Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2942 dokumen yang sesuai dengan query
cover
Afida Nurul Hilma
"ABSTRAK
Count data tidak selalu bersifat ekuidispersi. Sehingga, distribusi Poisson tidak dapat digunakan untuk memodelkan count data tersebut. Beberapa distribusi alternatif dari distribusi Poisson telah dikenalkan untuk memodelkan data overdispersi. Namun, distribusi tersebut memiliki kompleksitas yang lebih tinggi dalam jumlah parameter distribusi. Perlu dilakukan modifikasi pada distribusi Poisson agar distribusi yang terbentuk bisa merepresentasikan data overdispersi. Salah satu caranya yaitu dengan melakukan pencampuran distribusi antara distribusi Poisson dengan distribusi Lindley. Distribusi yang terbentuk yaitu distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley belum dapat mengatasi data underdispersi. Selain itu terdapat data asli yang tidak memiliki observasi bernilai nol. Dengan demikian, untuk mendapatkan distribusi yang lebih fleksibel agar lebih cocok dengan count data tersebut, perlu dilakukan modifikasi pada distribusi Poisson-Lindley dengan menerapkan metode zero-truncated. Distribusi baru yang terbentuk yaitu distribusi Zero-truncated Poisson-Lindley. Distribusi baru tersebut dapat mengatasi data yang tidak memiliki observasi bernilai nol dalam kondisi overdispersi maupun underdispersi. Dalam skripsi ini, didapat karakteristik dari distribusi Zero truncated Poisson-Lindley dan penaksiran parameter distribusi menggunakan metode maximum likelihood.

ABSTRACT
Not every count data has equal-dispersion. As a result, Poisson distribution is no longer appropriate to be used for count data modelling. Several distributions have been introduced to be used as an alternative to Poisson distribution on handling the over-dispersion in data. In general, the alternative distributions have higher complexity in the number of parameters. Modification needs to be done in Poisson distribution so that the distribution can represent the condition of the over-dispersion in data. By doing mixing Poisson and Lindley distribution, a new distribution called Poisson-Lindley is developed. However, Poisson-Lindley distribution cannot handle data that exhibits under-dispersion. On the other hand, there is real data that has no zero-count. Therefore, in order to obtain a more flexible distribution to fit count data that has no zero count, a modification needs to be done in Poisson Lindley distribution by applying a zero truncated method in Poisson-Lindley distribution. The newly formed distribution is named Zero-truncated Poisson Lindley distribution. It can handle the condition when the data has no zero-count both in over-dispersion and under-dispersion. In this paper, characteristics of Zero truncated Poisson Lindley distribution are obtained and estimate distribution parameters using the maximum likelihood method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fenny Hermawan
"Overdispersion adalah masalah yang sering ditemukan saat memodelkan data cacah. Overdispersion ditandai dengan nilai variansi lebih besar dari mean. Penyebab overdispersion yang sering terjadi adalah banyaknya pengamatan bernilai nol pada suatu data. Akibatnya, distribusi Poisson yang memiliki nilai mean dan variansi yang sama (equidispersion) tidak cocok lagi untuk memodelkan data cacah tersebut. Salah satu alternatif distribusi untuk mengatasi kondisi overdispersion adalah distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley hanya memiliki fungsi massa peluang monoton turun. Untuk menambah fleksibilitas distribusi Poisson-Lindley, distribusi tersebut diberikan bobot berupa fungsi bobot binomial negatif. Pemberian fungsi bobot binomial negatif ini tetap menghasilkan distribusi dengan nilai variansi lebih besar dari mean sehingga tetap dapat digunakan untuk mengatasi kondisi overdispersion. Distribusi baru yang diperoleh disebut distribusi weighted negative binomial Poisson-Lindley (WNBPL). Pada tugas akhir ini dibahas mengenai proses pembentukan distribusi weighted negative binomial Poisson-Lindley, beberapa karakteristiknya, dan pengestimasian parameternya dengan metode maksimum likelihood. Sebagai ilustrasi, digunakan data frekuensi klaim pemegang polis untuk dimodelkan dengan distribusi WNBPL.

