Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 179021 dokumen yang sesuai dengan query
cover
Firdania Fauziah
"Minyak bumi dan gas alam merupakan sumber daya yang tidak terbarukan (nonrenewable resources) seiring berjalan waktu akan semakin menipis pasokannya di bumi. Hal inilah yang mendorong pengembangan bahan bakar alternatif ramah lingkungan yang ketersediaannya lebih terjamin dan bersinambungan yang berasal dari materi biomassa hasil penyulingan minyak atsiri menggunakan pirolisis katalitik sehingga akan menghasilkan produk distribusi hidrokarbon. Penggunaan katalis asam seperti katalis berbasis zeolit (ZSM-5) telah terbukti mampu untuk melakukan reaksi deoksigenasi dan perengkahan katalitik untuk meningkatkan produksi senyawa hidrokarbon pada reaksi pirolisis katalitik. Namun, penggunaan zeolit hanya mampu merengkah molekul-molekul hidrokarbon panjang menjadi lebih sederhana melalui pembentukan ion karbonium. Sehingga memerlukan modifikasi katalis yang dapat memutus oksigen dari gugus hidrokarbon diperlukan. Dengan mekanisme tersebut, hasil pirolisis katalitik diharapkan dapat ditingkatkan. Salah satu material yang memiliki potensi tersebut adalah YSZ (Yttria-Stabilized Zirconia). Pada penelitian ini, variasi suhu, laju alir gas inert dan rasio perpaduan katalis YSZ-ZSM-5 akan digunakan dalam reaksi pirolisis residu hasil penyulingan minyak atsiri menjadi bio-oil untuk diketahui pengaruhnya terhadap proses penyusutan biomassa yang terjadi serta produk distribusi hidrokarbon yang dihasilkannya.
Hasil dari penelitian ini menunjukkan bahwa kenaikan suhu reaksi pirolisis mampu meningkatkan yield uap produk serta produksi senyawa hidrokarbon non-oksigenat sehingga saat suhu mencapai 550°C merupakan kondisi suhu optimumnya. Hal yang sama juga berlaku pada laju alir gas inert (argon) dengan kondisi laju alir optimum sebesar 100 ml/menit. Pada kondisi tersebut, fluidisasi material biomassa terjadi dengan maksimal sehingga proses transfer panas dapat terjadi dengan sangat cepat. Sedangkan rasio katalis YSZ/ZSM-5 optimum dicapai saat rasio 3:2. Pada kondisi ini, YSZ berperan sangat efektif pada kondisi suhu 550°C dalam membantu ZSM-5 membentuk senyawa-senyawa hidrokarbon non-oksigenat. Sementara itu, proses penyusutan biomassa terjadi pada waktu ke-0 hingga ke-15 menit.

Petroleum and natural gas are non-renewable resources, which in time will diminish their supply on earth. That is why, the development of environmentally friendly hydrocarbon resources alternative whose more secure and sustainable should be driven. One of the origins could be come from derivation of biomass material from the residue of distillation process of essential oils with using catalytic pyrolysis that would produce the hydrocarbon distribution products. The use of acid catalysts such as zeolite-based catalysts (ZSM-5) has been proving to be able to carry out deoxygenation reactions and catalytic cracking to increase the production of hydrocarbon compounds in catalytic pyrolysis reactions. However, the use of zeolites can mainly accelerate the cracking higher/long molecules into make hydrocarbon molecules simpler by forming carbonium ions from carbon-carbon chain. Thus, requiring a modification of the catalyst which can cut off oxygen from the hydrocarbon group is needed. With this mechanism, the results of catalytic pyrolysis expected to be improved. One material that has this potential is YSZ (Yttria-Stabilized Zirconia). In this study, temperature, inert gas flow rate, and the ratio of YSZ-ZSM-5 catalysts will be used in the pyrolysis reaction of essential oils distilled residue to bio-oil to determine their impact on the shrinkage process of biomass and the hydrocarbon distribution products.
