Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 40650 dokumen yang sesuai dengan query
cover
Romy Dzaky Amin Amany
"Biomassa merupakan salah satu sumber energi terbesar setelah batubara, minyak bumi, dan gas alam. Saat ini biomassa digunakan untuk berbagai pemanfaatan, salah satunya adalah sebagai sumber dari asap cair, atau sering disebut dengan bio-oil. Bio-oil dapat diproduksi dengan berbagai metode. Metode yang cukup sering digunakan adalah pirolisis. Abdullah et al telah melakukan penelitian mengenai pirolisis biomassa menggunakan fixed bed reactor tanpa menggunakan gas penyapu [1]. Penelitian tersebut menyatakan bahwa biomassa berupa kayu kamper dapat memproduksi fraksi produk liquid sebanyak 46%wt, ketika dipirolisis dengan temperatur maksimum 500°C dan dengan pemanasan ulang di bagian zona reaksi hingga 200°C menggunakan heater 1500W. Pirolisis tersebut menggunakan Double Pipe Heat Exchanger sebagai unit Liquid Collection System (LCS). Penelitian ini akan membahas bagaimana karakteristik pengkondensasian uap yang terjadi pada LCS tersebut menggunakan program simulasi COMSOL Multiphysics. Simulasi dalam COMSOL Multiphysics akan menggunakan desain 2D axisymmetric dengan modul simulasi Fluid Flow dan Heat Transfer in Fluid. Uap pirolisis akan dianggap sebagai senyawa tunggal yang merepresentasikan campuran senyawa hidrokarbon yang terkandung di dalam bio-oil sebagaimana dimodelkan oleh Hallet dan Clark [2]. Hasil dari simulasi ini menunjukkan bahwa kondensasi yang terjadi di dalam LCS yang digunakan oleh Abdullah et al terjadi secara konveksi natural dengan aliran laminar. Selain itu, hasil dari simulasi ini juga menunjukkan bahwa sebanyak ~16.93%wt uap pirolisis yang seharusnya bisa dikondensasi pada akhirnrya tidak dapat dikondensasi di Outlet LCS. Agar uap pirolisis dapat terkondensasi seluruhnya, maka harus dilakukan optimasi dengan cara memanjangkan LCS hingga 1.15 m dan menggunakan air pendingin dengan temperatur 8°C

ABSTRACT
Biomass is one of the largest energy sources in the world after coal, crude oil, and natural gas. Lately, biomass already used for many purposes, one of which is as a source of liquid smoke, or often called as bio-oil. Bio oil can be produced from various method. One of the most popular method is pyrolysis. Abdullah et al already conducted a research on producing bio-oil from biomass using fixed bed reactor without sweeping gas [1]. The study finds that camphor wood that was used as the feedstock will produce about 46%wt liquid yield during pyrolysis with maximum temperature at 500°C using 1500W heater. In that study, Abdullah et al also reheated the reaction zone until 200°C. The study was using Double Pipe Heat Exchanger as a Liquid Collection System (LCS) unit. This study will focus on the characteristics of condensation phenomenon that happens in that LCS unit using simulation method. This study uses COMSOL Multiphysics as the simulation program. Simulation was conducted using Fluid Flow and Heat Transfer in Fluid Physics. The pyrolysis vapor was considered as a single compound that represents the pyrolysis vapor mixture modeled by Hallet and Clark [2]. The result of this simulation shows that the condensation that occurred inside the LCS that used by Abdullah et al was happened because of natural convection with laminar flow. The result also shows that at the Outlet LCS, ~16.93%wt of the condensable gas was wasted with other Non-Condensable Gases. To achieve fully condensed pyrolysis vapor, the LCS system must be optimized by lengthen the LCS until 1.15 m and using water that have 8°C inlet temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcellino Lorenzo
"Gasifikasi biomassa adalah proses konversi biomassa menjadi bahan bakar gas yang mempan bakar (CO, CH4, dan H2). Bahan baku untuk proses gasifikasi dapat berupa limbah biomassa, yaitu sekam padi, tempurung kelapa, potongan kayu, maupun limbah pertanian lainnya. Pada proses konversi secara termokimia, pemanfaatan biomassa sebagai sumber energi akan dibakar. Dalam proses pembakaran biomassa sebagai bahan bakar, rantai hidrokarbon pada biomassa yang dipilih akan terurai. Produk yang dihasilkan dari proses gasifikasi adalah gas mempan bakar yang disebut syngas (gas sintesis). Gas mudah bakar (gas combustible) yang dapat dimanfaatkan hanyalah CO, H2, dan CH4. Selama proses gasifikasi akan terbentuk daerah proses yang dinamakan menurut distribusi suhu dalam reaktor