Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 49761 dokumen yang sesuai dengan query
cover
Dyaz Caesar Muhammad
"Mengikuti tren global dari mengadopsi energi terbarukan ke dalam sistem tenaga listrik, banyak arus langsung (DC) rumah konsep yang diusulkan, karena sebagian besar energi terbarukan sumber tegangan DC. Penulisan ilmiah ini membahas pengembangan pengisian baterai yang ringan, rendah profil, dan terpasangn di dalam pada sepeda listrik yang tidak mengambil ruang yang berlebihan dan kompatibel untuk sistem DC rumah. Oleh karena itu, inverter yang umum digunakan dapat dihilangkan karena menghasilkan kerugian konversi daya yang lebih rendah. Desain topologi Half bridge resonant LLC dalam frekuensi switching tinggi di atas 1MHz menggunakan magnetis planar dilakukan untuk memilih Konverter DC-DC yang paling sesuai. Untuk mencapai efisiensi tinggi dalam frekuensi switching tinggi dan untuk mengurangi ukuran charger, perangkat divais elektronika wide band gap (wbg) yang digunakan. Langkah-langkah metodologi desain diusulkan dan divalidasi melalui simulasi pada rangkaian yang mengonversi 120 V dari input ke kisaran tegangan output 48-55 V di 0,5 kW

Following the global trend of adopting renewable energy into the electric power system, many direct current (DC) House concepts are proposed, because most of the renewable energy sources are DC voltage. This Scientific writing discusses the development of lightweight, low profile, and the built-in electric bike charger that does not take up excessive space and are compatible for home DC systems. Therefore, commonly used inverters can be eliminated as it generates lower power conversion losses. The topology design for the Half-bridge resonant LLC in high switching frequencies above 1MHz using planar was performed to select the most suitable DC-DC converter. To achieve high efficiency in high switching frequencies and to reduce the size of the charger, wide band gap (WBG) devices are used. Step-by-step in design methodology is proposed and validated through simulation on the circuit convert 120 V from input to output voltage range 48-55 V at 0.5  KW"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Mengikuti tren global dari mengadopsi energi terbarukan ke dalam sistem tenaga listrik, banyak arus langsung (DC) rumah konsep yang diusulkan, karena sebagian besar energi terbarukan sumber tegangan DC. Penulisan ilmiah ini membahas pengembangan pengisian baterai yang ringan, rendah profil, dan terpasang di dalam sepeda motor listrik yang dapat menghemat ruang dan kompatibel untuk rumah sistem DC. Oleh karena itu, inverter yang umum digunakan dapat dihilangkan karena menghasilkan kerugian konversi daya yang lebih rendah. Desain topologi Dual Active Bridge (DAB) dalam frekuensi switching tinggi sebesar 1 MHz dan menggunakan magnetis planar ini dilakukan untuk mendesain dan menentukan sistem kontrol dari DC-DC konverter yang paling sesuai. Untuk mencapai efisiensi tinggi dalam frekuensi switching tinggi dan untuk mengurangi ukuran charger, perangkat divais elektronika wide band gap (wbg) yang digunakan. Langkah-langkah metodologi desain diusulkan dan divalidasi melalui simulasi pada rangkaian yang mengonversi 120 V dari input ke tegangan output 55 V di 550 W. Hasil dari penelitian ini menunjukkan semua metode phase shift modulation (PSM) berhasil didesain untuk mencapai ZVS. Single Phase Shift merupakan PSM yang terbaik untuk penerapan kasus ini karena memiliki Irms yang paling rendah. Penelitian ini berhasil membuktikan bahwa DAB dapat beroperasional secara dua arah. Desain dibuat hingga tahap pembuatan footprint dengan komponen magnetis menggunakan 84,7% dari total ukuran komponen.

