Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 133855 dokumen yang sesuai dengan query
cover
Joshua Alviando
"Penelitian ini membahas tentang perancangan sistem identifikasi pada sistem dinamik kapal Makara 03 dengan konfigurasi multi masukan dan multi keluaran. Penelitian ini merancang berbagai metode perombakan struktur Jaringan Saraf Tiruan (JST) baik metode sekuensial maupun fungsional untuk dapat menangkap dinamik yang ada pada dinamik kapal Makara 03. Metode-metode pada JST yang dibuat akan dibandingkan dengan hasil dari model matematika yaitu Transfer Function dan State Space untuk membuktikan keberhasilan dan keunggulan JST dalam membuat sistem identifikasi. Hasil dari perbandingan tersebut membuktikan semua metode yang dihasilkan pada penelitian ini mendapatkan hasil yang lebih baik dibandingkan dengan model matematika konvensional.

This research discusses the design of the identification system on the dynamic system of the Makara 03 ship with a multi-input and multi-output configuration. This study designed various structural reshuffle methods for sequensial and functional model of Artificial Neural Network (ANN) to be able to capture the dynamics of Makara 03. The methods in the ANN that were made will be compared with the results of mathematical models namely Transfer Function and State Space for prove the success and superiority of ANN in making identification systems. The results of this comparison prove that all the ANN methods produced in this study get better results compared to conventional mathematical models."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Bisyir Azhari
"Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).

Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silitonga, Permatasari
"Di Indonesia, dengue telah menjadi salah satu penyakit yang bersifat hiperendemis. Dengue diderita oleh masyarakat dari berbagai kalangan usia, baik pria maupun wanita. Dengue memiliki manifestasi klinis yang terdiri dari tiga fase: fase demam, fase kritis, dan fase penyembuhan. Banyak pasien dengue meninggal pada fase kritis karena pengobatan yang tidak dilaksanakan tepat waktu. Oleh karena itu, dibangunlah model-model yang dapat memprediksi tingkat keparahan dengue berdasarkan hasil uji laboratorium dari pasien yang bersangkutan menggunakan Artificial Neural Network (ANN) dan Analisis Diskriminan (AD). Dalam pembangunan model-model tersebut, digunakan data dengan jumlah yang sangat kecil, yakni sebesar 77 data. Dalam data tersebut, terdapat informasi mengenai hasil uji laboratorium dan diagnosis dari pasien yang bersangkutan. Diagnosis tersebut dikelompokkan ke dalam tiga kategori keparahan dengue, yakni DF sebagai tingkat ringan, DHF grade 1 sebagai tingkat sedang, dan DHF grade 2 sebagai tingkat parah. Dalam penelitian ini, dilakukan tiga pemisahan data, yakni dengan rasio data training : data testing sebesar 70% : 30%, 80% : 20%, and 90% : 10%. Berdasarkan hasil yang diperoleh, model-model prediksi ANN yang dibangun menggunakan fungsi aktivasi logistik dan tangen hiperbolik dengan persentase data training sebesar 70% menghasilkan akurasi (90.91%), sensitivitas (91.11%), dan spesifisitas (95.51%) tertinggi. Model-model tersebutlah yang diajukan dalam penelitian ini. Model-model tersebut akan mampu membantu para dokter dalam memprediksi tingkat keparahan dengue dari pasien yang bersangkutan sebelum memasuki fase kritis. Lebih jauh, model-model tersebut dapat memudahkan para dokter dalam mengobati pasien dengue secara dini, sehingga kasus-kasus fatal atau kematian dapat dihindari.