The results of this study showed that the rise of pyrolysis temperature was able to increase the yield of steam products and the production of non-oxygenated hydrocarbon compounds, in which the temperature 550°C is the maximum temperature of pyrolysis. Similarly, the optimization condition of argon gas flow rate is 100 ml/min. In that condition, the fluidization of biomass material occurs maximally, and the occurrence of the heat transfer process is very fast. While the optimum ratio of YSZ/ZSM-5 catalyst achieved by 3:2 ratio. In this condition, YSZ is very effective at 550°C in assisting ZSM-5 to form non-oxygenated hydrocarbon compounds. Meanwhile, the process of biomass shrinkage occurs in the 0 to-15 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miranda Meidistira
"Sampah daun dapat dikonversi menjadi produk yang lebih berguna dengan menggunakan beberapa proses, salah satu prosesnya adalah menggunakan proses pirolisis. Proses pirolisis dapat dilakukan dengan membutuhkan beberapa parameter, yaitu bahan baku, suhu, waktu tinggal, dan juga laju pemanasan. Pada proses pirolisis, biomassa mengalami proses penyusutan. Pada penelitian ini, variabel yang digunakan adalah suhu, laju alir gas, dan rasio kombinasi katalis dengan tujuan melihat hubungan variabel-variabel tersebut dengan proses penyusutan dan produk pirolisis yang dihasilkan. Proses pirolisis menghasilkan produk berupa produk cair, gas, dan padat. Dari hasil penelitian, produk padatan kemudian dikarakterisasi menggunakan analisis Fourier Transform Infrared Spectroscopy (FTIR) dan dihasilkan bahwa terdapat beberapa perbedaan yang terdapat pada padatan pirolisis katalitik dan non-katalitik dan terdapat perbedaan intensitas pada peak-peak spektra yang menunjukan adanya penyusutan dari struktur penyusun biomassa. Produk cair yang terbentuk dianalisis dengan menggunakan alat Gas Chromatography – Mass Spectroscopy (GC-MS) dan didapatkan bahwa produk cair memiliki kandungan oksigenat dan non-oksigenat di dalamnya. Kandungan oksigenat dan non-oksigenat yang berada dalam produk cair dilakukan dengan menggunakan bantuan katalis ZSM-5 (Zeolite Socony Mobil-5) dan YSZ (Yttria Stabilized Zirconia). Katalis ZSM-5 berfungsi sebagai katalis asam yang dapat meningkatkan kandungan hidrokarbon dan katalis YSZ berfungsi untuk meningkatkan produksi non-oksigenat pada produk bio-oil yang dihasilkan. Produk distribusi yang dihasikan dengan proses katalitik memiliki produk distribusi yang lebih beragam. Penambahan katalis juga menurunkan energi aktivasi yang digunakan sebesar 5,41%.

Leaf waste can be converted into more useful products by using several processes, one of which is using a pyrolysis process. The pyrolysis process can be carried out by requiring several parameters, namely raw material, temperature, residence time, and also the rate of heating. In the pyrolysis process, biomass undergoes a shrinkage process. In this study, the variables used are temperature, gas flow rate, and catalyst combination ratio with the aim of seeing the relationship of these variables with the shrinkage process and the resulting pyrolysis product. The pyrolysis process produces products in the form of liquid, gas and solid products. From the results of the study, solid products were then characterized using Fourier Transform Infrared Spectroscopy (FTIR) analysis and it was found that there were some differences found in catalytic and non-catalytic pyrolysis solids and there were differences in intensity in the spectral peaks that showed shrinkage of biomass. The liquid product formed was analyzed using the Gas Chromatography - Mass Spectroscopy (GC-MS) tool and it was found that the liquid product contained oxygenate and non-oxygenate in it. Oxygenate and non-oxygenate content in liquid products is increased by using ZSM-5 catalysts (Zeolite Socony Mobil-5) and YSZ (Yttria Stabilized Zirconia). ZSM-5 catalyst serves as an acid catalyst that can increase the hydrocarbon content and the YSZ catalyst serves to increase the production of non-oxygenate in the resulting bio-oil product. Distribution products produced by catalytic processes have a more diverse distribution of products. The addition of catalysts also reduced the activation energy used by 5.41%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
