Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 174545 dokumen yang sesuai dengan query
cover
I Gede Wibawa Putra
"Bahan bakar hidrogen sebagai energi terbarukan berpotensi untuk dimanfaatkan sebagai sumber energi baru dan menggantikan bahan bakar fosil karena menghasilkan emisi rendah dan tidak berdampak negatif terhadap lingkungan. Produksi hidrogen dapat dilakukan dengan reaksi pemisahan air. Dalam penelitian ini, akan diamati reaksi pemisahan air pada sistem Sel Fotoelektrokimia Tersensitasi Zat Warna (DSPEC) menggunakan nanopartikel TiO2 untuk menghasilkan hidrogen 2H+ + 2e− → H2 (0,198 V NHE pada pH 7). Film FTO/TiO2 dipreparasi dan dikarakterisasi dengan XRD dan SEM. Pewarna komersial D102 dan D131 serta pewarna Rumbipy (kompleks) digunakan sebagai zat warna tersensitasi yang akan dibandingkan dalam elektroda kerja FTO/TiO2/pewarna; faktor-faktor seperti waktu loading zat warna, hole mobility (h+), dan adanya EDTA sebagai agen sacrificial akan diinvestigasi. Produksi hidrogen optimal diperoleh pada waktu loading 3 jam untuk D102 dan Rumbipy, sementara 2 jam untuk D131, hole mobility D102, D131, dan Rumbipy masing-masing adalah 6.42, 5.25, dan 11.01 (10-10 cm2s-1). Percobaan menghasilkan produksi hidrogen dalam sistem dengan adanyaEDTA sebagai berikut, Rumbipy > D102 > D131 dengan mol hidrogen terbesar mencapai 226,4 μmol dengan efisiensi faradaic 98,88% pada zat warna Rumbipy. Sedangkan dalam sistem tanpa adanya EDTA produksi hidrogen menghasilkan D131 > D102 > Rumbipy dengan mol hidrogen terbesar hanya mencapai 0,353 μmol dengan efisiensi faradaic 2,537% pada zat warna D131, selama waktu pengukuran 550 detik dengan iradiasi 100 mWcm-2.
Hydrogen fuel as renewable energy has a potency to be utilized as new energy sources and replace fossil fuels cause it resulted low emission and having no negative impact to the environment. Hydrogen production can be carried out by water splitting. In this study, we will observe the reaction of water splitting on Dye-Sensitizer Photoelectrochemical Cell (DSPEC) system using TiO2 nanoparticles to produce hydrogen 2H+ + 2e− → H2 (0,198 V NHE in pH 7). FTO/TiO2 film was prepared and characterized by XRD and SEM. Commercial dyes D102 and D131 are used as well as Rumbipy (complex) dyes as dye sensitizer which will compared in working electrode FTO/TiO2/dyes; factors such as dye loading time, hole mobility, and with or without EDTA as sacrificial agent were studied. The optimal hydrogen production was achieved at 3 hours dye loading time for D102 and Rumbipy dyes, while 2 hours for D131 dyes, hole mobility of D102, D131, and Rumbipy dyes was 6.42, 5.25, and 11.01 (10-10 cm2s-1) respectively. The experiment resulted hydrogen production in the system with the presence of EDTA as follow Rumbipy > D102 > D131 with the largest mol hydrogen reached 226.4 μmol with faradaic efficiency 98.88% in Rumbipy dyes. Whereas in the system without EDTA the hydrogen production resulted D131 > D102 > Rumbipy with the largest mol hydrogen only reached 0.35 μmol with faradaic efficiency 2.54% in D131 dyes, during measurements time 550 seconds with irradiation 100 mW cm-2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suharyadi
"Amonia merupakan senyawa kimia yang disintesis melalui proses Haber-Bosch yang dapat menghasilkan emisi gas CO2 dalam jumlah besar karena dilakukan pada suhu dan tekanan tinggi, sehingga diperlukan teknologi alternatif untuk mensintesis amonia dengan menggunakan energi yang lebih rendah dan ramah lingkungan. Pada penelitian ini dilakukan pengembangan sistem tandem Sel Surya Tersensitisasi Zat Warna Fotoelektrokimia (DSSC-PEC) untuk reaksi reduksi nitrogen (NRR) menjadi amonia. Sel PEC menggunakan TiO2NT/BiVO4 sebagai fotoanoda untuk oksidasi air yang disintesis dengan metode optimasi SILAR selama 20 siklus memberikan photocurrent sebesar 0,352 mA/cm2. Sebagai katoda tempat berlangsungnya reaksi reduksi nitrogen menjadi amonia, digunakan Ti3+/TiO2NT. Sistem PEC digabungkan dengan DSSC berbasis TiO2NT/N719 dengan efisiensi 1,13% sebagai penambah energi dalam reaksi. Menggunakan sistem ini dengan luas area elektroda masing-masing 3 cm2, amonia yang dihasilkan dianalisis dengan menggunakan metode fenat didapatkan sebesar 0,393 µmol dengan efisiensi Solar to Chemical Conversion (SCC) sebesar 0,003%.

