Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17648 dokumen yang sesuai dengan query
cover
Manaswi, Navin Kumar
"Build deep learning applications, such as computer vision, speech recognition, and chatbots, using frameworks such as TensorFlow and Keras. This book helps you to ramp up your practical know-how in a short period of time and focuses you on the domain, models, and algorithms required for deep learning applications. Deep Learning with Applications Using Python covers topics such as chatbots, natural language processing, and face and object recognition. The goal is to equip you with the concepts, techniques, and algorithm implementations needed to create programs capable of performing deep learning. This book covers intermediate and advanced levels of deep learning, including convolutional neural networks, recurrent neural networks, and multilayer perceptrons. It also discusses popular APIs such as IBM Watson, Microsoft Azure, and scikit-learn. You will: Work with various deep learning frameworks such as TensorFlow, Keras, and scikit-learn. Build face recognition and face detection capabilities Create speech-to-text and text-to-speech functionality Make chatbots using deep learning. "
New York: Apress, 2018
005.133 MAN d
Buku Teks SO  Universitas Indonesia Library
cover
Rafif Fadhilah Ushaim
"Dalam sistem presensi konvensional, seringkali terjadi kecurangan dalam proses presensi baik itu yang menggunakan RFID ataupun manual dengan tanda tangan. Begitu pula dengan presensi menggunakan teknologi pengenalan wajah juga terjadi kecurangan dengan menggunakan foto gambar wajah atau rekaman video,  Oleh karena itu, penelitian ini mengusulkan penggunaan algoritma Deep Learning untuk mendeteksi serangan face spoofing dalam sistem presensi berbasis wajah. Pada pengimplementasiannya digunakan Raspberry Pi 4 Model B agar lebih efektif dan efisien dalam penerapannya. Metodologi yang digunakan dalam penelitian ini adalah dengan mengumpulkan dataset wajah asli dan palsu, kemudian dilakukan proses pelatihan menggunakan algoritma Deep Learning. Algoritma Deep Learning sudah terkenal efektif dalam mengenali fitur wajah. Dataset yang digunakan dalam penelitian ini adalah kombinasi antara dataset wajah asli dan palsu yang dikumpulkan dari berbagai sumber. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa penggunaan teknologi pengenalan wajah dengan penerapan algoritma Deep Learning sebagai Face Anti-Spoofing (FAS) mampu mendeteksi serangan face spoofing dalam sistem presensi berbasis wajah. Hal ini terlihat dari tingkat keakuratan yang diperoleh dari proses pengujian yang dilakukan pada sistem presensi yang dikembangkan. Diharapkan sistem presensi ini dapat diimplementasikan secara luas untuk meningkatkan keamanan dan keandalan dalam sistem presensi berbasis wajah.

In conventional attendance systems, cheating often occurs in the attendance process, whether using RFID or manual methods with signatures. Similarly, in attendance systems that utilize facial recognition technology, cheating can occur through the use of facial photos or video recordings. Therefore, this research proposes the use of Deep Learning algorithms to detect face spoofing attacks in facial-based attendance systems. For implementation, Raspberry Pi 4 Model B is employed to enhance effectiveness and efficiency. The methodology utilized in this study involves collecting genuine and fake face datasets, followed by training processes using Deep Learning algorithms. Deep Learning algorithms are renowned for their effectiveness in recognizing facial features. The dataset used in this research is a combination of genuine and fake face data collected from various sources. The results obtained from this research demonstrate that employing facial recognition technology with the application of Deep Learning algorithms as Face Anti-Spoofing (FAS) is capable of detecting face spoofing attacks in facial-based attendance systems. This is evident from the accuracy achieved during the testing process conducted on the developed attendance system. It is hoped that this attendance system can be widely implemented to enhance security and reliability in facial-based attendance systems."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alzy Maulana Bermanto
"Sistem pengenalan wajah (face recognition system) merupakan salah satu sistem yang dibangun berdasarkan pre-trained model. Sistem ini memanfaatkan teknik biometrik yang menggunakan wajah sebagai pengenalan atau identifikasi seseorang. Implementasi sistem pengenalan wajah dapat diaplikasikan dalam berbagai macam aplikasi seperti sistem absensi untuk mengecek kehadiran, sistem monitoring pengunjung di tempat wisata ataupun tempat-tempat publik, hingga dapat digunakan untuk mengenali tingkah laku seseorang untuk analisis-analisis yang dibutuhkan di berbagai bidang. Dalam penelitian ini, akan diimplementasikan sistem pengenalan wajah untuk sistem absensi menggunakan metode pembelajaran deep learning. Proses training data dan validasi hasil pengenalan wajah akan dibandingkan antara model CNN (Convolutional Neural Network) berarsitektur ResNet-50 dengan VGG16 yang telah dilatih sebelumnya menggunakan dataset Open Data Science (ODSC) untuk mendapatkan model perancangan sistem wajah terbaik. Simulasi real-time dilakukan dengan menggunakan model latih dengan validasi akurasi tertinggi sebesar 98.2%. Model latih yang digunakan dalam simulasi adalah ResNet-50 dengan dataset B sebagai data training serta learning rate sebesar 0.01. Hasil analisis menunjukkan bahwa proses training menggunakan model ResNet-50 jauh lebih ringan dan memberikan hasil model pelatihan dengan validasi akurasi yang lebih tinggi dibanding dengan model VGG16 yang membutuhkan banyak resource selama proses training berlangsung. Pengujian real-time yang dilakukan menunjukkan bahwa model ResNet-50 akan akurat jika memperhatikan beberapa kondisi yang diperlukan seperti jarak deteksi harus 50 hingga 100 cm dari kamera deteksi dan posisi wajah harus lurus menghadap kamera deteksi.