Overdispersion is a common problem when modeling count data. Overdispersion is characterized by the variance greater than the mean. The cause of overdispersion that often occurs is the large number of zero-value observations in a data. As a result, the Poisson distribution which has the same mean and variance (equidispersion) is no longer suitable for modeling the count data. An alternative distribution to overcome the overdispersion condition is the Poisson-Lindley distribution. However, probability mass function of Poisson-Lindley is monotonic decreasing. To increase the flexibility of the Poisson-Lindley distribution, the distribution is given a weight function in the form of a negative binomial weight function. Giving this negative binomial weight function still creates a distribution with the variance greater than the mean to overcome overdispersion data. The new distribution obtained by giving that weight function is called the weighted negative binomial Poisson-Lindley (WNBPL) distribution. This thesis discusses the formation of the weighted negative binomial Poisson-Lindley distribution, some of its characteristics, and estimate its parameters using the maximum likelihood method. As an illustration, WNBPL distribution is used to model the data of frequency claims by policyholders."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risna Diandarma
"ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).

ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1).
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nishfu Laili Barokah
"Over-dispersi dan under-dispersi adalah beberapa masalah umum ketika pemodelan dihitung data. Karena kondisi seperti itu, distribusi Poisson tidak lagi cocok untuk data cacah pemodelan, karena melanggar asumsi kesetaraan (mean equal variance). Di studi sebelumnya, beberapa distribusi telah diperkenalkan sebagai alternatif untuk Distribusi poisson, untuk menangani kondisi dispersi. Namun, distribusinya bisa hanya menangani overdispersion atau underdispersion. Oleh karena itu, distribusi baru adalah dikembangkan untuk menangani data dengan dispersi kurang dan penyebaran berlebihan. Distribusi ini adalah disebut distribusi Conway Maxwell Poisson (COM-Poisson). COM-Poisson distribusi pertama kali diperkenalkan oleh Conway dan Maxwell pada tahun 1962, sebagai solusi untuk sistem antrian dengan tarif layanan yang tergantung pada negara. Modifikasi Poisson ini distribusi memiliki dua parameter, λ dan parameter tambahan v, yang disebut dispersi parameter. Karena parameter tambahan, distribusi ini dapat digunakan di dispersi berlebihan (jika v <1), equidispersion (jika v = 1), dan dispersi kurang (jika v> 1). Melalui contoh data nyata, tesis ini akan menggunakan distribusi COM-Poisson untuk pemodelan data dengan kondisi penyebaran berlebihan dan kurang penyebaran.

Over-dispersion and under-dispersion are some common problems compiling calculated data modeling. Because of such conditions, the Poisson distribution is no longer suitable for modeling data, because of the testing of the equality equation (mean equal variance). In previous studios, several distributions have been introduced as alternatives to Poisson distribution, to support the terms of dispersion. However, its distribution can only overcome overdispersion or underdispersion. Therefore, new distributions have been developed to support data with less dispersion and excessive distribution. This distribution is called the Conway Maxwell Poisson (COM-Poisson) distribution. COM-Poisson distribution was first introduced by Conway and Maxwell in 1962, as a solution for queuing systems with service rates that depend on the country. This Poisson modification distribution has two parameters, λ and an additional parameter v, which is called parameter dispersion. Because of the additional parameters, this distribution can be used in excessive dispersion (if v <1), equation (if v = 1), and less dispersion (if v> 1). Through real data examples, this thesis will use the COM-Poisson distribution for data modeling with the use of redundant and less-spread distributions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Affrilia Azani
"Sistem bonus malus adalah salah satu sistem yang ditawarkan oleh perusahaan asuransi kendaraan bermotor dalam penentuan premi berdasarkan sejarah klaim. Sistem bonus malus pada awalnya hanya didasari oleh frekuensi klaim. Namun ini akan tidak adil karena setiap pemegang polis mengalami kerugian yang berbeda-beda. Maka untuk mengatasi hal tersebut penentuan premi sistem bonus malus sebaiknya tidak hanya mempertimbangkan frekuensi klaim tetapi juga severitas klaim. Pada penelitian ini akan dibahas penentuan net premi sistem bonus malus berdasarkan frekuensi klaim dan severitas klaim. Frekuensi klaim menggunakan campuran distribusi Poisson Lindley sedangkan severitas klaim menggunakan campuran distribusi lognormal gamma. Pada penelitian ini juga diasumsikan bahwa frekuensi klaim dan severitas klaim independen. Parameter dari distribusi frekuensi klaim dan severitas klaim diestimasi dengan menggunakan metode maximum likelihood estimator (MLE). Selanjutnya metode Bayesian digunakan untuk penentuan net premi yang dibayarkan pemegang polis yaitu berdasarkan perkalian ekspektasi posterior severitas klaim dan frekuensi klaim. Hasil aplikasi pada data menunjukkan bahwa besar premi yang dibayarkan pemegang polis berbanding lurus dengan severitas klaim dan frekuensi klaim yang artinya semakin besar frekuensi klaim dan semakin besar klaim yang diajukan maka semakin besar pula premi yang dibayarkan.