gasifier. Daerah-daerah itu, yaitu: Drying, Pyrolysis, Reduksi, dan Combustion. Selama pirolisis, kelembaban menguap pertama kali (100°C), kemudian hemiselulosa terdekomposisi (200-260°C), lalu selulosa (240-340°C), dan diikuti oleh lignin (280-500°C). Produk cair hasil pirolisis yang menguap mengandung tar dan PAH (polyaromatic hydrocarbon). Produk pirolisis umumnya terdiri dari tiga jenis, yaitu gas ringan (H2, CO, CO2, H2O, dan CH4), tar, dan arang. Tar dapat didefinisikan sebagai campuran hidrokarbon terkondensasi. Konsentrasi tar dalam sistem harus dibatasi dan terdapat beberapa cara untuk pengurangan tar. Kondensasi tar dipilih menjadi salah satu cara termudah dan termurah untuk mengurangi sebagian besar kandungan tar pada syngas. Untuk ini dibutuhkan kondensor untuk mengkondensasi tar. Saat tar mencapai dew point maka tar akan berubah fase dari gas menjadi cair. Tar yang mencair akan terpisah dari aliran syngas. Terdapat kandungan tar pada syngas yang diizinkan untuk masuk kedalam motor bakar yaitu 0,01-0,1 g/Nm3. Pada penelitian Mobile Biomass Gasifier sebelumnya, digunakan kondensor berjenis shell and tube dan memiliki efisiensi 75%-85%. Purwarupa tahap 3 ini memilih kondensor berjenis double pipe heat exchanger untuk mengurangi ukuran dengan efisiensi yang lebih tinggi.

Biomass gasification is the process of converting biomass into combustible gas fuels (CO, CH4, and H2). The raw materials for the gasification process can be in the form of biomass waste, namely rice husks, coconut shells, wood chips, and other agricultural wastes. In the thermochemical conversion process, the use of biomass as an energy source will be burned. In the process of burning biomass as fuel, the chain of termination of the selected biomass will be unraveled. The product resulting from the gasification process is a combustible gas called syngas (synthesis gas). Combustible gas that can be used only CO, H2, and CH4. During the gasification process a process will be formed which starts according to the temperature distribution in the gasifier reactor. These areas are: Drying, Pyrolysis, Reduction, and Combustion. During pyrolysis, evaporate decomposed first (100°C), then hemicellulose is decomposed (200-260°C), then cellulose (240-340°C), and followed by lignin (280-500°C). The liquid product resulting from the evaporation of pyrolysis contains tar and PAHs (polyaromatic hydrocarbons). Pyrolysis products generally consist of three types, namely light gases (H2, CO, CO2, H2O, and CH4), tar, and charcoal. Tar can be defined as a condensed mixture. The concentration of tar in the system must be limited and there are several ways to reduce tar. Tar condensation was chosen to be one of the easiest and cheapest ways to reduce most of the tar content in syngas. This requires a condenser to condense the tar. When the tar reaches the dew point, the tar will change phase from gas to liquid. The melted tar will separate from the syngas flow. There is a tar content in the syngas that is allowed to enter the combustion engine, which is 0.01-0.1 g/Nm3. In the previous Mobile Biomass Gasifier research, a shell and tube type condenser was used and has an efficiency of 75%-85%. This stage 3 prototype chose a double pipe heat exchanger condenser to reduce size with higher efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmat Rahardian
"ABSTRACT
Indonesia dengan kekayaan alamnya yang melimpah mempunyai potensi untuk menjadi lumbung bioenergi. Pirolisis merupakan salah satu cara untuk menghasilkan bio oil yang dapat digunakan sebagai bahan bakar, untuk membangkitkan listrik, dan bahan pengawet. Penelitian ini bertujuan untuk mengetahui pengaruh temperatur uap pada zona reaksi terhadap liquid yang dihasilkan berikut dengan karakteristik liquid yang dihasilkan. Penelitian dilakukan dengan bahan baku Guazuma ulimfolia Lamk. berukuran < 2 mm, < 0.707 mm, < 0.595 mm dengan moisture content rata-rata 6.93 wt dry. Temperatur heater yang digunakan 500 C dengan daya 1500 watt, heater reaksi 150 C dan 250 C, cooling water yang menggunakan air temperatur ambient dengan cooling flow outter dan cooling flow inner dan outter. Produk liquid maksimal dihasilkan pada bahan baku berukuran < 0.707 mm, heater reaksi 150 C, dengan cooling flow inner dan outter, yaitu sebesar 49 wt. Komposisi produk liquid didominasi oleh catechol. Properties dari produk liquid memiliki nilai pH 2-2.3, dan densitas 1.02-1.05 gr/cm3.