Ammonia is a chemical compound that is synthesized through the Haber-Bosch process which can produce large amounts of CO2 gas emissions because it is carried out at high temperatures and pressures, so an alternative technology is needed to synthesize ammonia that uses less energy and is environmentally friendly. In this research, the development of a Dye-Sensitized Solar Cell Photoelectrochemical tandem system (DSSC-PEC) was carried out for the nitrogen reduction reaction (NRR) into ammonia. PEC cells using TiO2NT/BiVO4 as a photoanode for water oxidation synthesized by the SILAR optimization method for 20 cycles gave a photocurrent of 0.352 mA/cm2. As the cathode where the nitrogen reduction reaction to ammonia takes place, Ti3+/TiO2NT is used. The PEC system is coupled with a DSSC based on TiO2NT/N719 with an efficiency of 1.13% as an energy booster in the reaction. Using this system with an electrode area of 3 cm2, the ammonia produced was analyzed using the phenate method and obtained 0.393 µmol with a Solar to Chemical Conversion (SCC) efficiency of 0.003%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sherly Kasuma Warda Ningsih
"Penggunaan energi matahari untuk produksi hidrogen dari air dapat menjadi alternatif yang potensial untuk mengatasi masalah keberlanjutan pasokan energi dan pengurangan pencemaran lingkungan. Sistem tandem dyes sensitized solar cell-photoelectrocatalytic (DSSC-PEC) berpotensi dikembangkan menjadi salah satu perangkat pemanen sinar matahari untuk produksi hidrogen (Solar to hydrogen). Dalam sistem tandem tersebut bagian PEC sebagai tempat terjadinya reaksi pemecahan air, sedangkan bagian DSSC berfungsi sebagai salah satu penyedia tegangan insitu dan elektron aktif bagi sel PEC. Material TiO2 nanotube arrays (TNAs) merupakan material satu dimensi (1D) yang memiliki sifat fotokatalitik yang superior dan luas permukaan spesifik yang besar, serta channel 1D yang kondusif dalam transpor muatan. TNAs telah dipreparasi menggunakan metode two step anodization dengan meningkatkan potensial anodisasi tahap dua pada potensial sedang. Plat Ti digunakan sebagai working electrode dan stainless steel digunakan sebagai counter electrode. Elektrolit yang digunakan adalah etilen glikol yang mengandung 0,3% w/w NH4F dan 2% v/v H2O. Hasil anodisasi tahap satu dihilangkan dengan sonikasi dalam air distilasi selama 20 menit dan plat ini berperan sebagai template untuk anodisasi tahap dua. Hasil anodisasi yang diperoleh pada tahap dua dikalsinasi pada suhu 450° C selama 2 jam untuk merubah fasa amorf menjadi fasa kristalin. Band gap energy dari TNAs yang dipreparasi dengan metode two step yakni sekitar 3,07-3,31 eV. Morfologi permukaan TNAs yang dihasilkan berbentuk heksagonal (honey comb). Peningkatan potensial anodisasi pada tahap dua menghasilkan TNAs yang highly order dengan durasi pembentukan yang relatif lebih singkat dengan nilai regularity ratio (RR) optimum 0,92. Agar lebih responsif terhadap sinar tampak, TNAs dimodifikasi dengan BiOI (bismuth oxyiodide) dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi dan pemanasan menggunakan pelarut air distilasi dan pelarut sorbitol. BiOI/TNAs hasil modifikasi responsif terhadap sinar tampak pada rentang 450-580 nm (redshift) dengan nilai band gap sekitar 1,90 eV-2,32. Morfologi permukaan BiOI/TNA yang dihasilkan yakni bentuk nanoplate, nanoflake, dan nanosheet dengan orientasi tegak lurus pada matriks TiO2 nanotubes. Modifikasi BiOI pada TNAs tidak mengubah fasa kristal anatase. Fotoanoda Graphene Oxide (GO)/TNAs dan reduced-Graphene Oxide (rGO)/TNAs dipreparasi menggunakan teknik drop casting dan teknik deposisi Cyclic Voltammetry (CV), berturut-turut. Modifikasi TNAs dengan material GO ini berhasil menggeser serapan pada sinar tampak (430 nm). Material GO atau rGO/TNAs ini dimodifikasi dengan BiOI untuk mendapatkan fotoanoda ternary yang memiliki respon fotoelektrokimia yang lebih tinggi. BiOI/TNAs dan ternary BiOI/GO/TNAs digunakan sebagai fotoanoda pada zona PEC. Sementara itu, pada bagian katoda PEC digunakan TNAs yang dimodifikasi dengan Pt yang dipreparasi dengan metode fotoreduksi, sebagai zona katalis untuk pembentukan hidrogen. Pengembangan bagian DSSC digunakan fotoanoda TNAs yang disensitasi dengan N719 dyes dan bagian katodanya digunakan kaca Fluorine-doped Tin Oxide (FTO) yang dilapisi dengan Pt. Efisiensi DSSC N719 dyes/TNAs optimum yang didapat sekitar 5,23%. Perangkat DSSC dan PEC ini diaplikasikan untuk produksi hidrogen menghasilkan persen solar to hydrogen (STH) sekitar 2,56%. Saat diaplikasikan untuk produksi hidrogen dan degradasi fenol secara simultan dengan persen solar to hydrogen (STH) turun menjadi 1,34%, namun mampu mendegradasi fenol hingga 73,74%. Dari hasil studi ini menunjukkan bahwa sistem DSSC-PEC dengan fotoanoda bagian PEC berupa BiOI/TNAs atau BiOI/rGO/TNAs memiliki potensi yang menjanjikan secara simultan untuk produksi hidrogen dan degradasi zat organik dalam air berkadar garam tinggi.