The face recognition system is a system that is built based on a pre-trained model. This system utilizes biometric techniques that use the face as an identification or authentication of a person. The facial recognition system can be applied in various applications such as attendance systems to check attendance, visitor monitoring systems at tourist attractions or public places, and to identify a person's behavior for the analyzes needed in various fields. In this study, a facial recognition system will be implemented for the attendance system using deep learning methods. To obtain the best system design, training, and validation of facial recognition results will be compared between the CNN (Convolutional Neural Network) model with the ResNet-50 and VGG16, which has been previously trained using the Open Data Science (ODSC) dataset. Real-time simulations were carried out using a training model with the highest validation accuracy of 98.2%. The training model used in the simulation is ResNet-50 with dataset B as training data and a learning rate of 0.01. The analysis results show that the training process using the ResNet-50 model is much lighter and provides results with higher accuracy validation than the VGG16 model, which requires a lot of resources during the training process. Real-time testing has shown that the ResNet-50 model will be accurate if it considers several conditions, such as the detection distance must be 50 to 100 cm from the detection camera, and the face position must be in a straight facing towards the detection camera."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Idham Ramadito
"Proses identifikasi dan pengenalan emosi seseorang selama ini hanya dapat dilakukan secara langsung dengan melihat raut wajahnya secara langsung dan mengolah raut wajah dari orang tersebut untuk mengerti emosi yang sedang dirasakan. Emosi dari raut wajah seseorang merupakan sesuatu yang paling susah dimengerti dan manfaat dari aplikasi yang dapat mengenali emosi ini dari raut wajah seseorang sangat tinggi. Untuk memenuhi minat yang tinggi atas pengenalan emosi pada raut wajah seseorang, penulis berniat untuk mengembangkan sebuah aplikasi yang dapat mengenali emosi seseorang dari raut wajahnya dengan menggunakan machine learning face recognition. Penulis berniat menggunakan framework CNN sebagai algoritma untuk melakukan machine learning face emotion recognition karena algoritma ini yang paling cocok dan mudah untuk digunakan, serta menggunakan arsitektur EfficientNet karena arsitektur ini merupakan arsitektur pengembangan dari Google yang bersifat opensource dan mudah digunakan karena sudah terintegrasi langsung dengan Keras. Program face emotion recognition ini menggunakan arsitektur EfficientNetB2 dan menggunakan dataset FER2013 berhasil mendapatkan akurasi training di angka 95.55% dan akurasi validasi sebesar 63.71%. Walaupun terjadinya overfitting karena perbedaan akurasi validasi dan training yang besar, akurasi testing dari program ini mendapatkan angka 88.21% dan berhasil mendeteksi 7 kategori emosi yang dihasilkan oleh raut wajah manusia
The process of identifying and recognizing a person's emotions so far can only be done directly by looking at his face directly and processing the facial expressions of the person to understand the emotions that are being felt. The emotion of a person's facial expression is something that is the most difficult to understand and the benefits of an application that can recognize this emotion from a person's facial expression is very high. To meet the high interest in recognizing emotions on a person's facial expression, the author intends to develop an application that can recognize a person's emotions from his facial expression using machine learning face recognition. The author intends to use the CNN framework as an algorithm to perform machine learning face emotion recognition because this algorithm is the most suitable and easy to use and uses the EfficientNet architecture because this architecture is a development architecture from Google that is open source and easy to use because it is integrated directly with Keras. This face emotion recognition program using the EfficientNetB2 architecture and using the FER2013 dataset managed to get a training accuracy of 95.55% and a validation accuracy of 63.71%. Despite the occurrence of overfitting due to the large difference in validation and training accuracy, the testing accuracy of this program scored 88.21% and succeeded in detecting 7 categories of emotions generated by human facial expressions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rika
"ABSTRAK
Pada beberapa tahun terakhir, sistem pengenalan wajah telah marak digunakan dalam berbagai aspek sebagai wujud dari kemajuan teknologi. Berbagai penelitian dilakukan untuk terus memperbaiki akurasi dari pengenalan wajah. Pada penelitian ini digunakan metode klasifikasi Learning Vector Quantization dan Fuzzy Kernel Learning Vector Quantization. Data yang digunakan adalah Labeled Face in The Wild-a LFW-a. Database ini tidak memiliki batasan seperti latar belakang, ekspresi, posisi, dan sebagainya. Berdasarkan hasil uji coba menggunakan database LFW-a, sistem pengenalan wajah dengan metode LVQ memiliki akurasi tertinggi 89,33 dan metode FKLVQ memiliki akurasi tertinggi 89,33 pula.