A`Isyah Fadhillah
"Co-pirolisis termal antara bonggol jagung dan PP pada laju pemanasan rendah telah berhasil memisahkan bio-oil fasa oksigenat dan non-oksigenat secara spontan. Pada co-pirolisis, PP dapat mengambil oksigen dari bio-oil untuk mengkonversi sebagian bio-oil menjadi fasa non-oksigenat sehingga dapat berkontribusi dalam perengkahan PP. Namun, kemampuan PP untuk mengubah oksigen sangat lemah. Pada penelitian ini, zeolit digunakan sebagai katalis pada co-pirolisis bonggol jagung dan PP pada laju pemanasan rendah guna mengurangi energy aktivasi dari pirolisis PP, sehingga akan mengurangi suhu dekomposisi massa PP hingga kurang dari 400 oC. pada penelitian sebelumnya, belum pernah ada katalitik pirolisis menggunakan laju pemanasan rendah untuk meningkatkan yield fase non-oksigenat pada co-pirolisis biomass dan PP. Penelitian ini dilakukan di reaktor berpengaduk dengan laju pemanasan 5 oC/menit dan suhu pirolisis 500 oC. komposisi umpan yang digunakan adalah 0; 50 dan 100%PP. Katalis yang digunakan adalah katalis zeolit alam dan zeolit sintetik ZSM-5 dengan dua rasio Si/Al yang berbeda yaitu 38 dan 70. Penggunaan katalis menghasilkan produk senyawa alifatik seperti metil, metilen dan methin yang tingggi. Dengan penambahan tipe katalis zeolit ZSM-5 produksi dari alilik yang merupaan rantai yang berhubungan dengan alkena berkurang. Apabila dilhat dari kualitas bio-oil, sebagian besar fraksi bio-oil non-polar memiliki nilai HHV yang hampir sama atau sedikit lebih tinggi dari bahan bakar komersial yaitu diesel dan gasoline. Selain itu apabila dilihat dari nilai BI (Branching Index) bio-oil fraksi non-polar menghasilkan rantai karbon lurus dengan cabang yang lebih banyak apabila dibandingkan dengan bahan bakar komersial. Dari perbandingan HHV dan BI, nilai HHV dan BI bio-oil fraksi non-polar lebih mendekati nilai HHV dan BI dari gasoline komersial.

Thermal co-pyrolysis of corn cobs and polypropylene (PP) at low heating rate has succeeded in separating bio-oil produced between oxygenated and non-oxygenated phases spontaneously. In co-pyrolysis, PP can sequester oxygen from bio-oil to convert part of bio-oil to non-oxygenated phase and can contribute partly non-oxygenated phase by PP carbon chain cracking. However, the capability of PP pyrolates to sequester oxygen is still low. In present work, zeolite catalyst was introduced in co-pyrolysis of corn cobs and PP at low heating rate, in order to reduce activation energy of PP pyrolysis and therefore reducing the lowest temperature of PP mass decomposition to less than 400oC. There has been no research previously conducted to employ catalytic co-pyrolysis at low heating rate to improve non-oxygenated phase yield in co-pyrolysis of biomass-plastic. The present co-pyrolysis work was carried out in a stirred tank reactor at heating rate of 5oC/min and maximum temperature of 500oC. The composition of feed was varied at 0, 50 and 100%PP in the mixture of corn cob particles and PP granules. There were two types of zeolite catalysts used in this experiment, natural zeolite and ZSM-5 with two different ratio, 38 and 70. Utilization of catalyst generated high amount of aliphatic moieties, i.e. methyl, methine and methylene. With ZSM-5 catalyst utilization, production of allyl decreased. Most of non-polar bio-oil fractions have similar or slightly higher higher heating values (HHVs) compared to those of commercial fuels. Branching index (BI) values of non-polar phase of bio-oil generated traight carbon chain with higher branches compared to those commercial fuels. From the comparison of HHV and BI value, non-polar phase of bio-oil generate HHV and BI value closer to commercial gasoline."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervandy Haryoprawironoto
