Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61804 dokumen yang sesuai dengan query
cover
Alan Jose
"Model reaktor pembentukan metanol merupakan faktor yang penting untuk menentukan parameter kinetika reaksi pembentukan metanol. Walaupun demikian, model yang digunakan dalam riset-riset mengenai kinetika metanol yang ada masih menggunakan model yang disederhanakan. Graaf et.al (1982) mengevaluasi kinetika percobaanya dengan model CSTRsatu dimensi, sementara Froment dan Bussche (1996) mengevaluasi parameter kinetikanya dengan model reaktor homogen-semu satu dimensi. Penelitian ini bertujuan untuk memodelkan reaksi pembentukan metanol dalam sebuah reaktor unggun diam multitubular tiga dimensidengan menggunakan Computational Fluid Dynamics (CFD) yang dikoplingdengan efek perpindahan panas dan perpindahan massa dalam reaktor multitubular. Evaluasi model berupa karakterisasi pola aliran dalam tube dan shell, karakterisasi temperatur tube dan shell, distribusi konsentrasi dalam tube. Kondisi operasi reaktor suhu inlet tube sebesar 230°C, tekanan 76.89 bar, dan komposisi inlet seperti yang ditentukan darivalidasi penelitian oleh Samimi et.al (2018). Dari hasil simulasi didapat nilai optimal kecepatan aliran pendinginan sebesar 3 m/s dan parameter faktor tumbukkan laju reaksi A1 dan A7 sebesar 1.685 dan 1.6, dengan kesalahan parameter terbesar adalah konsentrasi CO sebesar 33% error.

The methanol formation reactor model is an important factor for determining the kinetics parameters of the methanol formation reaction. Nonetheless, the model used on existing research in methanol kinetics still uses a simplified model. Graaf et.al (1982) evaluated the experimental kinetics with the one dimensional CSTR model, while Froment and Bussche (1996) evaluated the kinetic parameters with the model of one dimensional pseudo homogeneous reactor. This study aims to model the reaction of methanol formation in a three-dimensional multitubular fixed bed reactor using Computational Fluid Dynamics (CFD) coupled with the effects of heat transfer and mass transfer in multitubular reactors. Evaluation of the model in the form of characterization of flow patterns in the tube and shell, characterization of tube and shell temperature, and characterization of concentration distribution in the tube. The operating conditions of the reactor inlet tube temperature are 230 ℃, pressure 76.89 bar, and the composition of the inlet as determined from the validation of research by Samimi et.al (2018). The simulation results obtained an optimal value of flow velocity 3 m/s and the collision factor of A1 and A7 is 1.6685 and 1.6 respectively, with the biggest error being the CO concentration of 33% error."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Sari Adji
"Perubahan iklim dunia menuju pemanasan global menjadi isu kritikal saat ini yang sangat mendesak untuk mendapatkan penyelesaian. Pada industri minyak dan gas, unit pemisahan gas asam atau acid gas removal unit (AGRU) masih banyak melepaskan gas CO2 ke atmosfer yang akan merusak lingkungan. Proses teknologi hidrogenasi CO2 menjadi metanol menggunakan katalis tembaga dipandang dapat menjadi salah satu solusi mengolah buangan CO2 unit AGRU. Reaktor sebagai alat proses yang sangat penting tempat reaksi kimia berlangsung harus dapat didesain sebaik mungkin agar hasil produksi dapat mencapai spesifikasi yang diinginkan. Studi ini bertujuan untuk mendesain reaktor proses hidrogenasi CO2 menjadi metanol dengan metode simulasi menggunakan COMSOL multiphysics dan UniSim. Konversi CO2 menjadi metanol relatif kecil dan dibatasi oleh konversi kesetimbangan serta panas reaksi yang harus dikendalikan karena reaksi eksotermis. Oleh karena itu rancangan reaktor diupayakan dapat menaikkan konversi dan mengendalikan panas yang terbentuk dengan cara penerapan reaktor unggun diam bertahap dengan pendinginan dan pemisahan metanol-air antar tahap unggun reaktor. Validasi dengan data literatur berupa hasil eksperimen An Xin et.al. yang menggunakan reaktor unggun diam pada tekanan 50 Bar pada berbagai temperatur operasi yaitu 210 °C, 230 °C, 250 °C dan 270 °C. Hasil eksperimen menunjukan adanya kesesuaian hasil simulasi dengan data eksperimen tersebut untuk konversi CO2 dan yield metanol. Validasi dengan menggunakan data pabrik metanol skala komersial pada literatur juga menunjukkan hasil yang cukup memuaskan dengan deviasi di bawah 9.99%. Konversi tertinggi CO2 untuk produksi metanol hasil simulasi didapat pada temperatur 232 °C. Hasil simulasi menunjukkan bahwa sintesis metanol kurang efisien pada temperatur yang lebih tinggi dari 232°C dikarenakan sifat reaksi yang eksotermis. Dimensi reaktor yang dirancang dalam penelitian ini dengan diameter 1.5 meter, dengan 5 tahap unggun dan tinggi tiap unggun ( bed ) pada rentang 0,5 - 1 meter, dapat menghasilkan metanol sebesar 5698 kg/jam (136.75 ton/hari) dari hasil olahan aliran CO2 gas buangan AGRU sehingga hasil konversi total CO2 menjadi metanol meningkat sebesar 71.5% dibandingkan dengan reaktor satu tahap. 