Following the global trend of adopting renewable energy into electric power system, many direct current (DC) House concepts are proposed, because most of the renewable energy sources are DC voltage. This Scientific writing discusses the development of lightweight, low profile, and the built-in electric bike charger that does not take up excessive space and are compatible for home DC systems. Therefore, commonly used inverters can be eliminated as it generates lower power conversion losses. The topology design for the Dual Active Bridge (DAB) topology in a high switching frequency of 1 MHz and using a magnetic planar is performed to design and determine the control system of the most suitable DC-DC converter. To achieve high efficiency in high switching frequencies and to reduce the size of the charger, wide band gap (WBG) devices are used. Step-by-step in design methodology is proposed and validated through simulation on the circuit convert 120 V from input to output voltage of 55 V at 550 W. The result of this research is the Phase shift modulation (PSM) was successfully designed to achieve ZVS. Single Phase Shift is the best PSM for the application of this case because it has the lowest Irms. This research proved that DAB can operate bidirectional. The design is made to the stage of footprint design with the magnetics component use 84,7% of total size of the components."
Switzerland: Springer Nature, 2019
eBooks  Universitas Indonesia Library
cover
Muhammad Irfan Alfath
"Mengikuti tren global dari mengadopsi energi terbarukan ke dalam sistem tenaga listrik, banyak arus langsung (DC) rumah konsep yang diusulkan, karena sebagian besar energi terbarukan sumber tegangan DC. Penulisan ilmiah ini membahas pengembangan pengisian baterai yang ringan, rendah profil, dan terpasang di dalam sepeda motor listrik yang dapat menghemat ruang dan kompatibel untuk rumah sistem DC. Oleh karena itu, inverter yang umum digunakan dapat dihilangkan karena menghasilkan kerugian konversi daya yang lebih rendah. Desain topologi Dual Active Bridge (DAB) dalam frekuensi switching tinggi sebesar 1 MHz dan menggunakan magnetis planar ini dilakukan untuk mendesain dan menentukan sistem kontrol dari DC-DC konverter yang paling sesuai. Untuk mencapai efisiensi tinggi dalam frekuensi switching tinggi dan untuk mengurangi ukuran charger, perangkat divais elektronika wide band gap (wbg) yang digunakan. Langkah-langkah metodologi desain diusulkan dan divalidasi melalui simulasi pada rangkaian yang mengonversi 120 V dari input ke tegangan output 55 V di 550 W. Hasil dari penelitian ini menunjukkan semua metode phase shift modulation (PSM) berhasil didesain untuk mencapai ZVS. Single Phase Shift merupakan PSM yang terbaik untuk penerapan kasus ini karena memiliki Irms yang paling rendah. Penelitian ini berhasil membuktikan bahwa DAB dapat beroperasional secara dua arah. Desain dibuat hingga tahap pembuatan footprint dengan komponen magnetis menggunakan 84,7% dari total ukuran komponen.