"Sebagian besar komoditas di bidang pertanian seperti jerami padi dan tongkol jagung menghasilkan biomassa yang dapat dimanfaatkan sebagai sumber bahan baku industri petrokimia. Jerami padi dan tongkol jagung merupakan biomassa dengan jumlah berlimpah di Indonesia. Jerami padi dan tongkol jagung mengandung komponen lignoselulosa yang membuatnya dapat dimanfaatkan untuk menghasilkan toluena. Toluena adalah hidrokarbon aromatik yang digunakan secara luas dalam bahan baku industri dan juga sebagai bahan pelarut bagi industri lainnya. Bio-oil mengandung senyawa fenolat salah satunya cresol metil-fenol yang dapat diubah menjadi toluena melalui proses konversi katalitik. Bio-oil dari hasil pirolisis biomassa yang berbeda jenis akan memberikan yield bio-oil yang berbeda karena adanya perbedaan karakteristik seperti kandungan volatile matter, ash, dan fixed carbon. Bio-oil hasil pirolisis tongkol jagung menghasilkan yield bio-oil 44.16 berat, lebih besar dari jerami padi yakni 22.46 berat. Komposisi selulosa, hemiselulosa, dan lignin yang berbeda pada jerami padi dan tongkol jagung akan memberikan distribusi kelompok senyawa pada bio-oil -nya yang berbeda. Bio-oil hasil pirolisis jerami padi mengandung tiga kelompok senyawa terbesar yakni fenol 19.01 berat, furan 12.92 berat, dan keton 12.54 berat. Sedangkan tiga kelompok senyawa terbesar pada bio-oil hasil pirolisis tongkol jagung adalah fenol 24.02 berat, keton 15.08 berat, dan furan 11.67 berat. Bio-oil hasil pirolisis jerami padi dan tongkol jagung dikonversi menjadi toluena melalui konversi katalitik dengan komposisi katalis B2O3/?-Al2O3 dan suhu reaksi yang divariasikan. Hal tersebut dilakukan untuk mengetahui komposisi katalis dan suhu reaksi yang dapat menghasilkan yield toluena optimum. Komposisi katalis B2O3 dalam paduan katalis yang digunakan adalah 0 berat, 15 berat, dan 30 berat dengan suhu reaksi yang digunakan adalah 400°C dan 450°C. Yield toluena optimum sebesar 33.01 berat dihasilkan pada konversi bio-oil hasil pirolisis tongkol jagung dengan komposisi katalis yang digunakan terdiri atas 30 B2O3 dan 70 ?-Al2O3 pada suhu reaksi 450°C.

Most commodities in agriculture such as rice straw and corn cobs produce biomass which can be utilized as a source of petrochemical feedstock. Rice straw and corn cob are type of biomass with abundant amount in Indonesia. Rice straw and corncob contain lignocellulosic components that make them useful for toluene production. Toluene is an aromatic hydrocarbon that is widely used in industrial raw materials as well as solvents for other industries. Bio oil contains phenolic compounds, one of them is cresol methyl phenol which can be converted to toluene through a catalytic conversion process. Bio oil from different types of biomass pyrolysis will yield different bio oil yields due to its different characteristics including volatile matter, ash, and fixed carbon content. Bio oil from corncob pyrolysis yields 44.16 wt of bio oil yield, greater than that of rice straw 22.46 wt. Different cellulose, hemicellulose, and lignin compositions on rice straw and corncob will give different composition of components found in bio oil. Bio oil from pyrolysis of rice straw contains the three largest groups of compounds namely phenol 19.01 wt, furan 12.92 wt, and ketone 12.54 wt. While the three largest groups of compounds in bio oils of corncob pyrolysis are phenol 24.02 wt, ketones 15.08 wt, and furan 11.67 wt. Bio oil from pyrolysis of rice straw and corn cobs are converted to toluene by catalytic conversion with the variation of B2O3 Al2O3 catalyst composition and the reaction temperature. This is done to determine the catalyst composition and reaction temperature which can produce the optimum toluene yield. The catalyst composition of B2O3 used in the mixed catalyst was 0 wt, 15 wt, and 30 wt with the reaction temperature used was 400°C and 450°C. The optimum toluene yield of 33.01 wt was produced in the conversion of the corncob pyrolysis bio oil with the catalyst composition used comprising 30 wt B2O3 and 70 wt Al2O3 at reaction temperature of 450°C."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68254