The bonus malus system is one of the systems offered by motor vehicle insurance companies in determining premiums based on claim history. The malus bonus system was initially only based on the claim frequency. However, this would be unfair because each policyholder experiences different losses. So to overcome this, the determination of the bonus of the malus bonus system should not only consider the claim frequency but also the claim severity. In this study, we will discuss the determination of the net premium for the bonus malus system based on the claim frequency and the claim severity . The claim frequency use a mixed Poisson Lindley distribution and the claim severity use a mixture of lognormal gamma distribution. In this study, it is also assumed claim frequency and claim severity are independent. The parameters of claim frequency and claim severity are estimated using the maximum likelihood estimator (MLE). Furthermore, the amount of net premium to be paid by policyholders is determined based on he product of the posterior expectation of claim frequency and claim severity. The data application results show that the premium that must be paid by policyholders is directly proportional to the claim frequency and claim severity, which means that the greater the claim frequency and the greater the claim severity submitted, the greater the premium paid."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ega Prihastari
"Model regresi Generalized Poisson I merupakan suatu model regresi yang digunakan untuk menganalisis hubungan antara sebuah variabel random dependen yang berupa data count ( berjenis diskrit ) dengan satu atau lebih variabel independen. Model ini dapat digunakan baik dalam keadaan ekuidispersi, overdispersi ataupun underdispersi. Penaksiran parameter dari model regresi Generalized Poisson I dapat diperoleh dengan
menggunakan metode maksimum likelihood melalui pendekatan Newton- Raphson. Beberapa ukuran perbandingan dapat digunakan untuk membandingkan model regresi Generalized Poisson I dengan model regresi Poisson."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfifah Meytrianti
"Distribusi Poisson adalah distribusi yang biasa digunakan untuk memodelkan count data dengan asumsi nilai mean dan variansi memiliki nilai yang sama (ekuidispersi). Dalam kenyataannya, sebagian besar count data memiliki nilai mean yang lebih kecil dari variansi (overdispersi) dan distribusi Poisson tidak cocok digunakan untuk memodelkannya. Dengan demikian, beberapa distribusi alternatif telah diperkenalkan untuk mengatasi masalah ini. Salah satunya adalah distribusi Shanker yang hanya memiliki satu parameter. Namun, distribusi Shanker adalah distribusi kontinu, sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, distribusi baru ditawarkan yaitu distribusi Poisson-Shanker. Distribusi Poisson-Shanker diperoleh dengan mencampurkan distribusi Poisson dan Shanker, dengan distribusi Shanker sebagai mixing distribution. Hasil yang diperoleh adalah distribusi campuran yang memiliki satu parameter dan dapat digunakan untuk memodelkan count data yang overdispersi. Dalam tugas akhir ini, diperoleh bahwa distribusi Poisson-Shanker memiliki beberapa sifat yaitu unimodal, overdispersi, hazard rate naik, serta diperoleh koefisien kurtosis dan skewness. Selain itu, diperoleh pula empat raw momen dan momen sentral pertama. Metode yang digunakan untuk menaksir parameter adalah metode maximum likelihood dan diselesaikan dengan menggunakan iterasi numerik. Dilakukan ilustrasi pada data untuk menggambarkan distribusi Poisson-Shanker. Karakteristik parameter dari distribusi Poisson-Shanker diperoleh dengan simulasi numerik dengan beberapa variasi nilai parameter dan ukuran sampel. Hasil yang diperoleh adalah rata-rata nilai MSE dan bias taksiran parameter akan naik seiring pertambahan nilai parameter untuk suatu nilai n dan akan turun seiring pertambahan nilai n untuk suatu nilai parameter.