Following the global trend of adopting renewable energy into electric power system, many direct current (DC) House concepts are proposed, because most of the renewable energy sources are DC voltage. This Scientific writing discusses the development of lightweight, low profile, and the built-in electric bike charger that does not take up excessive space and are compatible for home DC systems. Therefore, commonly used inverters can be eliminated as it generates lower power conversion losses. The topology design for the Dual Active Bridge (DAB) topology in a high switching frequency of 1 MHz and using a magnetic planar is performed to design and determine the control system of the most suitable DC-DC converter. To achieve high efficiency in high switching frequencies and to reduce the size of the charger, wide band gap (WBG) devices are used. Step-by-step in design methodology is proposed and validated through simulation on the circuit convert 120 V from input to output voltage of 55 V at 550 W. The result of this research is the Phase shift modulation (PSM) was successfully designed to achieve ZVS. Single Phase Shift is the best PSM for the application of this case because it has the lowest Irms. This research proved that DAB can operate bidirectional. The design is made to the stage of footprint design with the magnetics component use 84,7% of total size of the components."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ismail
"Pada saat ini pengembangan dan penggunaan kendaraan listrik masif dilakukan. Kendaraan listrik membutuhkan konverter DC-DC untuk menurunkan tegangan tinggi dari sumber utama — baterai besar — ke tegangan rendah (step down DC-DC converter) sehingga tegangan dapat digunakan oleh komponen - komponen yang membutuhkan tenganan rendah. Topologi konverter DC-DC yang umum digunakan adalah konverter dengan switch tunggal seperti flyback converter dan switch ganda seperti half bridge converter. Akan tetapi kedua topologi tersebut memiliki nilai voltage and current stress (spike, overshoot, dan ringing) yang tinggi dengan demikian akan menimbulkan rugi - rugi daya yang besar serta membutuhkan komponen dengan rating tegangan dan arus yang tinggi. Phase Shift Full Bridge DC-DC Converter (selanjutnya akan disebut PSFB) merupakan salah satu topologi konverter DC-DC terisolasi yang memiliki konfigurasi empat switch (full bridge / active bridge) sehingga dapat memiliki voltage and current stress yang lebih rendah dibandingkan dengan kedua topologi sebelumnya, dengan demikian dapat dihasilkan rugi - rugi daya yang lebih rendah [1]. Tegangan output PSFB ditentukan dari pergeseran fasa active bridge yang dihasilkan melalui kolaborasi keempat switch MOSFET oleh gate driver [2]. Gate driver dikendalikan oleh mikrokontroler yang sudah diporgram dengan algoritma pergeseran fasa dan juga closed loop control. Dalam karya ilmiah ini berhasil dibuat purwarupa PSFB yang dapat menghasilkan tegangan output dinamis sesuai dengan pergeseran fasa dalam active bridge. Nilai tegangan output memiliki kecenderungan meningkat dalam rentang pergeseran fasa 0º sampai 180º dan memiliki kecenderungan menurun dalam rentang pergeseran fasa 180º sampai 360º. Diperoleh juga hasil yang menunjukkan bahwa purwarupa PSFB sudah terintegrasi dengan closed loop control sehingga sistem dapat menghasilkan tegangan output sesuai dengan setpoint yang ada dalam program. Sistem dapat mempertahankan tegangan output sesuai setpoint meskipun diberikan variasi tegangan input dan variasi beban.

Currently, the development and widespread use of electric vehicles are underway. Electric vehicles require a DC-DC converter to convert the high voltage from the main source — a large battery — to a lower voltage (step-down DC-DC converter), allowing it to be used by components that require low voltage. Commonly used topologies for DC-DC converters include single-switch converters like the flyback converter and dual-switch converters like the half-bridge converter. However, both topologies have high voltage and current stress values (spikes, overshoot, and ringing), resulting in significant power losses and the need for components with high voltage and current ratings. The Phase Shift Full Bridge DC-DC Converter (hereafter referred to as PSFB) is one of the isolated DC-DC converter topologies with a four-switch configuration (full bridge/active bridge). This configuration allows it to have lower voltage and current stress compared to the previous two topologies, thereby resulting in lower power losses [1]. The output voltage of the PSFB is determined by the phase shift of the active bridge generated through the collaboration of the four MOSFET switches controlled by a gate driver [2]. The gate driver is controlled by a microcontroller programmed with a phase shift algorithm and closed-loop control. In this scientific work, a prototype of the PSFB has been successfully developed, capable of producing dynamic output voltage in accordance with the phase shift in the active bridge. The output voltage tends to increase in the phase shift range of 0º to 180º and decrease in the range of 180º to 360º. Furthermore, results indicate that the PSFB system has been integrated with closed-loop control, enabling it to generate output voltage according to the various setpoint in the program. The system is able to maintain the output voltage according to setpoint, regardless of various of input voltages and loads."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deshang Sha
"Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters."