ABSTARCt
Indonesia with its abundant natural wealth has the potential to become a bioenergy barn. Pyrolysis is one way to produce bio oil that can be used as fuel, to generate electricity, and preservatives. This research aims to determine the effect of vapor temperature on the reaction zone to liquid that produced and the liquid characteristic as well. This research is using Guazuma ulimfolia Lamk. as a feedstock with the size 2 mm, 0.707 mm, 0.595 mm, with an average moisture content of 6.93 wt dry. Heating temperature used 500 C with heating supply 1500 watt, reaction zone heater set at 150 C and 200 C, cooling water using ambient temperature water is used to absorb the heat with cooling flow, outter and cooling flow, inner and outter. The maximum liquid smoke yield was obtained on raw material size 0.707 mm, reaction zone heater 150 C with inner and outter cooling flow, that is 49 wt. The liquid product composition is dominated by catechol. Properties of liquid products have a pH value of 2-2.3, and density 1.02-1.05 gr cm3."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raka Nugraha Wijaya
"ABSTRAK
Penelitian ini menerapkan variasi komposisi kangdungan dari campuran HZSM-5/B2O3 dan suhu operasi untuk menganalisa efeknya terhadap yield dari senyawa monoaromatik yang diproduksi melalui proses konversi katalitik menggunakan prinsip reaktor unggun tetap. Proses konversi katalitik dilakukan dengan menggunakan 15 HZSM-5, 30 HZSM-5, and 100 katalis HZSM-5 dan dengan variasi suhu 450, 475, and 500oC. Hasil penelitian menunjukan bahwa proses konversi katalitik dengan kenaikan komposisi HZM-5 akan menaikkan hasil yield senyawa aromatik berupa 15.95 , 23.11 and 63.11 untuk proses yang dilakukan pada suhu 450OC. Pada suhu 475OC akan menghasilkan 19.85 , 26.89 , and 73.21 senyawa aromatic dengan menaiknya kandungan HZSM-5 di dalam campuran katalis. Dan dengan menaiknya kandungan katalis HZSM-5, proses pada suhu 500OC akan menghasilkan 30.60 , 48.26 and 91.33 senyawa aromatic. Hasil ini mengindikasikan bahwa kenaikan kandungan HZM-5 dan suhu operasi akan menaikkan yield dari senyawa monoaromatik. Kenaikkan yield senyawa monoaromatik dengan menaiknya komposisi HZM-5 disebabkan oleh keunggulan bentuk selektif yang dimiliki oleh HZSM-5 katalis. Hasil penelitian juga menunjukan bahwa katalis B2O3 tidak menghasilkan efek yang signifikan terhadap yield dari senyawa monoaromatik. Hal ini disebabkan oleh proses pencampuran HZSM-5/B2O3 tidak dilakukan dengan metode yang tepat sehingga katalis B2O3 tidak tercampur secara sempurna kedalam pori-pori dari katalis HZSM-5.