Poisson distribution is a common distribution for modelling count data with assumption mean and variance has the same value (equidispersion). In fact, most of the count data have mean that is smaller than variance (overdispersion) and Poisson distribution cannot be used for modelling this kind of data. Thus, several alternative distributions have been introduced to solve this problem. One of them is Shanker distribution that only has one parameter. Since Shanker distribution is continuous distribution, it cannot be used for modelling count data. Therefore, a new distribution is offered that is Poisson-Shanker distribution. Poisson-Shanker distribution is obtained by mixing Poisson and Shanker distribution, with Shanker distribution as the mixing distribution. The result is a mixture distribution that has one parameter and can be used for modelling overdispersion count data. In this paper, we obtain that Poisson-Shanker distribution has several properties are unimodal, overdispersion, increasing hazard rate, and right skew. The first four raw moments and central moments have been obtained. Maximum likelihood is a method that is used to estimate the parameter, and the solution can be done using numerical iterations. A real data set is used to illustrate the proposed distribution. The characteristics of the Poisson-Shanker distribution parameter is also obtained by numerical simulation with several variations in parameter values and sample size. The result is average MSE and bias of the estimated parameter will increase when the parameter value rises for a value of n and will decrease when the value of n rises for a parameter value."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lady Amanda Rosa
"Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan "sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL"Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan " sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL. Satu parameter distribusi Lindley (𝜃) telah banyak digunakan di berbagai bidang seperti Biologi, teknik, medis, dan industri. Distribusi Lindley mampu memodelkan data dengan tingkat bahaya monoton yang meningkat. Namun, dalam kehidupan nyata, ada situasi di mana tingkat bahaya bukan monoton. Oleh karena itu, untuk meningkatkan kemampuan distribusi Lindley untuk pemodelan data, suatu modifikasi dapat digunakan dengan menggunakan metode transformasi Alpha Power. Hasil dari modifikasi distribusi Lindley biasa disebut distribusi Alpha Power Transformed Lindley (APTL) yang memiliki dua parameter (𝛼, 𝜃). Distribusi APTL baru ini sesuai dalam memodelkan data dengan bentuk pdf menurun atau unimodal dan meningkatkan, mengurangi, dan bak terbalik berbentuk tingkat bahaya. Berbagai sifat dari distribusi yang diusulkan dibahas termasuk kepadatan probabilitas fungsi, fungsi distribusi kumulatif, fungsi survival, fungsi tingkat bahaya, fungsi momen, dan momen r.Parameter model diperoleh dengan menggunakan metode kemungkinan maksimum. Data waktu tunggu digunakan sebagai ilustrasi untuk menggambarkan kegunaan distribusi APTL.

One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. The Lindley distribution is able to model data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The results of the Lindley distribution modification are commonly called the Alpha Power Transformed Lindley distribution (APTL) which has two parameters (𝛼 , 𝜃) This new APTL distribution is suitable for modeling pdf data in a declining or unimodal form and increasing, reducing, and inverted body in the form of hazard level.The various properties of the proposed distribution are discussed including probability density functions, cumulative distribution functions, survival functions, functions danger level, moment function, and moment r. Parameter model is obtained uh using the maximum likelihood method. Wait time data is used as an illustration to illustrate the usefulness of the APTL distribution. One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. Distribution Lindley is capable modeling data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger is not monotonous. Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The result of the modification of the Lindley distribution is called the Alpha Power Transformed Lindley (APTL) distribution which has two parameters (𝛼, 𝜃). This new APTL distribution is suitable in modeling data in pdf format in a declining or unimodal form and increasing, reducing, and inverted like a hazard level. Various properties of the proposed distribution are discussed including the probability density function, cumulative distribution function, survival function, hazard level function, moment function, and moment r. Parameter models are obtained using the maximum likelihood method. The waiting time data is used as an illustration to illustrate the usefulness of the APTL distribution. One Lindley distribution parameter (𝜃) has been widely used in fields such as Biology, engineering, medical, and industry. The Lindley distribution is able to model data with an increased level of monotonous danger. However, in real life, there are situations where the level of danger is not monotonous. Therefore, to improve Lindleys distribution capabilities for data modeling, a modification can be used using the Alpha Power transformation method. The result of the modification of the Lindley distribution is called the Alpha Power Transformed Lindley (APTL) distribution which has two parameters (𝛼, 𝜃). This new APTL distribution is suitable in modeling data in pdf format in a declining or unimodal form and increasing, reducing, and inverted like a hazard level. Various properties of the proposed distribution are discussed including the probability density function, cumulative distribution function, survival function, hazard level function, moment function, and moment r. Parameter models are obtained using the maximum likelihood method. Wait time data is used as an illustration to illustrate the usefulness of the APTL distribution.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
"Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi Generalized Exponential tersebut merupakan hasil transformasi generalized dari distribusi Exponential. Skripsi ini menjelaskan distribusi Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk, baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likelihood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall Olkin distribution was explained such as, the probability density function (PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall Olkin distribution was compared with Alpha Power Weibull distribution to decided the prominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall Olkin distribution more suitable in modeling Aarset data (1987)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>