Singapore: Springer Singapore, 2019
e20511017
eBooks  Universitas Indonesia Library
cover
Luthfi Arif Radriyantomo
"Simulasi ini membahas tentang perancangan, dan desain DC to DC Converter Bidirectional untuk aplikasi sistem Regenerative Braking yang akan digunakan pada kendaraan listrik. Dimana sistem Regenerative Braking ini merupakan sistem yang biasa digunakan pada kendaraan beroda untuk memanfaatkan energi kinetik balik saat dilakukan pengereman, dan diubah menjadi energi listrik, sehingga energi tersebut tidak terbuang sia-sia dan dapat dimanfaatkan secara efektif.
Pada simulasi ini ditunjukan proses pendesainan Full-Bridge Push-Pull DC-DC Converter Bidirectional 400V menjadi 10.8V dan sebaliknya, dengan menggunakan transformator berfekruensi tinggi 50kHz. Full-Bridge Push-Pull DC-DC Converter Bidirectional yang telah didesain tersebut akan digunakan untuk menyimpan energi lebih dari sistem Regenerative Braking menuju supercapacitor, lalu energi yang tersimpan tersebut dapat dikembalikkan lagi menuju Dc Link untuk digunakan kembali energinya sebagai energi cadangan yang nantinya dapat diimplementasikan pada kendaraan listrik. Supercapacitor dipilih karena sifatnya yang ideal untuk sistem, yaitu dapat dengan cepat melakukan charge/discharge, dan dapat menyuplai energi dengan densitas yang besar.

This simulation discusses the process, and the design of DC to DC Bidirectional Converter for Regenerative Braking system applications that will be used on electric vehicle. Where the Regenerative Braking system is a system commonly used in wheeled vehicles to utilize reverse kinetic energy when braking is carried out, and converted into electrical energy, so that energy is not wasted and can be utilized effectively.
In this simulation the design process for Full-Bridge Push-Pull DC-DC Bidirectional 400V Converter to 10.8V and vice versa, using a transformer with a high frequency of 50kHz. The Full-Bridge Push-Pull Bidirectional DC-DC Converter that has been designed will be used to store extra energy from the Regenerative Braking system towards the supercapacitor, then the stored energy can be returned to Dc Link to be reused as a backup energy which can later be implemented on electric vehicles. Supercapacitor was chosen because it is ideal for systems, which can quickly charge / discharge, and can supply energy with a large density.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanjuntak, Benyamin Rupmanaor
"

Pada skripsi ini dipresentasikan desain rangkaian novel dc-dc flyback converter untuk mendukung teknologi 48 volt. Kebaruan dari rangkaian ini adalah pengaplikasian parallel input seried output dan umpan balik pada dc-dc flyback converter untuk mengubah 12V DC ke 48V DC. Disamping itu penggunaan transformator pada rangkaian yang berjumlah lebih dari satu berfungsi untuk membagi beban kerja induksi magnetik pada inti transformator. Desain umpan balik memanfaatkan arduino untuk memproses sinyal umpan balik sehingga menggerakan komponen penghasil sinyal PWM berdasarkan sinyal umpan balik yang diterima dan tegangan keluaran yang dihasilkan mencapai 48 volt meskipun dilakukan variasi beban. Rangkaian usulan terdiri atas keempat model yang berbeda, yaitu model tanpa umpan balik, model arduino-TL494CN, arduino saja, dan arduino-MCP4725-TL494CN. Hasil dari penelitian ini menyatakan model arduino-MCP4725-TL494CN memiliki presisi yang tinggi yaitu nilai defiasi yang paling rendah 0.02765 %⁄int dan tidak mengalami overshoot pada inisiasi rangkaian.