ABSTRACT
In this research, different variation of the composition of the HZSM 5 and B2O3 catalyst and different operation temperature was applied in order to analyze the effect of the catalyst composition and the operation temperature to the production of mono aromatics through catalytic conversion using the fixed bed reactor principle. The catalytic conversion process was done with composition of catalyst used were 15 HZSM 5, 30 HZSM 5, and 100 HZSM 5 under 450, 475, and 500oC. Experimental results showed that for the catalytic conversion under the temperature of 450OC, by the addition of mixture of 15 HZSM 5, 30 HZSM 5, and 100 HZSM 5 will increase the yield of monoaromatic compounds by 15.95 , 23.11 and 63.11 respectively. While the process under 475oC will yield 19.85 , 26.89 , and 73.21 with the increasing fraction of HZSM 5 catalyst inside the mixture of catalyst. Lastly, as the fraction of HZSM 5 increased, the process conducted under 500oC will yield 30.60 , 48.26 and 91.33 of monoaromatic compounds. It indicates that the yield of monoaromatics will increase as the fraction of HZSM 5 catalyst and operating temperature also increase. The increasing fraction of HZSM 5 catalyst will increase the yield of monoaromatic compounds, due to its shape selective reaction advantages. However, the presence of B2O3 have no significant effect the yield of monoaromatics because of the mixing process between HZSM 5 and B2O3 wasn rsquo t done using the proper method, so the B2O3 catalyst wasn rsquo t mixed properly in to the pores of HZSM 5 catalyst."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oksa Angger Dumas
"Apabila kita melihat kondisi lingkungan kampus Universitas Indonesia Depok, sampah daun merupakan suatu hal mudah ditemui karena kondisi lingkungan kampus memiliki banyak sekali pepohonan. Untuk memanfaatkan potensi biomassa yang sangat besar tersebut maka dilakukan penelitian untuk menemukan teknologi yang tepat untuk digunakan di lingkungan kampus UI. Fluidized Bed Combustion (FBC) merupakan salah satu teknologi pembakaran yang sangat tepat untuk digunakan di lingkungan kampus UI karena memanfaatkan prinsip fluidisasi dan turbulensi benda padat. Saat proses pembakaran, dengan adanya fenomena fluidisasi ini akan meningkatkan kemampuan perpindahan panas dan massa yang cukup signifikan. Dengan begitu proses pembakaran pun akan menjadi lebih baik. Teknologi ini pun telah bertahun-tahun dikembangkan oleh Universitas Indonesia. dimana pengembangan terus dilakukan tiap tahunnya dengan tujuan untuk meningkatkan performa dari FBC UI. Sehingga, nantinya FBC UI ini dapat dipergunakan dengan lebih baik selain sebagai sarana penelitian. Beberapa tahun terakhir, terdeteksi adanya performa kerja sistem yang masih kurang baik yaitu tidak meratanya fenomena fluidisasi yang mana fenomena tersebut merupakan hal yang sangat krusial dalam kinerja FBC itu sendiri. Fluidisasi merupakan metoda pengontakan butiran-butiran padat berupa pasir dengan fluida gas yang menyebabkan pergolakan pada pasir sampai pasir seakan memiliki sifat-sifat seperti fluida. Banyak faktor yang memengaruhi fenomena fluidisasi, antara lain diameter partikel atau pasir, densitas partikel, porositas hamparan, serta distibutor. Sesuai dengan penelitian yang dilakukan oleh Agra dan Sabrizal pada Tugas Akhirnya mereka membuat pemodelan distributor untuk meningkatkan kemampuan fluidisasi FBC UI. Pada penelitian ini, akan dibahas mengenai perbandingan kinerja dasar distributor modifikasi yang diproduksi mengikuti pemodelan distributor yang diciptakan oleh Agra dan Sabrizal dengan distributor yang terdahulu."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56186
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salsabila Nasta Andini
"Fikosianin merupakan pigmen protein berwarna biru yang sering digunakan dalam berbagai bidang karena memiliki banyak manfaat. Oleh karena itu, penelitian mengenai jumlah fikosianin perlu dilakukan. Penelitian mengenai fikosianin dapat dilihat dari jumlah biomassa karena jumlah biomassa mempengaruhi jumlah fikosianin yang dihasilkan. Namun sering ditemukan sebuah fenomena ketika kultivasi yang disebut pembuatan bayangan atau self shading. Fenomena ini adalah fenomena dimana intensitas cahaya yang diterima oleh mikroalga berkurang seiring dengan bertambahnya jumlah sel dalam tempat pembudidayaannya. Adanya fenomena ini menyebabkan hasil biomassa dan fikosianin yang dihasilkan oleh Spirulina sp. tidak optimal. Oleh karena itu, perlu ada penelitian untuk menimimalkan self-shading. Pada penelitian ini, peminimalan fenomena self shading dilakukan dengan mengatur intensitas cahaya secara berkala selama proses kultivasi. Intensitas cahaya yang digunakan untuk kultivasi tergantung dari optical density dari mikroalga tersebut pada satu titik waktu. Analisis penelitian dilakukan dengan pemanenan dan pengeringan mikroalga untuk mendapatkan biomassa. Setelah itu dilakukan ekstraksi dengan metode ultrasonikasi untuk mengetahui kandungan dari fikosianin. Hasil akhir produksi biomassa dan produksi ekstrak fikosianin lebih banyak jika dibandingkan dengan hasil kultivasi dengan cahaya tetap yang menandakan bahwa intensitas cahaya mempengaruhi pertumbuhan Spirulina platensis.

