Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7516 dokumen yang sesuai dengan query
cover
Junifsa Afly Prameswari
"Distribusi Negative Binomial-Generalized Exponential (NB-GE) merupakan distribusi yang mampu memodelkan data overdispersi dengan extreme excess zeros yaitu lebih dari 80% angka nol dalam data. Distribusi Negative Binomial-Generalized Exponential (NB-GE) merupakan distribusi campuran hasil dari mixing antara distribusi Negative Binomial (NB) dengan distribusi Generalized Exponential (GE). Pembentukan distribusi Negative Binomial-Generalized Exponential (NB-GE) serta karakteristik-karakteristik distribusi Negative Binomial-Generalized Exponential (NB-GE) seperti fungsi kepadatan peluang, momen ke-, mean, variansi, koefisien skewness dan koefisien kurtosis dibahas pada pada skripsi ini. Penaksiran parameter-parameter dari distribusi Negative Binomial-Generalized Exponential (NB-GE) menggunakan metode maximum likelihood. Sebagai ilustrasi, digunakan data kecelakaan fatal yang memiliki lebih dari 80% angka nol yang dimodelkan dengan distribusi Negative Binomial-Generalized Exponential (NB-GE).

Negative Binomial-Generalized Exponential (NB-GE) distribution is a distribution that capable for modeling overdispersion data with extreme excess zeros, which is more than 80% zeros in a data. The distribution is a mixture distribution that obtained by mixing the Negative Binomial (NB) distribution with the Generalized Exponential (GE) distribution. The formation of the Negative Binomial-Generalized Exponential (NB-GE) distribution and the characteristics of the Negative Binomial-Generalized Exponential (NB-GE) distribution such as the probability density function, kth moment, mean, variance, skewness and kurtosis are discussed in this paper. Estimation of the parameters from the Negative Binomial-Generalized Exponential (NB-GE) distribution using the maximum likelihood method. As an illustration, Negative Binomial-Generalized Exponential (NB-GE) distribution used to model the data of fatal crash that has more than 80% zeros."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Barndorff-Nielsen, Ole E.
Chichester: John Wiley & Sons, 1978
519.5 BAR i
Buku Teks SO  Universitas Indonesia Library
cover
Ridho Okta Pawarestu
"Distribusi Transmuted Exponentiated Exponential merupakan generalisasi dari distribusi Exponentiated Exponential yang dibentuk dengan menggunakan metode quadratic rank transmutation maps (QRTM). Distribusi Transmuted Exponentiated Exponential merupakan salah satu distribusi kontinu yang mampu memodelkan data dengan hazard rate naik, turun, bathtub, dan non-monoton. Pada tugas akhir ini akan dibahas konstruksi dari distribusi Transmuted Exponentiated Exponential. Karakteristik-karakteristik distribusi yang meliputi fungsi kepadatan probabilitas, fungsi distribusi, dan hazard rate dari distribusi Transmuted Exponentiated Exponential juga dijelaskan lebih lanjut. Pada bagian akhir, diberikan suatu aplikasi dari distribusi Transmuted Exponentiated Exponential pada suatu data lifetime.

Transmuted Exponentiated Exponential distribution is a generalization of Exponentiated Exponential distribution which formed using a method called quadratic rank transmutation maps (QRTM). Transmuted Exponentiated Exponential distribution is a continued distribution which can model increasing, decreasing, bathtub, and non-monotone hazard rate. In this paper, it will be explained how to form Transmuted Exponentiated Exponential distribution. Characteristics of distribution such as, probability density function, distribution function, and hazard rate of Transmuted Exponentiated Exponential distribution will be explained further. Finally, a set of lifetime data will be analyzed using Transmuted Exponentiated Exponential distribution as an illustration.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S61730
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andika
"Regresi Poisson adalah model regresi umum yang digunakan untuk menghitung data dengan equidispersion. Namun, perhitungan data tidak selalu memenuhi asumsi ini. Hitungan data tidak terpenuhi asumsi ini ketika overdispersi muncul. Overdispersion adalah suatu kondisi dimana varians lebih besar dari rata-rata. Dalam data
verdispersi karena kelebihan nol dan tambahan penyebaran berlebihan dalam nilai-nilai positif, salah satu model alternatif yang dapat digunakan adalah rintangan model binomial negatif. Rintangan model binomial negatif terdiri dari model dua bagian model biner dan model binomial negatif terpotong nol. Tugas akhir ini akan membahas tentang model rintangan konstruksi binomial negatif dan metode Bayesian untuk memperkirakan parameter dalam model binomial negatif rintangan. Algoritma metode Bayesian digunakan dalam proyek ini adalah Markov Chain Monte Carlo-Gibbs Sampling (MCMC-GS). Rintangan negatif model binomial akan diterapkan pada data Parkinson dari Parkinsons Growth Markers Database inisiatif (PPMI). Model diterapkan untuk menemukan faktor risiko dari komplikasi motorik kejadian dan frekuensinya berdasarkan Gerakan Disorder Society-Unified Parkinson Data Skala Timbangan Penyakit (MDS-UPDRS). Variabel signifikan untuk model bagian satu adalah skor total MDS-UPDRS Bagian III dan variabel total skor MDS-UPDRS Bagian II dan III untuk model bagian dua. Hasil lain yang diperoleh dari aplikasi data ini adalah parameter estimasi konvergen.