In Indonesia, dengue has become one of the hyperendemic diseases. Dengue is being suffered by many people of all ages, both men and women. Dengue has clinical manifestations that are divided into three phases: febrile phase, critical phase, and convalescence phase. Many patients have died in the critical phase due to the lack of timely treatment. Therefore, I developed models that can predict the severity of dengue based on the corresponding patients’ laboratory test results using Artificial Neural Network (ANN) and Discriminant Analysis (DA). In developing the models, I used a very small dataset, which only consisted of 77 data. The data contains information regarding the laboratory test results and the diagnosis of each of the corresponding patients. The diagnoses were classified into three categories of dengue severity, which are DF as the mild level, DHF grade 1 as the intermediate level, and DHF grade 2 as the severe level. I conducted three different data split, that is, with the ratio of training : testing = 70% : 30%, 80% : 20%, and 90% : 10%. It is shown that ANN models developed using logistic and hyperbolic tangent activation function with 70% training data yielded the highest accuracy (90.91%), sensitivity (91.11%), and specificity (95.51%). These ANN models are the proposed models in this research. The proposed models will be able to help physicians predict the dengue severity of a corresponding patient before entering the critical phase. Furthermore, it will ease physicians in treating dengue patients early, so deaths or fatal cases can be avoided."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dudi Heryadi
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38718
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gandung Bayu Wanugroho
"ABSTRAK
Kondisi cuaca merupakan faktor yang signifikan untuk berbagai sektor seperti keselamatan transportasi, pembangunan, kesehatan dan lain-lain oleh karena itu dibutuhkan akurasi yang tinggi dalam melakukan peramalan keadaan cuaca kedepannya. Banyak cara yang digunakan untuk memprakirakan kondisi cuaca, seiring berkembangnya teknologi, prakiraan Hujan dapat dilakukan dengan menggunakan teknologi Artificial Intelligence (AI) atau kecerdasan buatan sehingga hasil yang diperoleh lebih optimal. Dalam penelitian ini, jaringan saraf tiruan yang digunakan memiliki algoritma feedforward neural network dengan data pelatihan berupa suhu, tekanan udara, kelembaban udara, titik embun, kecepatan angin tiap 3 (tiga) jam di Stasiun pengamatan BMKG di Jawa Timur dari tahun 2019 dengan target adalah intensitas curah hujan. Data pelatihan dilakukan pada periode 1 Januari 2019 sampai 28 Februari 2019 dan selanjutnya, data diuji pada periode 1 sampai 31 Maret 2019. Berdasarkan hasil analisis, model Jaringan Saraf Tiruan memiliki performa yang cukup baik dalam prakiraan intensitas curah hujan di Jawa Timur. Model terbaik ditunjukkan oleh model dengan arsitektur 7-60-1 dengan tingkat korelasi yang dihasilkan sebesar 0,87 dengan nilai error sebesar -0.03 serta akurasi 76 persen dengan lokasi penelitian di Stasiun Meteorologi Bawean. Dengan adanya model ini, diharapkan dapat menjadi salah satu pertimbangan forecaster dalam membuat prakiraan hujan khususnya prakiraan jangka pendek dengan interval tiap 3 (tiga) jam.

ABSTRACT
Weather conditions are a significant factor for various sectors such as transportation safety, development, health, etc. Therefore, high accuracy is needed in forecasting future weather conditions. Many methods are used to predict weather conditions, as technology develops, Rain forecast can be made using Artificial Intelligence (AI) technology so that the results obtained are more optimal. In this study, the artificial neural network used has a feedforward neural network algorithm with training data in the form of temperature, air pressure, humidity, dew point, wind speed every 3 (three) hours at the BMKG observation station in East Java from 2019 with the target being rainfall intensity. The training data was conducted in the period January 1 2019 to February 28 2019 and subsequently, the data were tested in the period 1 to 31 March 2019. Based on the results of the analysis, the Artificial Neural Network model performed reasonably well in the forecast of rainfall intensity in East Java. The best model is shown by a model with 7-60-1 architecture with a resulting correlation level of 0,87 with an error value of -0.03 and an accuracy of 76 percent with the research location at the Bawean Meteorological Station. With this model, it is expected to become one of the forecaster considerations in making rain forecasts, especially short-term forecasts at intervals of every 3 (three) hours.
"
2020
T55052
UI - Tesis Membership  Universitas Indonesia Library
cover
Geraldi Oktio Dela Rosa
"Secara teoritis, biometrik dapat digunakan untuk mengidentifikasi dan memverifikasi suatu individu. Iris mata merupakan salah satu instrumen biometric yang handal, karena keunikan dari dan kompleksitasnya.
Di dalam penelitian ini dirancang bangun program identifikasi iris mata menggunakan metode Jaringan Syaraf Tiruan (JST). Citra mata dijital yang akan diidentifikasi pertama-tama dilakukan pra-pengolahan terlebih dahulu. Proses ini memisahkan bagian iris dari citra mata menggunakan metode morphologi, yaitu close, erosi dan dilasi. Selanjutnya, citra disegmentasi untuk memisahkan citra iris berbentuk lingkaran dalam koordinat x-y menjadi format polar r-θ berbentuk persegi panjang. Citra polar kemudian diekstrasi untuk mendapatkan nilai karakteristik rata-ratanya dalam bentuk matriks 40 x 1. Nilai karakteristik dilatih dan dimasukkan ke dalam database sebagai input pembanding untuk proses identifikasi. JST terdiri dari 10 layer tersembunyi, 1 layer keluaran, dengan fungsi aktifasi tansig dan purelin.
Setelah dilakukan pelatihan untuk 80 citra iris, baik mata kiri maupun kanan, proses identifikasi mencapai tingkat akurasi rata-rata sebesar 87% untuk 5 buah input citra dengan 20 kali uji coba.