Phycocyanin is a blue protein pigment that is often used in various fields because it has many benefits. Therefore, research on the amount of phycocyanin needs to be done. Research on phycocyanin can be seen from the amount of biomass because the amount of biomass affects the amount of phycocyanin produced. However, a phenomenon called self-shading is often found during cultivation. It is a phenomenon where the light intensity received by microalgae decreases with the increase in the number of cells in the cultivation site. The existence of this phenomenon causes the yield of biomass and phycocyanin produced by Spirulina sp. not optimal. Therefore, there needs to be research to minimize self-shading. In this study, the self-shading phenomenon was minimized by adjusting the light intensity periodically during the cultivation process. The light intensity used for cultivation depends on the optical density of the microalgae at one point of time. Research analysis was carried out by harvesting and drying microalgae to obtain biomass. After that, extraction was carried out using the ultrasonication method to determine the content of phycocyanin. The final yield of biomass production and the production of phycocyanin extracts were higher than those of cultivation with fixed light, which indicates that light intensity affects the growth of Spirulina platensis."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anondho Wijanarko
"ABSTRAK
Masalah gas rumah kaca telah menjadi salah satu topik lingkungan yang banyak dibicarakan akhir-akhir ini. Demikian pula dengan produksi biomassa yang telah menjadi komoditi ekonomi bernilai tinggi. Oleh karenanya penelitian mengenai proses fiksasi CO2 dengan memanfaatkan mikroalga Chlorella SP ini dapat dijadikan salah satu alternatif untuk mengatasi efek rumah kaca dan juga mendapatkan kandugnan pati serta karbohidrat dari produksi biomassa yang dihasilkan oleh aktivitas forosintesis.
Proses fiksasi CO2 dan produksi biomassa dengan menggunakan mikroalga Chlorella SP ini dilakukan dalam medium benneck dalam sebuah fotobioreaktor kolom gelembung. Fotobioreaktor ini diaerasi dengan kondisi operasi: kecepatan superficial gas ±2,4 m/hr, suhu 29°C, kandungan CO2 5% dalam aliran udara inlet, intensitas cahaya 700 lux, dan variasi panjang gelombang dengan menggunakan lampu merah, biru, putih, kuning, dan hijau. Data yang diambil adalah intensitas cahaya keluar reaktor (lb), julah sel, selisih fraksi gas CO2 inlet dan outlet serta besar pH.
Hasil yang penting dikemukakan disini adalah laju pertumbuhan sel paling tinggi dicapai oleh sumber iluminasi sinar biru dan paling rendah oleh sinar hijau, sedangkan sinar putih berada ditengah-tengahnya. Laju pengurangan CO2 terbsear terjadi pada sumber iluminasi sinar biru. Hal ini ternyata sebanding dengan peningkatan jumlah sel. namun seiring dengan berjalannya waktu, ternata laju pengurangan CO2 berkurang bahkan sebelum laju pertumbuhan memasuki fase stasioner, sedangkan model pendekatan secara empiris yang paling akurat terhadap data-data yang diperoleh, didapatkan dengan menggunakan persamaan Webb."
Depok: Fakultas Teknik Universitas Indonesia, 2004
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Retno Adrijantie
"Adanya potensi yang besar yang dihasilkan dari aktititas fotosintesis jenis mikroalga Chlorella sp seperti kandungan gizi yang lengkap dan tinggi, serta komponen kesehatan yang lengkap yang memungkinkan mampu meneegah sakit global seperti stroke, jantung koroner, kencing manis, kanker dan lain-lain, menjadikan penelitian skala laboratorium ini bertujuan mencari Intensitas cahaya yang optimum agar dihasilkan pertumbuhan Chlurella sp yang maksimum.