This essay presented dc-dc flyback converter for supporting 48 volt technology. This circuit merge parallel input seried output and feedback application. The new design development consist of parallel input seried output and feedback in dc-dc flyback converter to converter 12V DC to 48 V DC. Aside that, the function of using transformer more than one in circuit is for splitting magnetic induction workload for transformer core. Feedback design using arduino is for proccessing feedback signal so that driving PWM generator component based on received feedback signal and output voltage reach at 48 volt even the load is changing. The proposed circuit consist of four different model, that are no feedback model, arduino-TL494CN model, arduino only, and arduino-MCP4725-TL494CN model. Result of this research stated arduino-MCP4725-TL494CN model has the lowest deviation value 0.02765 %⁄int and preventing overshoot at circuit initiation.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Albertus Hendra
"Dalam merancang kendaraan bus listrik, dibutuhkan komponen untuk menyuplai daya ke sistem auxiliary yang membutuhkan tegangan 24V dari sumber baterai 400V. Isolated DC-DC converter merupakan solusi untuk mengubah tingkat tegangan dari 400V ke 24V dengan menggunakan metode Switch Mode Power Supply (SMPS) yang bertopologi push-pull agar dapat memperoleh daya sebesar 1kW. Rangkaian dirancang terisolasi agar aman bagi komponen sistem auxiliary, baterai, dan penggunanya, karena rangkaian sumber dan beban terpisah secara elektris, namun terhubung secara magnetis oleh transformator. Frekuensi switching yang digunakan adalah 20 kHz dengan menggunakan semikonduktor IGBT. Pada bagian masukkan terdapat rangkaian snubber agar diperoleh masukkan tegangan yang mendekati ideal. Pada bagian keluaran rangkaian terdapat filter LC yang berfungsi untuk menjaga gelombang tegangan keluaran agar lebih stabil pada suatu nilai. Tegangan keluaran diumpan balik ke pengendali PID yang dirancang dengan metode tempat kedudukan akar berdasarkan pemodelan state-space averaging dan digunakan untuk mengatur keluaran PWM yang menjalankan proses switching pada IGBT, sehingga menjaga keluaran tetap pada nilai tegangan yang diinginkan, yaitu 24V. Seluruh rancang bangun dianalisa melalui hasil grafik simulasi. Hasil penelitian ini diperoleh rangkaian isolated DC-DC converter efisiensi 83.6% dan mampu memberikan keluaran stabil pada 24V dengan daya 1kW.

Designing electric vehicle, especially bus, a component is needed to supply the power for 24V auxiliary system from 400V battery source. Isolated DC-DC converter is a solution to convert voltage level from 400V to 24V with Switch Mode Power Supply (SMPS) method that designed with push-pull topology that the design able to drive 1 kW of electric power. The circuit has been designed to be safely used for the auxiliary system, battery source, and for the user, because the source circuit and load circuit is electrically separated, but magnetically connected by transformer. Switching frequency that used in this simulation is 20 kHz using IGBT semiconductor. Ferrite transformer is used in this simulation to satisfy the required switching frequency of 20 kHz. On the input circuit, there is a snubber circuit to maintain the input voltage to be more ideal. On the output circuit, LC filter is used to maintain the voltage output wave to be more stable on the desired voltage level. The output voltage provides feedback value to PID controller that is designed using Root Locus method based on state-space averaging model and used by the PID controller to control the PWM output to drive the switching process on IGBT semiconductor, hence the output voltage will be maintained on desired level, 24V. The whole design is analyzed through simulation graph result. The result of this study, an isolated DC-DC converter that has efficiency 83.6% and capable of delivering 24V stable output with 1kW power transmission."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Wira Pratama
"Dalam merancang kendaraan bus listrik, dibutuhkan komponen untuk menyuplai daya ke sistem auxiliary yang membutuhkan tegangan 24V dari sumber baterai 600V. DC-DC konverter terisolasi merupakan solusi untuk mengubah tingkat tegangan dari 600V ke 24V dengan menggunakan metode Switch Mode Power Supply (SMPS) yang bertopologi phase shift full bridge current doubler with synchronous rectification agar dapat memperoleh daya sebesar 3kW. Rangkaian dirancang terisolasi agar aman bagi komponen sistem auxiliary, baterai, dan penggunanya, karena rangkaian sumber dan beban terpisah secara elektris, namun terhubung secara magnetis oleh transformator. Frekuensi switching yang digunakan adalah 100 kHz dengan menggunakan semikonduktor MOSFet. MOSFet harus mencapai kondisi zero voltage swithching yaitu pada saat MOSFet akan menyala, tegangan MOSFet sudah menyentuh angka nol, sehingga tidak terjadi rugi-rugi swithing saat menyala. Kondisi ZVS harus tercapai pada sisi primer maupun sisi sekunder. Tercapainya ZVS akan membuat efisiensi konverter menjadi lebih tinggi sehingga mencapai spesifikasi yang diinginkan. Pada sisi sekunder terdapat rangkaian snubber yang bertujuan untuk mengurangi ringing pada tegangan sekunder, dua induktor dan satu kapasitor yang berfungsi sebagai filter.