The solar energy utilization for hydrogen production from water can be a potential alternative to address the problem of sustainability of energy supply and reduction of environmental pollution. The tandem dyes-sensitized solar cell-photoelectrocatalytic (DSSC-PEC) system can potentially be developed into one of the solar harvesting devices for hydrogen production (Solar to hydrogen). In this tandem system, the PEC compartment acts as a site for the water-splitting reaction, while the DSSC part provides insitu voltage and active electrons for the PEC cell. TiO2 nanotube arrays (TNAs) are one-dimensional (1D) with a superior photocatalytic high surface area and one dimension channel conducive to charge transport. TNAs have been prepared using a two-step anodization method by increasing the second-step voltages at moderate voltage. The Ti foil and stainless steel were used as the working and counter electrodes, respectively. The ethylene glycol containing 0.3% w/w of NH4F and 2% v/v H2O was used as the electrolyte. The first anodization result was removed by the ultrasonication process in the distilled water for 20 min, and this foil acted as the template for the second step of anodization. The second anodization product was calcined at 450° C for 2 h to convert the amorphous phase into a crystalline phase. Increasing the second step potential for producing TNAs with a highly ordered structure can improve the PEC properties. The band gap energy of TNAs prepared with the two-step anodization method was 3.07-3.31 eV. The surface morphology of TNAs prepared by the two-step anodization method was hexagonal (honeycomb). The increasing voltage in the second anodization step reveals TNAs with high order and short-duration of TNAs production with a regularity ratio (RR) was 0.92. In order to extend absorption in the visible range, TNAs were modified with BiOI (bismuth oxy iodide) by Successive Ionic Layer Adsorption and Reaction (SILAR) with ultrasonication and heat-assisted by using deionized water and sorbitol solvent. Modified BiOI/TNAs were responsive to visible light in the 450-580 nm (redshift) range, with a band gap energy of 1.90 - 2.32 eV. The BiOI/TNAs morphology was nanoplate, nanoflake, and nanosheet perpendicular to TiO2 nanotube matrices. The modification of BiOI on TNAs did not change the anatase crystal phase. The photoanode of Graphene oxide (GO)/TNAs and reduced-Graphene Oxide (rGO)/TNAs were prepared by Drop Casting and Cyclic Voltammetry (CV) deposition, respectively. The TNAs were modified with GO material and succeeded in shifting the absorption in visible light (430 nm). The GO/TNAs and the rGO/TNAs were modified with BiOI to produce a ternary photoanode with a higher photoelectrochemical response. The BiOI/TNAs and BiOI/GO/TNAs ternaries were used as photoanodes in the PEC zone. Meanwhile, at the PEC cathode, TNAs modified with Pt prepared by the photoreduction method were used as catalyst zone for the hydrogen formation. The development of DSSC using TNAs photoanode that were sensitized with N719 dyes and for the cathode used Fluorine-doped Tin Oxide (FTO) glass modified with Pt. The optimum efficiency of DSSC was 5.23%. The DSSC and PEC devices were applied for hydrogen production to produce solar to hydrogen (STH) of around 2.56 %. When applied to hydrogen production and phenol degradation simultaneously, the percentage of solar to hydrogen (STH) decreased to 1.34% but degraded phenol up to 73.74%. The results of this study reveal that the DSSC-PEC system with PEC photoanodes in the form of BiOI/TNAs or BiOI/rGO/TNAs has a promising potential for simultaneous hydrogen production and degradation of organic substance in salty water.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Okta Lian Atikah
"Amonia NH3 merupakan bahan kimia yang penting dalam industri kimia. Dewasa ini, telah dikembangkan suatu metoda baru dalam produksi amonia melalui reaksi fotokatalitik menggunakan matrik TiO2 yang memiliki populasi kekosongan oksigen, menghasilkan spesi Ti3 matrik [Ti3 -TiO2] yang sesuai. Konversi N2 menjadi amonia tersebut, menggunakan sumber hidrogen dari air, berlangsung pada kondisi tekanan dan suhu ruang. Namun, dalam sistem tersebut penyerapan foton dan konversi kimia terjadi pada locus yang sama, sehingga kadang terjadi kontradiksi saat dilakukan optimasi penyerapan foton dan konversi kimiawinya. Dalam penelitian ini, dilakukan pendekatan baru dimana locus penyerapan foton dan inisiasi reaksi kimia dilakukan pada locus yang berbeda. Untuk keperluan tersebut, dilakukan modifikasi sel surya tipe Gratzel Dyse Sensitized Solar Cell, DSSC, sehingga memiliki kepanjangan zona katalisis yang terpisah dari zona DSSC nya. Penyerapan cahaya dilakukan pada zona DSSC dan konversi N2 menjadi amonia dilakukan pada zona katalisis. Zona DSSC menggunakan foto anoda TiO2 yang disensitasi dengan zat warna ruthenium dye jenis N719, sedangkan zona katalisis menggunakan matrik [Ti3 -TiO2 nanotube]. Preparasi TiO2 nanotube dan matrik [Ti3 -TiO2 nanotube] berturut turut menggunakan metode anodisasi dan reduksi elektrokimia. Sensitasi TiO2 dengan zat warna N719 dilakukan dengan cara perendaman dan dilakukan variasi waktu perendaman selama 3; 6; 12; dan 24 jam. Hasil preparasi dilakukan karakterisasi yang sesuai, diantaranya menggunakan XRD, SEM, UV-Vis DRS, FT-IR, dan dilakukan uji photocurrent menggunakan sel fotoelektrokimia. Perakitan sel surya yang dimodifikasi, dilakukan menggunakan foto anoda TiO2 nanotube tersensitasi N719, elektrolit I3-/I- dan Pt/FTO sebagai elektroda counter pada zona DSSC. Sedangkan, pada zona katalis digunakan matrik [Ti3 -TiO2 nanotube], elektrolit Na2SO4, TiO2 sebagai elektroda counter. Zona katalis pada rangkaian tersebut dialiri gas N2, sementara zona DSSC disinari. Dilakukan variasi waktu dan pH pada fotoreaksi produksi amonia. Hasilnya menunjukkan bahwa pada rentang reaksi antara 12 jam s/d 100 jam secara konsisten diperoleh produk amonia 13,39 M s/d 137 M dan diperoleh efisiensi konversi sebesar 0,06. Hasil yang diperoleh dalam penelitian ini memberi konfirmasi keberhasilan dari pendekatan yang dilakukan.