A world climate change towards global warming has been a critical issues which currently need a sustainable solution. In the oil and gas industry, acid gas removal unit releases a significant amount of   into the atmosphere which critical to the environment. The process technology of CO2 hydrogenation into methanol using copper catalyst has been considered as a potential solution to treat the released CO2. Reactor is the key process equipment where the chemical reaction is performed thus must be designed properly to ensure the product will meet the required specification. This study aims to design a reactor for CO2 hydrogenation into methanol utilizing COMSOL multiphysics and UniSim process simulation. CO2 conversion to methanol has a relatively small value as limited by its equilibrium and was inhibited by the exothermic heat reaction released that shall be well managed. Therefore a novel reactor design is developed to increase the overall conversion of CO2 into methanol as well as to control the released heat with implementation of an adiabatic multistage fixed bed reactor with inter-stage cooling and methanol-water removal. Validation of the model with experiment from AnXin et.al was performed at pressure of 50 Bar and varied temperature of  210 °C, 230 °C, 250 °C and 270 °C to ensure simulation accuracy. The simulation result shows a good agreement with the reference data in term of the CO2 conversion as well as methanol yield for both laboratory scale and industrial benchmark data. The highest conversion was achieved at the temperature of 232 oC at 50 Bar and it was found that that methanol synthesis was not efficient to be conducted at a higher temperature than 232oC due to its exothemic nature of the reaction. A fixed bed reactor with the dimension of 1.5 meter diameter and 5 stages of multibed configuration can process a 5 MMSCFD feed gas from AGRU to produce methanol at rate of 5698 kg/h (136.75 ton/day) which is 5 times higer than can be produced from a single stage fixed bed reactor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D2720
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ardha Bariq Fardiansyah
"Hidrogenasi katalitik CO2 menjadi CH3OH memiliki prospek yang cerah seiring dengan permintaan pasar yang tinggi. Metanol CH3OH dibutuhkan sebagai bahan baku di industri petrokimia untuk memproduksi formaldehida, klorometana, amina asetat dan juga sebagai alternatif energi baru yang ramah lingkungan. Penelitian ini bertujuan untuk mendapatkan pengaruh katalis CuO/ZnO/Al2O3 dan pengaruh temperatur umpan dalam bentuk konversi CO2, selektivitas CH3OH, dan yield CH3OH. Preparasi katalis CuO/ZnO/Al2O3 dilakukan dengan metode kopresipitasi menghasilkan persentase rasio komposisi logam Cu-Zn-Al yaitu 66,7: 27,4: 4,29 dan luas permukaan katalis sebesar 98,3411 m2/g. Komposisi perbadingan gas umpan H2 : CO2 yaitu sebesar 3 : 1. Reaktor unggun tetap dengan diameter dalam 1,5 cm; panjang 19 cm bed katalis 5 cm, dan furnace 5 cm. Reaksi dilakukan pada tekanan 30 bar dan laju alir dijaga konstan. Variasi yang dilakukan dalam reaksi yaitu variasi temperatur umpan pada 220, 250, 280 oC. Didapatkan nilai konversi CO2 yang tertinggi terjadi pada saat temperatur umpan 250 oC dengan waktu reaksi hingga mencapai kondisi stabil yaitu selama 240 menit. Sehingga kondisi reaksi pada temperatur 250 oC dikatakan sebagai kondisi optimal dengan didapatkan nilai konversi CO2 sebesar 21,8, selektivitas CH3OH sebesar 82,76, dan yield CH3OH sebesar 18,04.