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhri Raihan Ramadhan
"Ko-pirolisis polipropilena dan minyak kelapa sawit memberikan cara pemanfaatan limbah plastik polipropilena. Penelitian ini akan meneliti reaksi ko-pirolisis di dalam reaktor tangki berpengaduk menggunakan katalis ceramic foam ZrO2/Al2O3-TiO2 untuk mengakomodasi ukuran molekul reaktan yang besar. Tujuan penelitian ini adalah untuk mendapatkan pengaruh laju pemanasan dan komposisi rasio umpan plastik polipropilena dari 0, 25, 50, 75, dan 100 % berat umpan terhadap hasil produk ko-pirolisis dan komposisi bio-oil. Produk dari ko-pirolisis akan dianalisis menggunakan metode Karl- Fischer, FTIR, GC-MS, C-NMR, dan DEPT 135 untuk menentukan kemungkinan jalur reaksi, komposisi senyawa, dan ikatan kimia yang ada di dalam bio-oil dan wax. Terdapat pengaruh laju pemanasan dan rasio umpan polipropilena terhadap jumlah produk dan senyawa kimia di dalam bio-oil. Penggunaan katalis ceramic foam ZrO2/Al2O3-TiO2 mampu meningkatkan kualitas dan yield produk akhir. Sistem pirolisis katalitik laju pemanasan tinggi tidak menunjukkan efek sinergis antara PP dan CPO dalam yield dan komponen non-oksigenat karena fraksi non-oksigenat yang rendah di bio-oil dan yield bio-oil yang rendah. Sistem pirolisis termal menunjukkan efek sinergis yang lebih tinggi antara PP dan CPO terhadap yield bio-oil yang lebih tinggi. Sistem pirolisis katalitik laju pemanasan rendah menunjukkan efek sinergis tertinggi antara PP dan CPO dalam hal jumlah fraksi non-oksigenat dan yield dari bio-oil. Analisis C-NMR dan DEPT-135 dari bio-oil menunjukkan bahwa sistem katalitik dan termal dengan laju pemanasan tinggi memiliki jumlah karbon yang terikat pada oksigen lebih tinggi dibandingkan dengan sistem katalitik laju pemanasan rendah yang menunjukkan efisiensi deoksigenasi yang lebih tinggi.

Co-pyrolysis of polypropylene and crude palm oil gives the benefit of utilizing plastic waste of polypropylene. In the present research, co-pyrolysis reaction in a stirred tank reactor will be investigated using ZrO2/Al2O3-TiO2 ceramic foam catalyst to accommodate the large molecular size of reactants. The objectives are to obtain effects of heating rate and feed composition of polypropylene plastic from 0, 25, 50, 75, and 100 wt.% of total feed weight on yields of co-pyrolysis products and composition of bio-oil. The products were analyzed using Karl-Fischer, FTIR, GC-MS, C-NMR, and DEPT 135 to determine the possible reaction pathway, compound compositions, and chemical bonds in the bio-oil and wax. There is an effect of heating rate and feed composition on the yield and chemical compound of the product. The use of ZrO2/Al2O3-TiO2 ceramic foam catalyst improve the quality and yield of the final product. Catalytic high heating rate pyrolysis showed no synergetic effects between PP and CPO on bio-oil yield and non- oxygenates components due to low non-oxygenates fractions in bio-oil and low bio-oil yield. Thermal pyrolysis showed synergetic effects between PP and CPO on bio-oil yield. Catalytic low heating rate pyrolysis showed high synergetic effects between PP and CPO in terms of the quantity of non-oxygenates fractions in bio-oil and the bio-oil yield. C- NMR and DEPT-135 of bio-oil suggested that catalytic and thermal high heating rate system contained higher amount of carbon bound to oxygen compared to the catalytic low heating rate system which indicated higher deoxygenation efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"The application of bio-oil for biofuel has been limited due to its low heating value, high acidity and high oxygenate content. pursuant to the urgency of obtaining access to sustainable energy from renewable resources, the studies for bio-oil upgrading have been recently placed in high priority. this study is aimed at identifying the effect of biomass types on bio-oil product characteristics. the conversion of several types of biomass, i.e. rice straw, rubberwood (hevea brasiliensis), and palm empty fruit bunches (efb) to bio-oil by-products was investigated in a catalytic fast pyrolysis (cfp) reactor using a ni/zsm-5 nickel nitrate and zeolite catalyst at 550oc and at atmospheric pressure. the results show that ni/zsm-5 catalyst has actively enhanced the de-oxygenation reaction process and aromatic production. the composition of aromatic compounds in bio-oil from rubberwood, rice straw, and efb are 10.25 wt%, 7.8 wt%, and 5.98 wt%, respectively. in the absence of a catalyst, bio-oil from rice straw contains no aromatics."