Amonia NH3 is an important precursor in the chemical industry. Recently, a new method of producing amonia has been developed by photocatalytic reaction over TiO2 with partially oxygen vacancied, yielding Ti3 species, from water and N2 under basically ambient pressure and temperature. Unfortunately, the reaction locus is taken place in the same place with the illumination locus, which may create a contradictory during optimation of light absorbing locus and intended chemical reaction locus. Thus in this study, a relatively new approach is introduced. The production of amonia will be performed by using modified DSSC device, which has a catalysis zone extension. Hence the photon absorption is provided by DSSC zone, then the produced, what so called, ldquo hot rdquo electron transferred to catalysis zone to intiate intended chemical reaction. In this work, N719 type dyes was used as sentizer for the photoande in DSSC zone, while the catalysis zone employing Ti3 TiO2nanotubes matrix. Preparation of TiO2 was done by using anodization method, while preparation of the Ti3 TiO2 nanotube catalyst zone was carried out by electrochemical reduction method of prepared TiO2. TiO2 was then sensitized by N719 by immersion method. Variation of immersion was performed for 3 6 12 and 12 hours. Both then was characterized by XRD, SEM, UV Vis DRS, and FT IR and electyrochemical work station. Modified DSSC was prepared by using TiO2 NT N719 dye as working electrode, I3 I electrolyte and Pt FTO as counter electrodes for the DSSC zone and Ti3 TiO2 nanotube coupled with TiO2 as counter electrode in catalysis zone. The catalysis zone then was immersed into Na2SO40.1 M electrolyte, which then aerated by N2 gas. while the DSSC zone is irradiated, then within a certain period of amonia products are obtained. The amonia product was collected and analyzed using phenate method. Variations of time and pH of photoreaction for amonia production was performed. The results showed that in the reaction range between 12 hours to 100 hours consistently obtained amonia products 13.39 M up to 137 M which indicated a conversion efficiency of 0.06 . The results obtained in this study confirm the potential or success of the approach."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahmi Syafaat
"ABSTRAK
Pada penelitian kali ini TiO2 nanotube dibuat dengan metode Rapid Breakdown
Anodization menggunakan plat Ti dalam elektrolit HClO4 0,15 M. Serbuk TiO2
dikalsinasi pada 4500 C selama 3 jam, dan dikarakterisasi dengan SEM, XRD, UV-Vis
DRS, FTIR and BET. Zinc-Phorphirin-Imide telah berhasil dilekatkan pada TiO2
Nanotube dengan merendam TiO2 Nanotube ke dalam larutan Zinc-Phorphirin-imide
selama 24 jam. zinc-Phorphirin bebas memperlihatkan karakteristik spektra serapan pada
daerah cahaya tampak, yaitu 439 nm and 620 nm. Saat dilekatkan dengan TiO2-
Nanotube terjadi pergeseran serapan padathe 421 nm dan 640 nm. Zinc-Phorphirin/TiO2
electrode memperlihatkan respon arus yang baik pada daerah cahaya tampak dengan
photocurrent density sebesar 1,1 mA/cm2. Saat fotoelektroda dirakit menjadi Solar Cell
(DSSC), kurva I-V menunjukkan efisiensi fotokonversi dari Zinc-Phorphirin/TiO2
DSSC sebesar 1,914% (frontside illumination) dan1,147% (backside illumination).

ABSTRACT
In this work, TiO2 Nanotube were prepared by rapid breakdown electro oxidation of Ti
foil in electrolyte containing 0.15 M HClO4. Obtained TiO2 Nanotube bundling powder
was calcinated at 4500 C for 3 hrs, then was characterized by SEM, XRD, UV-Vis DRS,
FTIR and BET. Zinc-Phorphirin-Imide dyes was deposited into TiO2 Nanotube by
immersion of TiO2Nanotube in Zinc-Phorphirin-imide solution for 24 hours. Free zinc-
Phorphirin-Imide dyes shows characteristics absorbtion spectra in visble region, these are
439 nm and 620 nm. While, when it was immobilized in to TiO2-Nanotube the
absorbtion peak shift to 421 nm and 640 nm. The Zinc-Phorphirin-Imide/TiO2 electrode
showed excellent respond toward visible light with the typical photocurrent density of 1,1
mA/cm2. When the fabricated photoelectrode was assemblied in a typical Dyes Sensitize
Solar Cell (DSSC), the I-V curve showed photoconversion efficiency of the assemblied
Zinc-Phorphirin-Imide/TiO2 DSSC was 1,914% (frontside illumination) and 1,147%
(backside illumination)."