Theorically, biometric can be used to identify dan verify an individu. Iris is one of biometric identifier that highly acceptable because of its uniqueness and complexity.
The objective of this research is to identifiy an iris using Artificial Neural Network (ANN) method. First, the digital infrared image of eye will be preprocessed which separate the iris from the eye using morphology technique, such as closing, erosion, and dilation. The iris is then transformed from x-y dimension into r-θ polar image, which convert the circle shape into rectangle one. The image was then extracted in order to get the average value of its intensities and saved in 40 x 1 matrix size. These values will be trained in the ANN and inserted into a database to be used as a comparator in identification process. The ANN consisted of 10 hidden layer, 1 output layer, and activation functions of tansig and purelin, respectively.
Using 80 images as training data, the identification accuracy reached 87 % for 5 images and 20 times of test for left side and right side eyes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52158
UI - Skripsi Open  Universitas Indonesia Library
cover
Timotius Kelvin Wijaya
"Kebutuhan energi untuk rumah tangga atau bangunan di Indonesia sedang tumbuh secara signifikan. Oleh karena itu, efisiensi energi dalam energi pendingin sangat dibutuhkan. Penelitian ini bertujuan untuk mengembangkan sistem kontrol yang dapat menentukan setpoint paling optimal untuk laju aliran air massa untuk meminimalkan energi dari sistem pendingin. Bangunan dimodelkan oleh perangkat lunak Sketchup dan energi pendingin dimodelkan dengan menggunakan teknik co-simulasi antara EnergyPlus dan Matlab melalui BCVTB (Building Controls Virtual Test). Menggunakan Artificial Neural Network (ANN) dan optimisasi Genetic Algorithm (GA) untuk membuat prediksi optimasi titik yang akurat. Penelitian ini mendapatkan penghematan konsumsi listrik chiller HVAC yang sudah menggunakan sistem part load terutama pada daya pompa chiller sebesar 67,675% penghematan dari kondisi aslinya.

Energy needs for households or buildings in Indonesia are growing significantly. Therefore, energy efficiency in cooling energy is needed. This study aims to develop a Control Algorithm that can determine the most optimal set point for the mass flow rate of air to drain energy from the cooling system. Buildings are modeled by Sketchup software and cooling energy is modeled using co-simulation techniques between EnergyPlus and Matlab through BCVTB (Building Controls Virtual Test). Use dynamic neural networks (ANN) and genetics algorithm (GA) optimization to make accurate point optimization predictions. This study found the saving of HVAC chiller electricity consumption that already use part load systems, especially on the power of the chiller pump by 67,675% savings from its original condition."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rendra Satya Wirawan
"Dengan terus bertambahnya industri pada berbagai bidang, membuat konsumen memiliki banyak pilihan ketika memilih barang atau jasa. Oleh karena itu dibutuhkan suatu cara agar dapat menghasilkan barang dengan tepat. Hal inilah yang menjadi peranan dari sebuah metode peramalan permintaan. Terdapat banyak cara dalam melakukan peramalan, namun cara manakah yang dapat memberikan hasil yang terbaik. ANN dan SVR merupakan salah satu cara yang memberikan hasil peramalan terbaik. Dalam penelitian ini, dibandingkan antara metode ANN dan SVR dengan metode tradisional. Dari enam jenis data yang digunakan empat menunjukan ANN memberikan peramalan terbaik, dan satu menunjukan SVR memberikan peramalan terbaik.

With the continuous increase of industry in many fields, making consumers to have many choices when choosing goods or services. Because of that, we need some way to produce good with the correct amount. This is the role of a demand forecast method. There are many methods in demand forecast, but which method that give the best result. ANN and SVR are one of many methods that will give the best forecast result. In this research, ANN and SVR method will be compared to the traditional methods. From six kinds of data that is used, four show that ANN give the best forecast result, and one shows SVR give the best forecast result."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S775
UI - Skripsi Open  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>