Faktor-faktor yang meinpengaruhi pertumbuhan mikroalgn antara lain cahaya, suhu, nutrisi, dan pH.
Penelitian mengenai produksi biomassa dan dengan jalan fiksasi CO2 dengan memanfaatkan kemampuan fotosintesis mikroalga Chlorella sp (ganggang hijau) dalam reaktor gelembung tunggal ini merupakan salah satu alternative yang diusulkan untuk rnengatasi masalah cumber makan bergizi dan masalah kesehatan.
Proses ini dilakukan dalam kultur Medium Beneck teraerasi dalam sebuah fotobioreaktor. Dengan pencahayaan kontinyu. Proses tersebut berlangsung pada kondisi suhu 29 °C , kecepatan superficial gas sebesar 2,4 m/jam, kandungan CO2 5% dalam aliran udara asupan dan dengan intensitas cahaya yang divariasikan dari 500 lux sampai dengan 10000 lux dan Jumlah set awal yang divariasikan. 500.000 set/ml sampai dengan 8.000.000 sel/ml.
Secara umum hasil yang diperoleh dalarn penelitian ini adalah :
- Mikroalga memerlukan intensitas cahaya sesuai dengan kerapatan selnya agar dapat berkembang secara maksimum, untuk kerapatan set awal sebesar 440.000 sel/ml intensitas cahaya yang dibutuhkan agar laju pertumbuhannya maksimum adalah sebesar 500 lux. Untuk kerapatan sel sebesar ± 990.000 sel/ml laju pertumbuhannya akan mencapai maksimum pada intensitas cahaya sebesar 1000 lux. Untuk kerapatan sel ± 4.590.000 set/ml pada 6000 hix dan kerapatan set ±6.940.000 Sel/ml pada 9000 lux.
- Laju pertumbuhan maksimum terbesar didapat dari kultur dengan pencahayaan alteration, maka dapat disimpulkan sistem pencahayaan alteration merupakan sistem pencahayaan yang terbaik dalam produksi biomassa Chlorella sp.
- Hasil pendekatan secara empiris yang diperoleh dari pertumbuhan Chlorella sp dan fiksasi CO2 dalam skala lab mengikuti persamaan Haldane."
Depok: Fakultas Teknik Universitas Indonesia, 2004
T14966
UI - Tesis Membership  Universitas Indonesia Library
cover
Saleh Siswanto
"Pemanfaatan energi terbarukan sudah sangat mendesak guna mereduksi emisi gas CO2 di atmosfir. Salah satunya adalah pemanfaatan biomassa sebagai energi alterntif pengganti energi fosil. Kabupaten Lampung Tengah sebagai sentra produksi gula nasional memiliki potensi bagase yang melimpah, yang dapat dimanfaatkan sebagai Pembangkit Listrik Tenaga Biomassa dengan sistem gasifikasi. Saat ini komplek perkantoran Pemda Lampung Tengah masih mengoperasikan PLTD guna memenuhi kebutuhan energinya karena keandalan jaringan grid KLP SSM sangat terbatas. Untuk itu perlu analisa biaya energi yang dikeluarkan bila menerapkan PLT Biomassa sebagai pengganti PLTD. Dalam analisa ini menggunakan bantuan perangkat lunak HOMER versi 2.68 beta yang dapat mengoptimasi sistem pembangkit dari nilai NPC dan COE terendah. Dari analisa hasil simulasi didapat bahwa dengan mennggunakan PLT Biomassa biaya energi akan turun sebesar 23% dari USD$0.187/kWh menjadi USD$0.144/kWh. Terjadi penghematan pemakaian BBM sebesar 111.625 liter/tahun dan menurunkan emisi gas CO2 sebesar 47,5% dari 603.034 kg/tahun menjadi 316.577. Pada harga grid sesuai BBP TR Provinsi Lampung sebesar Rp.860/kWh maka PLT Biomassa akan dapat bersaing bila harga bagase sebesar USD$ 12/ton.