2016
T44759
UI - Tesis Membership  Universitas Indonesia Library
cover
Kamilla Manzilina Istmah
"Saat ini dibutuhkan perubahan atau inovasi dalam pembuatan amonia yang lebih ramah lingkungan dan mengurangi penggunaan bahan bakar fosil. Salah satu alternatifnya yaitu dengan memanfaatkan konsep reduksi fotoelekrokimia menggunakan material semikonduktor TiO2. Pada penelitian ini, dilakukan modifikasi TiO2 Nanotube Array (TNA) melalui metode anodisasi, dan dilanjutkan dengan reduksi secara elektrokimia untuk mendapatkan spesi TiO2 dengan populasi Ti3+ yang diperkaya (Blue TiO2 dan Black TiO2), disertai variasi annealing yang berbeda untuk mempelajari pengaruhnya terhadap morfologi dan karakteristik fotoelektrokimia. Selanjutnya dilakukan evaluasi kinerja White TiO2, Blue TiO2 dan Black TiO2 Nanotube Array (TNA) sebagai elektroda pada sistem fotoelektrokimia untuk konversi N2 menjadi amonia. Hasil penelitian menunjukkan modifikasi TiO2 dengan metode self-doping menghasilkan blue TiO2 dan black TiO2 Nanotube Array (TNA) yang memiliki morfologi dan aktivitas fotoelektrokimia lebih baik berdasarkan hasil karakterisasi yang diperoleh dengan adanya spesi Ti3+ dan oxygen vacancy yang terbentuk. Berdasarkan karakterisasi FTIR intensitas Ti-O-Ti semakin berkurang akibat semakin banyaknya spesi Ti3+ dan oxygen vacancy. Hal ini mempengaruhi pergeseran band gap dari 3,2 eV menjadi <3,2 eV. Selain itu, Lama waktu annealing mempengaruhi aktivitas fotoelektrokimia dari White TiO2, Blue TiO2 dan Black TiO2 Nanotube Array (TNA). semakin lama waktu annealing semakin banyak spesi Ti3+ yang terbentuk sehingga meningkatkan aktivitas fotoelektrokimia. namun jika melewati batas maksimum Ti3+ akan ter-reoksida kembali dan menurunkan aktivitas fotoelektrokimia. Berdasarkan hasil XRD waktu anneling tidak secara signifikan mempengaruhi fasa kristal, namum mempengaruhi ukuran kristal. Photocurrent tertinggi diperoleh pada Blue TiO2 dengan densitas arus sebesar 0,0301 mA/cm-2 pada penyinaran sinar UV. Onset potensial OER paling rendah dan onset potensial HER, NRR paling tinggi didapatkan pada Blue TiO2. Pada pengaplikasian konversi N2 menjadi amonia menggunakan sistem PEC dengan fotoanoda Black TiO2 Sedangkan untuk katoda gelap menggunakan White TiO2 waktu anneling 4 jam, Blue TiO2 waktu anneling 2 jam dan Black TiO2 waktu anneling 2 jam pada kondisi penerangan gelap-gelap dan gelap terang dikedua kompartemen. Dari hasil karakterisasi dan aplikasi konversi reduksi N2 menjadi amonia, didapatkan kesimpulan Blue TiO2 memiliki performa atau kinerja yang lebih baik dari black TiO2 dan White TiO2 sebagai elektroda pada sistem fotoelektrokimia untuk konversi N2 menjadi amonia karena memiliki spesi Ti3+ dan oxygen vacancy lebih banyak. Dengan menghasilkan amonia sebesar 0,06413 μmol/h cm2 dengan waktu anneling 2 jam pada kondisi penerangan gelap-gelap di kedua sisi. Hal ini menunjukkan semakin banyaknya spesi Ti3+ dan oxygen vancancy yang terbentuk, semakin efektif untuk konversi nitrogen menjadi amonia.

Currently, changes or innovations are needed in the manufacture of ammonia that is more environmentally friendly and reduces the use of fossil fuels. One alternative is to utilize the concept of photoelectrochemical reduction using a TiO2 semiconductor material. In this study, a modification of the TiO2 Nanotube Array (TNA) was carried out by anodizing method, followed by electrochemical reduction to obtain TiO2 species with enriched Ti3+ populations (Blue TiO2 and Black TiO2), with different variations of annealing to study their effect on morphology and characteristics. photoelectrochemistry. Furthermore, the performance evaluation of White TiO2, Blue TiO2 and Black TiO2 Nanotube Array (TNA) as electrodes in the photoelectrochemical system for the conversion of N2 to ammonia was carried out. The results showed that modified TiO2 using the self-doping method produced blue TiO2 and black TiO2 Nanotube Array (TNA) which had better morphology and photoelectrochemical activity based on the characterization results obtained in the presence of Ti3+ species and the formed oxygen vacancy. Based on the FTIR characterization, the intensity of Ti-O-Ti decreases because there are more Ti3+ species and empty oxygen. This affects the shift in the band gap from 3.2 eV to <3.2 eV. In addition, annealing time affects the photoelectrochemical activity of White TiO2, Blue TiO2 and Black TiO2 Nanotube Array (TNA). The longer the time, the more Ti3+ species formed, thereby increasing the photoelectrochemical activity. However, if it exceeds the maximum limit, Ti3+ will be re-oxidized and reduce the photoelectrochemical activity. Based on the results of XRD annealing does not significantly affect the crystal phase, the amount of time that affects the crystal size. The highest photocurrent was obtained on Blue TiO2 with a current density of 0.0301 mA/cm- 2 under UV irradiation. The lowest OER onset potential and HER potential onset, the highest NRR was found in Blue TiO2. In the application of the conversion of N2 to ammonia using a PEC system with a Black TiO2 photoanode. Meanwhile, for the dark cathode, White TiO2 annealed time is 4 hours, Blue TiO2 annealed time is 2 hours and Black TiO2 annealed time is 2 hours in dark and light conditions in both compartments. From the results of the characterization and application of the conversion of N2 to ammonia reduction, it was concluded that Blue TiO2 has better performance or performance than Black TiO2 and White TiO2 as electrodes in a photoelectrochemical system for the conversion of N2 to ammonia because it has Ti3+ species and more oxygen vacancies. By producing ammonia of 0.06413 mol/h cm2 with an anneling time of 2 hours under dark lighting conditions on both sides. This shows that the more Ti3+ and oxygen vancancy species formed, the more effective it is to convert nitrogen into ammonia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Soleh
"Nanopartikel perak telah berhasil dibuat dengan menggunakan metode biosintesis yang memanfaatkan air rebusan rimpang sebagai agen pereduksi. Nanopartikel perak telah dikarakterisasi dengan menggunakan spektrophotometer UV Visible sehingga menghasilkan karakterisasi yang unik dari larutan nanopartikel perak. Ukuran nanopartikel perak yang didapatkan berkisar antara 50-60 nm. Metode kolorimetri telah diterapkan dalam mengaplikasikan nanopartikel perak sehingga dapat mendeteksi pestisida dithane pada konsentrasi 500 ppm dalam waktu deteksi tiga hari setelah pencampuran AgNO3 dengan air rebusan Jahe.