Designing electric vehicle, especially bus, a component is needed to supply the power for 24V auxiliary system from 600V battery source. Isolated DC-DC converter is a solution to convert voltage level from 600V to 24V with Switch Mode Power Supply (SMPS) method that designed with phase shift full bridge current doubler synchronous rectification to produce 3 kW of electric power. The circuit has been designed to be safely used for the auxiliary system, battery source, and for the user, because the source circuit and load circuit is electrically separated, but magnetically connected by transformer. Switching frequency that used in this simulation is 100 kHz using MOSFet semiconductor. MOSFet must reach zero swithching voltage condition that is when the MOSFet is turn on, the MOSFet voltage has reached zero, so there is no need to calculate swithing losses when it is on. ZVS condition must be agreed on the primary and secondary side. Reached ZVS will make the converter efficiency higher so that it reaches the desired specifications. On the secondary side there is a snubber circuit that is intended to reduce the ringing voltage at the secondary switching, two inductors and one capacitor that functions as a filter."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paramarddhika Alfarist Bustaman
"Tren kendaraan listrik di Indonesia yang semakin meningkat mendorong industri manufaktur kendaraan listrik untuk meningkatkan nilai tingkat komponen dalam negeri (TKDN). DC-DC converter menjadi salah satu komponen penting dari modul pengisian daya baterai kendaraan listrik. Topologi dari DC-DC converter dibagi menjadi dua, yaitu non-isolated DC-DC converter dan isolated DC-DC converter yang masing-masing memiliki kelebihan dan kekurangan. Penelitian ini akan melakukan simulasi dan analisis terhadap kerja dan efisiensi dari synchronous buck converter sebagai non-isolated converter dan flyback converter sebagai isolated converter untuk aplikasi pengisian daya baterai motor listrik. Variasi yang digunakan dalam penelitian adalah nilai duty cycle dari kedua rangkaian. Simulasi kedua rangkaian converter dilakukan dalam software LTspice. Hasil penelitian yang diperoleh dari penelitian ini menunjukkan bahwa nilai efisiensi tertinggi dari simulasi rangkaian synchronous buck converter sebesar 97,71% dan rangkaian flyback converter sebesar 96,65%.

The increasing trend of electric vehicles in Indonesia is encouraging the electric vehicle manufacturing industry to increase the value of the tingkat kandungan dalam negeri (TKDN). The DC-DC converter is an important component of the electric vehicle battery charging module. The topology of DC-DC converters is divided into two, namely non-isolated DC-DC converters and isolated DC-DC converters, each of which has advantages and disadvantages. This research will simulate and analyze the work and efficiency of a synchronous buck converter as a non-isolated converter and a flyback converter as an isolated converter for electric motor battery charging applications. The variation used in the research is the duty cycle value of the two circuits. Simulation of both converter circuits is carried out in the LTspice software. The research results obtained from this research show that the highest efficiency value from the simulation of the synchronous buck converter circuit is 97.71% and the flyback converter circuit is 96.65%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>