The catalytic hydrogenation of CO2 to CH3OH has a bright prospect along with high market demand. Methanol CH3OH is needed as raw material in the petrochemical industry to produce formaldehyde, chloromethane, amine acetate and also as an alternative new environmentally friendly energy. This study aims to obtain the effect of CuO ZnO Al2O3 catalyst and the influence of feed temperature in the form of CO2 conversion, CH3OH selectivity, and yield of CH3OH. Preparation of CuO ZnO Al2O3 catalysts by coprecipitation method resulted in percentage ratio of Cu Zn Al metal composition of 66,7 27,4 4,29 and catalyst surface area of catalyst 98,3411 m2 g. H2 CO2 gas ratio composition of 3 1. Fixed bed reactor with 1.5 cm inner diameter length of 19 cm bed catalyst 5 cm, and furnace 5 cm. The reaction is carried out at a pressure of 30 bar and the flow rate is kept constant. Variations made in the reaction are variation of feed temperature at 220, 250, 280 oC. The highest CO2 conversion value occurs when the 250 oC feed temperature with reaction time reaches a stable condition of 240 minutes. So that the reaction condition at 250 oC is said to be the optimal condition with a CO2 conversion value of 21.8, CH3OH selectivity of 82.76, and CH3OH yield of 18.04."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail
"Reaktor unggun tetap merupakan salah satu reaktor yang paling sering digunakan untuk reaksi katalitik. Dalam rangka merealisasikan suatu reaktor komersial, diperlukan informasi pengaruh kondisi operasi terhadap kinerja reaktor. Penelitian ini bertujuan untuk mendapatkan informasi mengenai pengaruh kondisi operasi terhadap kinerja reaktor unggun tetap untuk reaksi hidrogenasi karbon dioksida menjadi dimetil eter melalui pemodelan dan simulasi. Simulasi dibantu dengan program Comsol Multiphysics. Model yang digunakan adalah model heterogen non-isotermal satu dimensi. Dalam penelitian ini divariasikan tekanan umpan, laju alir umpan, temperatur umpan, komposisi umpan, radius katalis dan juga panjang reaktor untuk melihat pengaruh variabel-variabel tersebut terhadap kinerja reaktor. Kenaikan tekanan umpan menaikkan konversi karbon dioksida dari 26% pada tekanan 2 MPa menjadi 37% pada tekanan 6 MPa dan menaikkan yield DME dari 15% menjadi 33%. Suhu umpan optimal dengan konversi karbon dioksida dan yield dimetil eter tertinggi adalah 500K. Kenaikan laju alir akan memperkecil konversi karbon dioksida dari 27,5% pada laju alir 0,3 mm/s menjadi 24% pada laju alir 1.1mm/s dan menurunkan yield DME dari 19% ke 15%. Kenaikan laju rasio H2/CO2 akan menaikkan konversi karbon dioksida dari 5% pada perbandingan 1 menjadi 31% pada rasio 5 dan dan yield DME dari 4% menjadi 22%. Penambahan panjang reaktor lebih dari 0.4m tidak menaikkan konversi karbon dioksida secara signifikan. Penurunan radius katalis akan menaikkan konversi karbon dioksida dari 17% pada radius katalis 7 mm menjadi 27% pada radius katalis 0,7 mm.