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:7 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhamad Fakri Pirdaus
"Saat ini masih terdapat beberapa kendala dalam penggunaan bio oil sebagai bahan bakar yaitu rendahnya nilai heating value tingginya tingkat keasaman korosif dan tidak stabil disebabkan tingginya kandungan senyawa oksigenat di dalam bio oil Penelitian ini bertujuan untuk mendapatkan bio oil dengan kadar oksigenat lebih rendah dan aromatik lebih tinggi Dalam penelitian ini digunakan metode fast pyrolysis pada temperatur 550oC dengan empat variasi yaitu produksi bio oil tanpa katalis dan produksi bio oil dari 3 jenis biomassa jerami padi kayu karet dan tandan kosong kelapa sawit dengan katalis Ni ZSM 5 Penggunaan katalis terbukti berpengaruh aktif terhadap proses deoksigenasi dan aromatisasi Secara berurutan kandungan senyawa aromatik paling tinggi didapat dari proses pirolisis katalitik biomassa kayu karet 10 25 pirolisis katalitik jerami padi 7 8 pirolisis katalitik TKKS 6 22 dan pada pirolisis non katalitik tidak ditemukan senyawa aromatik Kayu karet merupakan biomassa yang paling banyak mengandung selulosa.

There are several obstacles that inhibit the use of bio oil as fuel such as low heating value high levels of acidity corrosive and unstable due to high content of oxygenated compounds in the bio oil This study aims to obtain bio oil with less oxygenated compounds and higher aromatics This study use fast pyrolysis method at 550oC with four variations ie the production of bio oil without catalyst and bio oil production from 3 types of biomass rice straw rubber wood and empty fruit bunches with Ni ZSM 5 catalyst The use of catalyst proved to affect the process of deoxygenation and aromatization Sequentially the high content of aromatic compounds derived from catalytic pyrolysis of rubberwood 10 25 catalytic pyrolysis of rice straw 7 8 catalytic pyrolysis of EFB 6 22 and aromatics were not found in non catalytic pyrolysis Rubber wood is biomass that mostly contain cellulose and hemicellulose as the largest contributor to the content of aromatic hydrocarbons.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54742
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Fandhi
"Bio-oil hasil produksi dari co-pyrolysis CPO-PP tidak dapat langsung digunakan sebagai bahan bakar untuk mesin karena masih mengandung oksigenat yang cukup banyak, korosif, dan tidak stabil. Pada penelitian ini, katalis ZrO2/α-Al2O3-TiO2 diharapkan dapat memperbaiki karakteristik bio-oil dan menciptakan bahan bakar yang memiliki karakteristik mendekati bahan bakar komersial. Katalis disintesis dengan suhu variasi suhu kalsinasi 1150oC dan laju pemanasan 7oC/menit. Pada proses catalytic co-pyrolysis dilakukan variasi komposisi polipropilena pada umpan yang digunakan (0%PP, 50%PP, dan 90%PP) dengan memasukkan katalis sebanyak 15% dari total umpan. Penelitian ini dilakukan menggunakan reaktor tangki berpengaduk dengan jumlah umpan 200 gram, kecepatan pemanasan 10oC/menit, suhu pirolisis 550oC, kecepatan pengadukan 80 rpm, dan laju alir gas nitrogen 100 ml/menit. Produk bio-oil terbaik dihasilkan pada variasi 50%PP dengan yield bio-oil sebesar 50%. Penggunaan katalis ZrO2/α-Al2O3-TiO2 dapat meningkatkan produksi alkana dan alkena dengan menurunkan kandungan asam karboksilat dan keton di dalam biofuel. Hal ini menunjukkan bahwa penggunaan katalis mampu memaksimalkan reaksi deoksigenasi, Berdasarkan analisis GC-MS, H-NMR, dan C-NMR senyawa yang paling dominan adalah alkana dan alkena.