SilverNanoparticles is silver with a particle size in the range of interval1- 100nm. Silver nanoparticles can be obtained from a top-down process (Physics) and bottom-up (chemical and biological) process. Silver nanoparticle research developments related to recently find the right method that can be used to obtain nano silver particles with a size that is using green methods syntesis or so-called biosynthesis due to its superiority compared to the method of physics and chemistry. Biosynthesis of silver nanoparticles utilizing biologicalbeings as reduction agents in the synthesis of silver nanoparticles. Silver nanoparticles have been successfully prepared by using a method of biosynthesis use the cooking water gingeras a reducing agent. Silver nanoparticles were characterized using UV-Visible spectrophotometer resulting in a unique characterization of silver nanoparticle solution. Size of the silver nanoparticles obtained between ranged50-60 nm. Colorimetric method has been applied in the application of silver nanoparticles that can detect pesticides Dithane at a concentration of 500 ppm detection within three days after mixing AgNO3 with Ginger boiled water."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47617
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Ashari Hiyahara
"ABSTRAK
DSSC, dyes sensitized solar cell, dengan zat warna alami termasuk kurkumin memiliki efisiensi yang rendah karena masalah ketidakstabilan kromofor pada zat warna tersebut. Salah satu cara untuk meningkatkan efisiensi DSSC dengan meningkatkan kestabilan fotoanoda, yaitu dengan inkorporasi nanopartikel emas. Nanopartikel emas dapat meningkatkan photocurrent dikarenakan efek surface plasmon resonance yang mampu meningkatkan absorpsi fotoanoda terhadap cahaya tampak. Penelitian mengenai inkorporasi nanopartikel emas pada fotoanoda DSSC tersensitasi zat warna alami termasuk kurkumin masih kurang dipelajari. Tujuan dari penelitian ini adalah untuk mengetahui apakah inkorporasi nanopartikel emas dapat meningkatkan respon terhadap sinar tampak dan aktivitas photocurrent fotoanoda TiO2 tersensitasi kurkumin. Selain itu dimaksudkan juga untuk mengetahui apakah inkorporasi nanopartikel emas pada fotoanoda TiO2 tersensitasi kurkumin dapat meningkatkan efisiensi DSSC. Penelitian ini dimulai dengan sintesis dan persiapan bahan yang dibutuhkan untuk pembuatan fotoanoda. Fotoanoda yang digunakan adalah lapisan film TiO2 diatas kaca transparan yang konduktif kaca berlapis FTO, fluor doped Tin Oxide , yang disensitasi dengan kurkumin dan diinkorporasikan dengan nanopertikel emas. TiO2 dibuat dengan metoda Rapid Breakdown Anodization RBA , FTO dibuat dengan metode spray pyrolysis, dan nanopartikel emas disintesis dengan metode Turkevich. TiO2 dan kombinasi fotoanoda yang dibuat dikarakterisasi dengan SEM-EDX, UV-DRS, FTIR, dan XRD. Kombinasi empat fotoanoda yang dibuat yaitu FTO/TiO2, FTO/TiO2/Au, FTO/TiO2/Kurkumin dan FTO/TiO2/Au/ Kurkumin. FTO/TiO2 dibuat dengan metode doctor blade. Inkorporasi nanopartikel emas pada permukaan fotoanoda FTO/TiO2 dilakukan dengan metode elektroforesis. Hasil karakerisasi SEM-EDX mengkonfirmasi adanya nanopartikel emas yang telah terinkorporasi pada permukaan fotoanoda TiO2 dan distribusinya. Karaktersisasi FTIR mengkonfirmasi adanya interaksi antara kurkumin dan TiO2 setelah proses sensitasi. Untuk mempelajari dampak inkorporasi nanopartikel emas pada absorpsi dan aktivitas photocurrent fotoanoda TiO2 tersensitasi kurkumin pada cahaya tampak, dilakukan karakterisasi sifat optikal UV Vis dan UV DRS dan aktivitas photocurrent metode Multipulse Amperometry pada keempat fotoanoda yang telah dibuat. TiO2 hasil sintesis memiliki struktur anatase dengan ukuran 22.9 nm dan memiliki band gap sebesar 3.14 eV. FTO hasil sintesis memiliki sheet resistance rata rata sebesar 5.264 Ohm/sq dan Transmittans maksimum sebesar 84.2 . Nanopartikel emas hasil sintesis memiliki absorbansi maksimum pada panjang gelombang 536 nm. Absorpsi dan aktivitas photocurrent pada cahaya tampak dari FTO/TiO2/Au/kurkumin lebih baik dibandingkan FTO/TiO2/ Kurkumin. DSSC dengan fotoanoda FTO/TiO2/Au/Kurkumin ? = 0.07 memiliki efisiensi yang lebih besar dibandingkan FTO/TiO2/Kurkumin ? = 0.01 . Akhirnya untuk mengetahui apakah inkorporasi nanopartikel emas dapat meningkatkan efisiensi DSSC dengan fotoanoda TiO2 tersensitasi kurkumin, Fotoanoda FTO/TiO2/Kurkumin dan FTO/TiO2/Au/Kurkumin dirakit menjadi sistem DSSC dengan metode sandwich lalu dievaluasi efisiensinya dengan metode Linear Sweep Voltammetry dengan potensiostat. Hasil penelitian menunjukkan bahwa inkorporasi nanopartikel emas pada fotoanoda TiO2 tersensitasi kurkumin dapat meningkatkan aktivitas photocurrent, hal ini dikarenakan pengaruh surface plasmon resonance dari nanopartikel emas sehingga meningkatkan absorpsi fotoanoda TiO2 tersensitasi kurkumin pada cahaya tampak. Sementara itu kenaikan efisiensi yang signifikan juga diamati pada DSSC dengan fotoanoda yang diinkorporasikan dengan nanopartikel emas.

