inversi 3-D magnetotelurik dilakukan menggunakan software MT3DInv-X. Hasil dari inversi tersebut, mampu menggambarkan penampang MT hingga kedalaman 20 km. Lapisan konduktif (<16 ohm-m) diindikasikan sebagai clay cap dan memiliki ketebalan 1-2 km. Sedangkan heat source ditandai dengan nilai resistivitas yang tinggi (>100 ohm-m) membentuk satu bodi besar dengan ukuran dan berada di kedalaman yang dalam (> 2.5 km) hingga menerus ke kedalaman 20 km. Heat source tersebut memiliki dua dome yang berbeda, yaitu dome bawah Gunung W dan Gunung A. Keterdapatan dome dapat membantu menganalisis evolusi clay cap pada daerah penelitian. Hasil dari inversi MT menggambarkan bahwa clay cap menebal dari Gunung A dan menipis ke arah Gunung W, maka menurut evolusinya Gunung W merupakan zona yang prospek untuk dikembangkan karena masih memiliki temperatur yang tinggi dibandingkan Gunung A.

The WA geothermal field is a geothermal field that has a volcanic system. Geologically, the rocks in this area are dominated by volcanic rocks including lava and pyroclastic which are quaternary in age. There are two main mountains in the WA geothermal field, namely Mount W and Mount A. There is a manifestation of fumarole at the top of Mount W so that it is categorized as an upflow zone while the outflow zone is in the western and northwestern parts of Mount W which is marked by the manifestation of Cgr hot springs, Cbn, and Pds. 3-D magnetotelluric inversion was carried out to identify deep seated heat sources which aims to determine the relationship between Mount W and Mount A heat source whether it is a single body or not, and its effect on the WA field geothermal system. The 3-D magnetotelluric inversion was performed using the MT3DInv-X software. The results of the inversion are able to describe the cross-section of MT up to a depth of 20 km. The conductive layer (<16 ohm-m) is indicated as clay cap and has a thickness of 1-2 km. While a heat source with a high resistivity value (> 100 ohm-m) forms a large body with a size and is at depth (> 2.5 km) continuously to a depth of 20 km. The heat source has two different domes, namely the lower dome of Mount W and Mount A. The existence of the dome can help analyze the evolution of the clay cap in the study area. The results of the MT inversion show that the clay cap is thickening from Mount A and thinning towards Mount W, so according to its evolution Mount W is a prospective zone for development because it still has a higher temperature than Mount A."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Soil formed from volcanic materials have a high potential for agricultural development, especially for horticultural crops,tea and pine trees. Data on the characteristics of these soils are important for the management planning...."
630 IJAS 9:2 (2008)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>