ABSTRACT
In recent years, face recognition is widely used in various aspects as a form of technology advancement. Various studies are conducted to keep improving the accuracy of face recognition. In this research, Learning Vector Quantization and Fuzzy Kernel Learning Vector Quantization are used as a method of classification. The data used in this research is Labeled Face in The Wild a LFW a. This database has no restrictions such as background, expression, position, and so on. Based on test results using LFW a database, face recognition using LVQ method has highest accuracy at 89,33 and FKLVQ method has highest accuracy at 89,33 as well."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
UI-IJTECH 5:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Imran Shehzad
"Face recognition is one of the most important technologies, which has been well-developed over the last two decades. Face recognition technology has reached a level of utmost importance as the security issues increase worldwide. Most of the previously proposed systems, based on half face images are computationally slow and require more storage. In the proposed model, an average half face image is used for recognition to reduce computational time and storage requirements. The Viola Jones method is used in conjunction with intensity-based registration for real time face detection and registration, before splitting the full face. Finally, Principal Component Analysis (PCA) is used to compress the multi-dimensional data space and recognition. Experimental results clearly elaborate that half face recognition produces much better results as compared to the full face recognition and other previously proposed half face recognition models."
Depok: Faculty of Engineering, Universitas Indonesia, 2014
UI-IJTECH 5:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
cover
New York: Academic, 1970
001.533 ADA
Buku Teks SO  Universitas Indonesia Library
cover
Ajeng Dwi Asti
"Ujaran kebencian dapat menyebabkan terjadinya konflik dan pembantaian di masyarakat sehingga harus segera ditangani. Indonesia memiliki lebih dari 700 bahasa daerah dengan karakteristik masing-masing. Ujaran kebencian yang ada di Indonesia juga pernah dilakukan menggunakan bahasa daerah. Media sosial Twitter paling sering digunakan dalam menyebarkan ujaran kebencian. Identifikasi target, kategori, serta level ujaran kebencian dapat membantu Polri dan Kemenkominfo dalam menentukan prioritas penanganan ujaran kebencian sehingga dapat meminimalisir dampaknya. Penelitian ini melakukan identifikasi ujaran kasar dan ujaran kebencian beserta target, kategori, dan level ujaran kebencian pada data Twitter berbahasa daerah menggunakan algoritma classical machine learning dan deep learning. Penelitian ini menggunakan data lima bahasa daerah di Indonesia dengan penutur terbanyak yaitu Jawa, Sunda, Madura, Minang, dan Musi. Pada data Bahasa Jawa performa terbaik diperoleh menggunakan algoritma Support Vector Machine (SVM) dengan transformasi data Classifier Chains (CC) serta kombinasi fitur word unigram, bigram, dan trigram dengan F1-score 70,43%. Algoritma SVM dengan transformasi data CC serta kombinasi fitur word unigram dan bigram memberikan performa terbaik pada data Bahasa Sunda dan Madura dengan masing-masing F1-score 68,79% dan 78,81%. Sementara itu, pada data Bahasa Minang dan Musi hasil terbaik diperoleh menggunakan algoritma SVM dengan transformasi data CC serta fitur word unigram dengan F1-score 83,57% dan 80,72%. Penelitian ini diharapkan dapat digunakan sebagai masukan bagi Polri dan Kemenkominfo dalam pembangunan sistem identifikasi ujaran kasar, ujaran kebencian serta target, kategori, dan level ujaran kebencian pada media sosial.

Hate speech can lead to conflict and massacres in society so it must be dealt immediately. Indonesia has more than 700 regional languages with their own characteristics. Hate speech in Indonesia has also been carried out using regional languages. Twitter is the most frequently used social media to spread hate speech. Identification of targets, categories, and levels of hate speech can help the National Police and the Ministry of Communication and Information to determine priorities for handling hate speech to minimize its impact. This study identifies abusive speech and hate speech along with the target, category, and level of hate speech on regional language Twitter data using classical machine learning and deep learning algorithms. This study uses data from five regional languages in Indonesia with the most speakers, namely Javanese, Sundanese, Madurese, Minang, and Musi. In Java language data, the best performance is obtained using the Support Vector Machine (SVM) algorithm with Classifier Chains (CC) data transformation and a combination of unigram, bigram, and trigram word features with an F1-score of 70.43%. The SVM algorithm with CC data transformation and the combination of unigram and bigram word features provides the best performance on Sundanese and Madurese data with F1-scores of 68.79% and 78.81%, respectively. Meanwhile, in Minang and Musi language data, the best results were obtained using the SVM algorithm with CC data transformation and word unigram features with F1-scores of 83.57% and 80.72%, respectively. This research is expected to be used as input for the National Police and the Ministry of Communication and Information in developing a system for identifying harsh speech, hate speech and the target, category, and level of hate speech on social media."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>