Fixed bed reactor is one of the most frequently used reactors for catalytic reactions. In order to realize a commercial reactor, it is necessary to know the influence of operating conditions on reactor performance. This study aimed to obtain information about the influence of operating conditions on the performance of fixed bed reactor for carbon dioxide hydrogenation reactions to dimethyl ether through modeling and simulation. Comsol Multiphysics program is used to simulate the reactor. The model used is non-isothermal heterogeneous onedimensional model. In this study variables of feed pressure, feed flow rate, feed temperature, feed composition, catalyst diameter and also the length of the reactor are varied to see the influences of the variables on reactor performance. Increasing feed pressure increase the carbon dioxide conversion from 26% at a pressure of 2MPa to 37% at a pressure of 6 MPa and DME yield increase from 15% to 33%. Optimum feed temperature for the conversion of carbon dioxide and the yield of dimethyl ether is 500K. Increasing flow rate decreases the conversion of carbon dioxide from 27.5% at a flow rate of 0.3mm / s to 24% at a flow rate of 1.1mm / s and lowers the DME yield from 19% to 15%. Increasing the H2/CO2 ratio increases carbon dioxide conversion from 5% at ratio 1 to 31% at 5 and of DME yield from 4% to 22%. The addition of the reactor length beyond 0.4 m does not increase the carbon dioxide conversion significantly. Decreasing radius of catalyst will increase the carbon dioxide conversion from 17% at a radius of 7mm to 27% at a radius of 0.7 mm."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51957
UI - Skripsi Open  Universitas Indonesia Library
cover
Haris Fasanuyasirul
"Gas sintesis (syngas) dari gas bumi merupakan bahan baku masa depan untuk industri energi dan kimia dalam teknologi Gas to Liquid (GTL). Konsep produksi syngas melalui reformasi autotermal ditemukan oleh Lurgi and Haldor Topsoe (1996) untuk mengatasi masalah konsumsi energi dengan cara menggabungkan proses oksidasi dan reformasi kukus metana dalam satu reaktor. Dalam penelitian ini dilakukan pemodelan dan simulasi reaktor unggun tetap untuk reformasi autotermal dengan menggunakan kinetika Xu dan Froment (1989) untuk reformasi Metana dan Ma dkk (1996) untuk oksidasi Metana.
Penelitian ini dilakukan karena dalam melakukan desain, optimisasi dan scale-up reaktor perlu dilakukan prediksi dan estimasi untuk mengetahui berbagai parameter yang terlibat dalam sistem sehingga dapat merekayasa sistem pada kondisi yang seefisien mungkin. Validasi model dilakukan dengan data-data eksperimen skala laboratorium (Scognamiglio dkk., 2009) dan simulasi dilakukan dengan bantuan program COMSOL.
Hasil validasi pada temperatur 970 K, tekanan 2 atm dan rentang laju alir 2,5x10-4 - 1x10-4 Nm3/s menunjukkan deviasi rata-rata sebesar 0,74% pada konversi Metana dan kesesuaian yang bagus untuk selektivitas produk. Hasil simulasi menunjukkan kondisi optimum yaitu pada laju alir 1x10-4 Nm3/s, tekanan 400 kPa dan rasio S/C = 0 dengan perolehan konversi metana dan yield syngas masing-masing 0,96 dan 0,66.

Synthesis gas (syngas) from natural gas is a future energy and chemical industry feedstock in Gas To Liquid technology. Syngas production concept via autothermal reforming is found by Lurgi and Topsoe to overcome energy consumption by combining oxidation and steam reforming process in one reactor. In this research, packed bed reactor modeling and simulation conducted for autothermal reforming using kinetics model and parameter suggested by Xu and Froment (1989) for reforming reactions and Ma et al (1996) for oxidation reaction.
This research held because in reactor design, optimization and scale-up, it is necesarry to predict the reactor performance so that the design can be done efficienly. Model validation conducted using laboratory scale experimental data (Scognamiglio et al, 2009) and the simulation aimed by COMSOL Multiphysics software.
The validation result at 970 K, 2 atm, flow range 2,5x10-4 - 1x10-4 Nm3/s shows average deviation 0,74% on methane conversion and good agreement on the product selectivity. The simulation result shows that the optimum condition is at flow rate 1x10-4 Nm3/s, pressure 400 kPa and S/C ratio = 0 with methane conversion and syngas yield attained respectively 0,96 and 0,66.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S42375
UI - Skripsi Open  Universitas Indonesia Library
cover
Ibnu Sultan A.
"Sintesis Fischer-Tropsch (FT) merupakan proses penting dalam industri untuk mengubah gas sintesis yang dihasilkan dari proses reformasi kukus, parsial oksidasi atau autotermal reforming menjadi senyawa hidrokarbon dan oksigenat. Saat ini sintesis Fischer-Tropsch merupakan suatu pilihan untuk memproduksi bahan bakar transportasi yang ramah lingkungan dan sebagai bahan baku kimia. Sintesis Fischer Tropsch dapat dilakukan dengan menggunakan reaktor unggun tetap, reaktor slurry kolom gelembung atau reaktor terfluidisasi.