ABSTRACT
DSSC, dyes sensitized solar cells, with natural dyes including curcumin have a low efficiency due to the chromophore instability of the dyestuff. One way to improve the efficiency of DSSC, by improving photoanode stability, is by incorporation of gold nanoparticles. The gold nanoparticles can increase the photocurrent due to the surface plasmon resonance effect which enhances the photoanode absorption to visible light. Research on the incorporation of gold nanoparticles in DSSC with natural dye sensitized photoanode including curcumin has not been extensively studied. The purpose of this study was to find out whether the incorporation of gold nanoparticles could improve the response to visible light and photocurrent activity of curcumin sensitized photoanode TiO2. It is also intended to find out whether the incorporation of gold nanoparticles in the curcumin sensitized photoanode TiO2 can improve the efficiency of DSSC. This research begins with the synthesis and preparation of materials required for the fabrication of photoanode. The photoanode that used is made by a layer of TiO2 film on a transparent conductive glass FTO coated glass, Fluorine doped Tin Oxide , which is sensitized with curcumin and incorporated with gold nanoparticles. TiO2 was prepared by Rapid Breakdown Anodization RBA method, FTO was made by spray pyrolysis method, and gold nanoparticles were synthesized by Turkevich rsquo s method. TiO2 and photoanode combinations that made were characterized by SEM EDX, UV DRS, FTIR, and XRD. The combination of four photoanode are FTO TiO2, FTO TiO2 Au, FTO TiO2 Curcumin and FTO TiO2 Au Curcumin. FTO TiO2 is made by doctor blade method. The incorporation of gold nanoparticles on photoanode FTO TiO2 surface is done by electrophoresis method. SEM EDX characterization results confirm the presence of gold nanoparticles that have been incorporated on the surface of the photoanode TiO2 and its distribution. FTIR confirms the interaction between curcumin and TiO2 after the sensitization process. To study the effect of incorporation of gold nanoparticles on photocurrent absorption and photocurrent activity of curcumin sensitized photoanode TiO2 under visible light, optical characterization UV Vis and UV DRS and photocurrent activity Multi Pulse Amperometry method is recorded on all four photoanode that were made. TiO2 has anatase structure with crystallite size 22.9 nm and has a band gap of 3.14 eV. FTO have an average sheet resistance of 5,264 Ohm sq and Transmittance maximum of 84.2 . Gold nanoparticles have a maximum absorbance at wavelength 536 nm. It is found that the absorption and photocurrent activity under visible light of photoanode FTO TiO2 Au Curcumin is better than FTO TiO2 Curcumin. DSSC with photoanode FTO TiO2 Au Curcumin 0.07 has greater efficiency than FTO TiO2 Curcumin 0.01 . Finally, to find out whether the incorporation of gold nanoparticles can improve the efficiency of DSSC with curcumin sensitized photoanode TiO2, Photoanode FTO TiO2 Curcumin and FTO TiO2 Au Curcumin are assembled into DSSC system by sandwich method and evaluated its efficiency by Linear Sweep Voltammetry method with potentiostat. The results showed that the incorporation of gold nanoparticles in the curcumin sensitized photoanode TiO2 increase the photocurrent activity, due to the influence of surface plasmon resonance from the gold nanoparticles thus increasing the absorption of curcumin sensitized photoanode TiO2 under visible light. Meanwhile significant efficiency improvements were also observed in the DSSC with photoanode incorporated with gold nanoparticles."
2017
T48656
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizki Aldino Ahmad
"Nanopartikel Perak (AgNP) memiliki sifat fisik dan kimia yang tergantung pada bentuk dan ukurannya. Meskipun ada banyak metode untuk sintesis AgNP, sintesis dengan metode reduksi poliol memiliki kelebihan sendiri. Di sini kami melaporkan metode reduksi poliol untuk sintesis AgNP menggunakan 1,2-propanadiol sebagai reduktor dan PVA sebagai agen penutup dan agen pengarah dalam atmosfer asam-basa. Dalam studi ini, evaluasi konsentrasi logam perak dan efek keasaman pada hasil akhir akan diselidiki menggunakan spektroskopi UV-vis, Transmission Electron Microscopy (TEM), dan XRD. Dari hasil ini menunjukkan bahwa 1,2-propanadiol dapat mereduksi ion perak secara perlahan sehingga kecepatan sintesis nanopartikel perak dapat dikontrol. Tingkat keasaman mempengaruhi bentuk, ukuran, dan kecepatan sintesis AgNP, sedangkan konsentrasi prekursor logam perak mempengaruhi morfologi dan ukuran AgNP.