Bio-oil produced from co-pyrolysis CPO-PP cannot be used directly as fuel for engines because it still contains a lot of oxygenate, is corrosive, and unstable. In this study, the ZrO2 / α-Al2O3-TiO2 catalyst is expected to improve the characteristics of bio-oil and create a fuel that has characteristics close to commercial fuels. The catalyst was synthesized with calcination temperature variations of 1150oC and heating rates of 7oC/minute. In the catalytic co-pyrolysis process, variations in the composition of polypropylene in the feed is used (0% PP, 50% PP, and 90% PP) and were carried out by adding a catalyst as much as 15% of the total feed. This research was conducted using a stirred tank reactor with a feed amount of 200 grams, heating rate 10oC/minute, pyrolysis temperature 550oC, stirring speed 80 rpm, and nitrogen gas flow rate of 100 ml/minute. The best bio-oil products are produced in variations of 50% PP with a bio-oil yield of 50%. The use of ZrO2/α-Al2O3-TiO2 catalysts can increase the production of alkanes and alkenes by reducing the carboxylic acid and ketone content in biofuels. This shows that the use of a catalyst is able to maximize the deoxygenation reaction. Based on the GC-MS, H-NMR, and C-NMR analysis the most dominant compounds are alkanes and alkenes."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Rahman
"Biomassa merupakan salah satu sumber energi alternatif yang berpotensi untuk dimaksimalkan di Indonesia. Sumber biomassa yang berpotensi salah satunya adalah kelapa sawit yang ketersediaannya melimpah dan limbah tandan kosongnya dapat diolah menjadi bio-oil. Namun produk bio-oil ini biasanya belum memiliki kualitas yang baik umumnya karena kandungan oksigenat yang tinggi sehingga belum bisa diaplikasikan secara luas.
Tujuan penelitian ini adalah untuk menurunkan kadar senyawa oksigenat dalam bio-oil. Penelitian ini memakai temperatur operasi 550oC dengan lima perlakuan berbeda, yaitu tanpa melibatkan katalis, lalu menggunakan katalis ZSM-5 dengan dua ukuran kristal berbeda dan NiZSM-5 dengan dua ukuran kristal yang berbeda. Sintesis katalis ZSM-5 dilakukan dua kali dengan jumlah kadar air yang berbeda untuk mengontrol ukuran kristal yang didapatkan. Sintesis katalis ZSM-5 telah berhasil membentuk kristal alumina silika dengan ukuran partikel 3-5 μm pada sintesis pertama dan 150-250 nm pada sintesis kedua. Sementara impregnasi logam nikel kedalam katalis ZSM-5 dilakukan dengan metode wet impregnation menghasilkan loading logam nikel sebesar 9.88% paa sintesis pertama dan 10.96% pada sintesis kedua.
Hasil sintesis bio-oil menunjukkan bahwa katalis mampu mereduksi kandungan senyawa oksigenat dan meningkatkan kandungan senyawa aromatik yang pada proses selanjutnya dapat dikonversi menjadi senyawa alkana atau digunakan sebagai bahan aditif. Secara berurutan, kandungan senyawa oksigenat dan aromatik pada bio-oil tanpa katalis, katalis ZSM-5 sintesis pertama, ZSM-5 sintesis kedua, NiZSM-5 sintesis pertama dan NiZSM-5 sintesis kedua adalah 53,01% dan 44.81%; 38,05% dan 45,02%; 37,57% dan 45,51%; 35,71& dan 48,28%; 35,07% dan 51,23%.