Dalam penelitian ini dilakukan pemodelan dan simulasi reaktor unggun tetap untuk sintesis Fishcer-Tropsch mengacu pada kinetika Bo-Tao Teng 2005. Faktor hidrodinamika berupa konveksi dan dispersi pada arah aksial dan radial diperhitungkan untuk memperoleh hasil simulasi yang mendekati kondisi riil. Validasi model dilakukan dengan data-data eksperimen skala lab. Model pseudohomogen reaktor unggun tetap untuk reaksi Fischer Tropsch dapat memprediksi kinerja reaktor dengan baik. Kenaikan rasio H2/CO 1 dari 2 hingga menunjukan peningkatan konversi CO yang besar, yaitu dari 6.9% menjadi 20.2%. Kenaikan temperatur dari 400 K hingga 410 K meningkatkan konversi CO dari 6.9% menjadi 8.3%. Kenaikan tekanan akan meningkatkan nilai konversi CO yaitu dari 1 bar menjadi 5 bar meningkatkan konversi CO 6.9% menjadi 27%.

Synthesis of Fischer-Tropsch (FT) is an important process in the industry to convert the synthesis gas produced from the process of steam reforming, partial oxidation or reforming autotermal into hydrocarbons and oxygenate. Currently the Fischer-Tropsch synthesis is an option to produce transportation fuels that are environmentally friendly and as chemical raw materials. Fischer Tropsch synthesis can be performed using fixed bed reactors, slurry bubble column reactor or a fluidized reactor.
In this study the modeling and simulation of fixed bed reactor for Fishcer-Tropsch synthesis refers to the kinetics of Bo-Tao Teng 2005. Factor in the form of convection and hydrodynamic dispersion in axial and radial direction calculated to obtain the simulation results are close to real conditions. Model validation performed by the data lab-scale experiments. Model pseudohomogen fixed bed reactor for Fischer-Tropsch reaction can predict the performance of the reactor well. H2/CO a rise in the ratio of 2 to show a large increase in CO conversion, which was from 6.9% to 20.2%. The increase in temperature from 400 K to 410 K increases CO conversion of 6.9% to 8.3%. The increase in pressure will increase the value of the conversion of CO is from 1 bar to 5 bar of CO conversion increase 6.9% to 27%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S899
UI - Skripsi Open  Universitas Indonesia Library
cover
Siregar, Piero Collins
"Tujuan dari penelitian ini adalah untuk mendapatkan model reaktor unggun diam 2D yang valid untuk sintesis dimetil eter melalui dehidrasi metanol, mendapatkan parameter kinetika melalui studi kinetik, serta mendapatkan pengaruh parameter proses dan geometri terhadap kinerja reaktor melalui studi sensitivitas. Metode penelitian ini terdiri dari penentuan geometri, penentuan model matematis, simulasi, dan analisis dan pembahasan Model matematis dikembangkan melalui persamaan neraca massa (celah unggun dan katalis), neraca momentum, dan neraca energi. Pada studi kinetik, reaktor dimodelkan berbentuk silinder dengan diameter 24 mm dan tinggi 600 mm. Hasil dari studi kinetik menghasilkan nilai energi aktivasi reaksi dehidrasi metanol sebesar 50,4 kJ/mol, nilai faktor eksponensial sebesar 1782 mol.m.s/kg2, nilai panas adsorpsi air sebesar -31,17 kJ/mol dan panas adsorpsi metanol sebesar -1,73 kJ/mol. Pada studi sensitivitas, reaktor memiliki dimensi 5 cm dan tinggi 3 m. Hasil dari studi sensitivitas penelitian ini menunjukan bahwa konversi metanol dan yield DME terbaik yang dihasilkan berada saat temperatur umpan 563 K, tekanan umpan 7,5 bar, laju alir gas 24 ml/h, panjang reaktor 5 m, dan diameter reaktor 5 cm.