Silver nanoparticles (AgNP) have physical and chemical properties that depend on their shape and size. Although there are many methods for AgNP synthesis, synthesis by the polyol reduction method has its own advantages. Here we report the polyol reduction method for AgNP synthesis using 1,2-propanediol as a reducing agent and PVA as a covering and directing agent in an acid-base atmosphere. In this study, the evaluation of silver metal concentration and the effect of acidity on the final result will be investigated using UV-vis spectroscopy, Transmission Electron Microscopy (TEM), and XRD. These results indicate that 1,2-propanediol can reduce silver ions slowly so that the speed of synthesis of silver nanoparticles can be controlled. Acidity affects the shape, size, and speed of AgNP synthesis, while the concentration of silver metal precursors influences the morphology and size of AgNP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervina Dwi Inggarwati
"Kebutuhan bahan bakar fosil yang meningkat mengakibatkan ketersediaan bahan bakar fosil semakin menipis, sehingga sumber energi berbasis fosil memiliki harga yang tinggi. Oleh karena itu, dibutuhkan energi alternatif yang mampu untuk mengganti energi fosil menjadi energi yang dapat diperbarui dengan memanfaatkan cahaya matahari. Produksi hidrogen merupakan salah satu cara memanfaatkan kelebihan energi terbarukan. Salah satu usaha untuk meningkatkan produksi hidrogen (H2) pada suatu material semikonduktor sulfida logam adalah menghambat laju rekombinasi suatu material dan membuat sistem tandem dyes sensitized solar cell dengan photoelectrochemical cell (DSSC-PEC). Dalam penelitian ini dilakukan pengembangan sistem tandem DSSC-PEC untuk produksi H2. Katoda PEC berfungsi sebagai zona katalisis produksi hidrogen menggunakan Pt/TiO2NTAs, dan fotoanoda berfungsi sebagai oksidasi air menggunakan TiO2NTAs/Bi2S3 yang disintesis dengan mentode SILAR dengan berbagai variasi perbandingan komposisi dan variasi siklus. Sedangkan katoda DSSC menggunakan elektrolit I-/I3-, dan Pt/FTO, dan anoda menggunakan TiO2NTAs/N719. Semua material tersebut dikarakterisasi dengan MPA, UV-VIS DRS, XRD, dan SEM.
Hasil penelitian menunjukkan bahwa fotoanoda dengan variasi perbandingan komposisi (1:1) pada siklus 2 menghasilkan respon arus terhadap cahaya yang paling optimum. Material ini memiliki respon terhadap sinar tampak, dengan energi celah pita sebesar 2,95 eV. Hal ini menunjukkan bahwa material fotoanoda tersebut memilki performa fotokatalitik yang lebih bagus jika dibandingkan dengan material tunggal TiO2NTAs, dan Bi2S3. Hasil difraktogram material TiO2NTAs/Bi2S3 memiliki kesesuaian dengan standar ICDD 01-074-9438 menghasilkan puncak difraksi pada 2Θ ( ͦ) 25, 28, 31, 35, 38, 40, 46, 48, 54, 55, 63, 70, dan 76 merupakan campuran dari TiO2 anatase, logam Ti, dan Bi2S3. Dari gambar SEM yang dihasilkan dengan metode sonikasi menunjukkan terjadinya bongkahan-bongkahan pada bentuk nanotubenya. Sedangkan dalam sistem tandem sel yang telah dikembangkan menghasilkan efisiensi Solar Cell sebesar 1,38 %. Dengan jumlah hidrogen yang dihasilkan pada kondisi penyinaran selama 6 jam sebesar 0,02318 %. Sedangkan tanpa adanya penyinaran hidrogen yang dihasilkan sebesar 0,000651%. Hal ini menunjukkan bahwa dengan adanya penyinaran mampu menghasilkan hidrogen lebih banyak dibandingkan dengan tanpa adanya penyinaran.

The increasing need for fossil fuels has resulted in the availability of fossil fuels being depleted, so fossil-based energy sources have a high price. Therefore, alternative energy is needed that can replace fossil energy with renewable energy by utilizing sunlight. Hydrogen production is one way to take advantage of the advantages of renewable energy. One effort to increase the production of hydrogen (H2) in a metal sulfide semiconductor material is to inhibit the recombination rate of a material and create a tandem dye-sensitized solar cell system with a photoelectrochemical cell (DSSC-PEC). In this research, a tandem DSSC-PEC system was developed to produce H2. PEC cathode functions as a catalytic zone for hydrogen production using Pt/TiO2NTAs, and photoanode functions as water oxidation using TiO2NTAs/Bi2S3 synthesized by the SILAR method with various composition ratios and cycle variations. While the cathode of DSSC uses electrolytes I-/I3-, and Pt/FTO, and the anode uses TiO2NTAs/N719. All these materials were characterized by MPA, UV-VIS DRS, XRD, and SEM.
The results showed that photoanodes with varying composition ratios (1:1) in cycle 2 produced the most optimum current response to light. This material has a response to visible light, with a band gap energy of 2.95 eV. This shows that the photoanode material has a better photocatalytic performance when compared to the single materials TiO2NTas and Bi2S3. The results of the diffractogram of the TiO2NTAs/Bi2S3 material conforming to the ICDD standard 01-074-9438 producing diffraction peaks at 2Θ ( ͦ) 25, 28, 31, 35, 38, 40, 46, 48, 54, 55, 63, 70, and 76 is a mixture of TiO2 anatase, metal Ti, and Bi2S3. From the SEM image generated by the sonication method, it shows the occurrence of lumps in the shape of the nanotubes. Meanwhile, in the tandem cell system that has been developed, the efficiency of Solar Cell is 1.38%. With the amount of hydrogen produced under irradiation for 6 hours of 0.02318 %. Meanwhile, in the absence of irradiation, the resulting hydrogen is 0.000651%. This shows that the presence of irradiation is able to produce more hydrogen than without irradiation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>