Biomass is one of the alternative energy source that has a great potential to be developed. Biomass can come from many sources and one of the most potential to be utiliized is from empty fruit bunch of palm that can be synthesized to make bio-oil. There were several obstacles that inhibit the use of bio-oil, namely low heating value, high levels of acidity, corrosive, and unstable products. Those problem were due to the high content of oxygenate compounds in the bio-oil.
Purpose of the research is to obtain bio-oil product with less oxygenate compounds. This study uses fast pyrolysis method at 550oC, with five different treatments: production of bio-oil without catalyst, using ZSM-5 with two different crystal size, and using NiZSM-5 with two different crystal size. Synthesis of ZSM-5 has been carried out two times with different water ratio to reduce the crystal size.It has form alumina silica crystal with particle size around 3-5 μm at the first synthesis and 150-250 nm at the second. The impregnation of nickel metal to ZSM-5 has been carried out resulting nickel loading 9.88% at the first synthesis and 10.96% at the second.
The result of bio-oil shows that catalyst can reduce oxygenate compunds as well as increasing aromatic compound that later can be converted into alkane chain hydrocarbon-like petroleum diesel or used as additive compound. Respectively, oxygenates and aromatic content in bio-oil produced without catalyst, with ZSM-5 from first synthesis, with ZSM-5 from second synthesis, with NiZSM-5 from first synthesis dan with NiZSM-5 from second synthesis are 53.01% and 44.81%; 38.05% and 45.02%; 37.57% and 45.51%; 35.71% and 48.28%; and 35.07% and 51.23%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan
"Fast pyrolysis biomassa dapat menghasilkan bio-oil dengan potensi aplikasi yang luas, salah satunya dapat digunakan sebagai bio-fuel. Sayangnya, bio-oil berbasis biomassa memiliki sifat fisikokimia yang buruk dan banyak mengandung senyawa oksigenat sehingga heating value-nya rendah. Plastik diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan.
Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Bonggol jagung akan dipirolisis bersama-sama dengan plastik polipropilena dalam reaktor batch berpengaduk dengan variasi rasio plastik dalam umpan sebesar 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, dan 87,5%. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,5 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Terjadi peningkatan pH, densitas, dan warna pada bio-oil hasil slow co-pyrolysis.
Karakterisasi GC-MS menunjukkan penurunan senyawa oksigenat di dalam bio-oil berbanding lurus dengan komposisi plastik dalam umpan. Efek sinergetik teramati saat rasio plastik ≥50%. Komposisi umpan 12,5% bonggol jagung dan 87,5% plastik PP menghasilkan yield tertinggi dengan kandungan senyawa oksigenat terendah.

Fast pyrolysis of biomass produces bio-oil with many potential applications, one of them is to be bio-fuel. Unfortunately, biomass derived bio-oil has low physicochemical properties and contains lot of oxygenated compounds thus the heating value is low. Plastics are known to have higher H/C ratio and almost no oxygen content, so co-pyrolysis of biomass and plastic could be used as a simple, effective yet cheap bio-oil upgrading solution. By mixing those two as a feed, a synergetic effect will occur and improve the bio-oil both in quantity and quality.
Corn cobs are chosen as the biomass due to its high cellulose content and availability. Corn cobs will be slow co-pyrolyzed with polypropylene plastic in a two stirrer batch reactor with plastic ratio variation of 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, and 87,5%. Maximum temperature of 500oC, 0,5 L/min nitrogen flow, 10 minutes holding time and heating rate of 5oC/min was used in the experiment. pH, density, and color improvement were observed.
GC-MS results showed that lower oxygenated compounds in the bio-oil are associated with higher plastic feed composition. Synergetic effect is happened when plastic ratio is ≥50%. Composition of 12,5% corn cobs and 87,5% polypropylene plastic is found to produce the highest yield of bio-oil with the lowest oxygenates.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64373
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>