This study aimed to obtain a valid 2D stationary bed reactor model for the synthesis of dimethyl ether through methanol dehydration, obtain kinetic parameters through kinetic studies, and obtain the effect of process and geometry parameters on reactor performance through sensitivity studies. This research method consists of the determination of geometry, the determination of mathematical models, simulations, and analysis and discussion. Mathematical models are developed through mass balance equations (bed gap and catalyst), momentum balance, and energy balance. In the kinetic study, the reactor is modeled as a cylinder with a diameter of 24 mm and a height of 600 mm. The results of the kinetic study resulted in the activation energy value of the methanol dehydration reaction of 50.4 kJ/mol, the value of the exponential factor of 1782 mol.ms/kg2, the heat value of water adsorption of -31.17 kJ/mol and the heat of adsorption of methanol of -1, 73 kJ/mol. In the sensitivity study, the reactor has dimensions of 5 cm and a height of 3 m. The results of the sensitivity study of this study showed that the best methanol conversion and DME yields were at a feed temperature of 563 K, a feed pressure of 7.5 bar, a gas flow rate of 24 ml/h, a reactor length of 5 m, and a reactor diameter of 5 cm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendro
"Menentukan karakterisitik reaktor pelat sejajar dapat dilakukan dengan pemodelan dan simulasi dengan menggunakan pemrograman komputer, Computational Fluid Dynamics (CFD). COMSOL Multiphysics adalah salah satu program CFD. Fokus penelitian ini adalah mengenai pembuatan model yang dapat mengintegrasikan tiga persamaan (neraca massa, energi dan momentum). Sehingga dapat digunakan untuk memperoleh informasi mengenai hidrodinamik, pola aliran serta fenomena perpindahan dan mengetahui pengaruh kondisi operasi terhadap kinerja reaktor pelat sejajar. Kecepatan fluida dipengaruhi perbedaan tekanan, tekanan parsial hidrogen serta faktor friksi dengan dinding dan pelat. Konversi terbesar adalah 37.84% pada area pusat reaktor (y = -0.003). Temperatur dipengaruhi akibat adanya reaksi dan panas furnace.

Determining the characteristic of parallel-plate reactor can be done with modeling and simulation using computer programming, Computational Fluid Dynamics (CFD). COMSOL Multiphysics is one of CFD programs. The focus of this research is about creating a model that can integrate three equations (mass, energy and momentum balance). So it can be used to obtain information on the hydrodynamic, flow pattern, transport phenomenon and determine the influence of operating conditions on the performance of parallel-plate reactor. Fluid velocity is affected by pressure drop, the partial pressure of hydrogen and friction factor with the wall and the plate. The biggest conversion is 37.84% in the central area of the reactor (y = -0.003). Temperature is affected due to the reaction and heat from the furnace. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S916
UI - Skripsi Open  Universitas Indonesia Library
cover
Naufal Agung Wicaksono
"Dimetil eter adalah senyawa organik dengan rumus kimia CH3OCH3 yang dapat dijadikan bahan bakar alternatif LPG. Tujuan dari penelitian ini adalah mendapatkan model reaktor unggun diam heterogen yang valid untuk sintesis DME dari CO2 pada katalis Cu-Fe-Zr/HZSM-5 sehingga diperoleh parameter kinetika yang dipakai untuk merancang reaktor unggun diam skala komersial. Model yang telah dikembangkan disimulasikan menggunakan software COMSOL Multiphysics 5.5. Validasi model dilakukan pada kondisi isotermal sehingga tidak ada neraca energi. Validasi model dilakukan dengan menyamakan konsentrasi luaran reaktor simulasi dan eksperimen dengan mengubah-ubah parameter kinetika. Faktor pra-eksponensial yang diperoleh untuk hidrogenasi CO2, hidrogenasi CO, RWGS, dan dehidrasi metanol masing-masing sebesar 6,3376 x 103 mol/kg.s, 5,12 x 10-2 mol/kg.s, 1,20863 x 105 mol/kg.s, dan 6 x 1029 mol/kg.s serta energi aktivasi masing-masing sebesar 1,8919 x 104 J/mol, 0 J/mol, 7,629 x 103 J/mol, dan 1 x 105 J/mol dengan range AARD (average absolute relative deviation) antara 6,3111-13,4582%. Parameter kinetika tersebut dipakai untuk merancang reaktor unggun diam skala komersial untuk target produksi DME sebesar 150.000 ton per tahun dengan memvariasikan suhu, tekanan, GHSV (gas hour space velocity), rasio H2/CO2, diameter katalis, dan geometri reaktor sehingga diperoleh volume reaktor terendah. Variasi suhu sebesar 240-280 oC, variasi tekanan sebesar 1-5 MPa, variasi GHSV sebesar 500-2500 mL/g.h, variasi rasio H2/CO2 sebesar 1:1-7:1, variasi diameter katalis sebesar 1-5 mm, variasi diameter unggun sebesar 5-20 cm, dan variasi panjang unggun sebesar 8-16 m. Hasil yang optimal diperoleh pada suhu 260 oC, tekanan 3 MPa, GHSV 2000 mL/g.h, rasio H2/CO2 4:1, diameter katalis 2 mm, diameter unggun 10 cm, dan panjang unggun 12 m dengan konsentrasi DME 12,1 mol/m3, laju alir massa DME 107,3 kg/d, dan jatuh tekan 0,20384 bar dengan jumlah tube sebanyak 3995 di dalam satu reaktor.