Utilization of renewable energy is very urgent to reduce emissions in the atmosphere. One of the utilization of biomass is as an alternative energy substitute for fossil energy. Central Lampung District as the center of the national sugar production has the potential bagase abundant, which can be utilized as Biomass Power Plant with gasification system. Recently the local government office complex of Central Lampung still operate diesel generator to meet its energy needs because the supply capacity grid network of KLP SSM only 70%. It is necessary to analyze cost of energy incurred when applying Biomass power plant substitute for diesel generator. The analysis using Homer software version 2.68 beta, to optimize the systems of power plant according to the lowest NPC and COE. The result of analysis shows that cost of energy Biomass power plant will drop from USD$ 0.187/kWh to USD$ 0.144/kWh. It will save of fuel consumption 111.625 liters/year and reduce CO2 emissions 286.457 kg/year. For gid energy purchase USD$ 0.086/kWh, Biomass power plant will be competitive if bagasse price of USD $ 12/ton."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27542
UI - Tesis Open  Universitas Indonesia Library
cover
Octaviany Magdalena
"Bioetanol dari biomassa limbah pertanian adalah generasi kedua dari bahan bakar alternatif selain biofuel dari bahan fosil dan baru-baru ini pengembangan produksi bioetanol secara luas dibahas melibatkan metode dan bahannya. Salah satu limbah biomassa potensial untuk produksi bioetanol adalah tongkol jagung, karena kandungan karbohidrat yang tinggi dan ketersediaannya yang melimpah. Tujuan utama dari penelitian ini adalah meningkatkan produksi bioetanol dari tongkol jagung menggunakan metode sakarifikasi dan fermentasi secara simultan dengan proses enzimatik hidrolisis menggunakan err,im selulase dan xilanase dari dua Actinomycetes Catenuloplarus indicus dan Streptomryes sp. potensial dan fermentasi menggunakan Saccharomyces Cereviceae NBRC 1440. Sakarifikasi tongkol jagung menggunakan kombinasi enzim dianalisis dengan kromatografi lapis tipis KLT. Data menunjukkan bahwa enzim yang dihasilkan dari actinomycetes memiliki kemampuan untuk memecah tongkol jagung menjadi monosakarida seperti glukosa dan xilosa. Data menunjukkan hasil analisis gula reduksi dari rentang 0-96 jam yaitu sebesar 3,47;3,59i 3,71; 4,03; 3,48 ppm. Untuk konsentrasi tertinggi pada waktu 72 jam yaitu 4,03 ppm, sedangkan gula total sebesar 24,60;23,13;24,96;20,95;20,62 ppm dan konsentrasi tertinggi pada titik 48 jam sebesar 24,96. Analisis lebih lanjut dari produksi bioetanol dilakukan dengan Kromatografi Cair Kinerja Tinggi KCKT menunjukkan bahwa ragi memiliki kemampuan untuk mengubah glukosa menjadi etanol. Bioeanol dari hidrolisis tongkol mencapai 1.017 g/L untuk proses SSF 48 jam. Dengan nilai untuk yield etanol yaitu sebesar 0,045 grarnl 20 tnL dan persentase konversi produksi etanol dari glukosa sebesar 58,11Yo.

Bioethanol from agriculture waste biomass is a second generation of alternative fuels beside fosil biofuels and recently development of bioethanol production is widely discussed involving methods and materials. One of potential waste biomass for bioethanol production is corn cobs because of its a high carbohydrate content and abundant availability. The main purpose of this research is enhancing bioethanol production from corn cobs by Simultaneous Saccharification and Fermentation method with enzymatic hydrolysis using cellulase and xylanase from two potential Actinomycetes Catenuloplanes indicus and Streptomyces sp. and fermentation using Saccharorryces cereviceae NBRC 1440. The saccharification of corn cobs using a combination of enzymes was analyzed using Thin Layer Chromatography tLC and the data showed that enzryme from actinomycetes has the ability to break down corn cobs into monosaccharides such as glucose and xylose. The data show the results of reducing sugar analysis findings om the range of 0 96 hours is equal to 3.47 3.59 3.71 4.03 3.48 ppm. The highest concentration of 72 hour is 4.03 ppm, while the total sugar amounted to 24.60 23.13 24.96 20.95 20.62 ppm and the highest concentation of at point 48 hours at24.96. Further analysis of bioethanol production is done by High Performance Liquid Chromatography IIPLC showed that yeast has the ability to convert glucose into ethanol. The Highest bioethanol from com cobs hydrolysisreaching 1,017 g L for the SSF process 48 hours. With the value for ethanol yield is 0.045 920 mL and percentage conversion of ethanol production from glucose is 58,llo o."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46875
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>