Dimethyl ether is an organic compound with the chemical formula CH3OCH3 which can be used as an alternative fuel for LPG. The objective of this study is to obtain a valid heterogeneous fixed bed reactor model for DME synthesis from CO2 on a Cu-Fe-Zr/HZSM-5 catalyst to obtain the kinetic parameters and used to design a commercial scale fixed bed reactor. The developed model was simulated using COMSOL Multiphysics 5.5 software. Model validation was carried out under isothermal conditions so there is no energy balance. Model validation was carried out by fitting the simulation and experimental concentration reactor output by varying the kinetic parameters. The pre-exponential factors obtained for CO2 hydrogenation, CO hydrogenation, RWGS, and methanol dehydration were 6.3376 x 103 mol/kg.s, 5.12 x 10-2 mol/kg.s, 1.20863 x 105 mol/kg.s, and 6 x 1029 mol/kg.s and the activation energies were 1.8919 x 104 J/mol, 0 J/mol, 7.629 x 103 J/mol, dan 1 x 105 J/mol with the AARD range (average absolute relative deviation) between 6,3111-13,4582%.These kinetic parameters are used to design a commercial scale fixed bed reactor for a DME production target of 150,000 ton per year by varying temperature, pressure, GHSV (gas hourly space velocity), H2/CO2 ratio, catalyst diameter, and reactor geometry to obtain the lowest reactor volume. Temperature variation of 240-280 oC, pressure variation of 1-5 MPa, GHSV variation of 500-2500 mL/g.h, H2/CO2 ratio variation of 1:1-7:1, catalyst diameter variation of 1-5 mm, reactor diameter variation of 5-20 cm, and reactor length variation of 8-16 m is used. Optimal results were obtained at 260 oC, pressure 3 MPa, GHSV 2000 mL/g.h, H2/CO2 ratio 4:1, catalyst diameter 2 mm, reactor diameter 10 cm, and reactor length 12 m with DME concentration of 12.1 mol/m3, mass flow rate of 107.3 kg/d, and pressure drop of 0.20384 bar with 3995 tubes in one reactor."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Herry Prasetyo Anggoro
"Reaktor terstruktur gauze digunakan sebagai solusi dari masalah yang ditemukan pada penggunaan reaktor fixed bed untuk reaksi dekomposisi katalitik metana. Reaktor terstruktur gauze memiliki beberapa kelebihan, yaitu memiliki pressure drop yang rendah dan konversi lebih tinggi.
Pada penelitian ini, dilakukan pemodelan dan simulasi reaktor terstruktur gauze menggunakan Computational Fluid Dynamics yang mengacu pada kinetika Snoeck, 1997. Pemodelan hanya mempertimbangkan neraca massa dan momentum, di mana reaktor diasumsikan bersifat isotermal.
Simulasi dilakukan dengan mengubah-ubah variabel proses seperti temperatur reaktor, komposisi masukkan, tekanan masukkan, dan kecepatan masuk. Melalui simulasi variasi proses, dapat diketahui pengaruh perubahan kondisi operasi terhadap kinerja reaktor, seperti pada kenaikan temperatur akan menyebabkan konversi reaktor semakin meningkat.

Gauze structured reactors are used as the solution of problems found in the use of fixed bed reactor for reaction of catalytic decompotition methane. Gauze structured reactor has several advantages, having a low pressure drop and higher conversion.
In this study, the modeling and simulation of structured gauze reactor using Computational Fluid Dynamics refers to the kinetic Snoeck, 1997. Modelling only consider the mass balance and momentum, where the reactor is assumed to be isothermal.
Simulations carried out by varying process variables such as reactor temperature, inlet composition, inlet pressure and inlet velocity. Through the simulation process variations, we can know the effect of changing operating conditions on reactor performance, such as the rise in temperature will cause the reactor conversion increases.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51793
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>