Poisson regression is a general regression model used to calculate data with equidispersion. However, data calculations do not always fit this consideration. Count data not met Suppose this overdispersion compilation appears. Overdispersion is a place where variants are greater than average. In data verdispersion due to zero excess and additional excessive spread in positive values, one alternative model that can be used is the constraints of the negative binomial model. The negative binomial obstacle model consists of a two-part binary model and the negative binomial zero-truncated model. This final project will discuss about the negative binomial constraint construction model and the Bayesian method for estimating parameters in the negative binomial resistance model. The Bayesian method algorithm is used in this project is the Markov Monte Carlo-Gibbs Sampling Chain (MCMC-GS). The negative barriers of the binomial model will be applied to Parkinsons data from Parkinsons Growth Markers Database Implementation (PPMI). The model applied to find risk factors for motor complications of events and their frequency is based on the Disorder-Unified Parkinsons Movement Disease Scale Data (MDS-UPDRS). The significant variable for the part one model is MDS-UPDRS Part III total score and MDS-UPDRS Part II and III total variable variables for the part two model. The results obtained from the application of this data are convergent estimation parameters.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fenny Hermawan
"Overdispersion adalah masalah yang sering ditemukan saat memodelkan data cacah. Overdispersion ditandai dengan nilai variansi lebih besar dari mean. Penyebab overdispersion yang sering terjadi adalah banyaknya pengamatan bernilai nol pada suatu data. Akibatnya, distribusi Poisson yang memiliki nilai mean dan variansi yang sama (equidispersion) tidak cocok lagi untuk memodelkan data cacah tersebut. Salah satu alternatif distribusi untuk mengatasi kondisi overdispersion adalah distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley hanya memiliki fungsi massa peluang monoton turun. Untuk menambah fleksibilitas distribusi Poisson-Lindley, distribusi tersebut diberikan bobot berupa fungsi bobot binomial negatif. Pemberian fungsi bobot binomial negatif ini tetap menghasilkan distribusi dengan nilai variansi lebih besar dari mean sehingga tetap dapat digunakan untuk mengatasi kondisi overdispersion. Distribusi baru yang diperoleh disebut distribusi weighted negative binomial Poisson-Lindley (WNBPL). Pada tugas akhir ini dibahas mengenai proses pembentukan distribusi weighted negative binomial Poisson-Lindley, beberapa karakteristiknya, dan pengestimasian parameternya dengan metode maksimum likelihood. Sebagai ilustrasi, digunakan data frekuensi klaim pemegang polis untuk dimodelkan dengan distribusi WNBPL.

Overdispersion is a common problem when modeling count data. Overdispersion is characterized by the variance greater than the mean. The cause of overdispersion that often occurs is the large number of zero-value observations in a data. As a result, the Poisson distribution which has the same mean and variance (equidispersion) is no longer suitable for modeling the count data. An alternative distribution to overcome the overdispersion condition is the Poisson-Lindley distribution. However, probability mass function of Poisson-Lindley is monotonic decreasing. To increase the flexibility of the Poisson-Lindley distribution, the distribution is given a weight function in the form of a negative binomial weight function. Giving this negative binomial weight function still creates a distribution with the variance greater than the mean to overcome overdispersion data. The new distribution obtained by giving that weight function is called the weighted negative binomial Poisson-Lindley (WNBPL) distribution. This thesis discusses the formation of the weighted negative binomial Poisson-Lindley distribution, some of its characteristics, and estimate its parameters using the maximum likelihood method. As an illustration, WNBPL distribution is used to model the data of frequency claims by policyholders."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramzy Mohammad
"Distribusi Generalized Exponential diperkenalkan oleh Rameshwar D. Gupta dan Debasis Kundu pada tahun 2007. Distribusi Generalized Exponential tersebut merupakan hasil transformasi generalized dari distribusi Exponential. Skripsi ini menjelaskan distribusi Generalized Exponential Marshall Olkin yang merupakan hasil dari perluasan distribusi Generalized Exponential menggunakan metode Marshall Olkin. Distribusi Generalized Exponential Marshall Olkin lebih fleksibel dari distribusi sebelumnya terutama pada fungsi hazardnya yang memiliki berbagai bentuk, baik monoton (naik atau turun) maupun non monoton (bathub atau upside down bathup) sehingga dapat memodelkan data survival dengan lebih baik. Sifat fleksibelitas ini disebabkan karena penambahan parameter baru ke dalam distribusi Generalized Exponential. Selanjutnya dijelaskan beberapa karakteristik dari distribusi Generalized Exponential Marshall Olkin antara lain fungsi kepadatan peluang (fkp), fungsi distribusi kumulatif, fungsi survival, fungsi hazard, momen ke-n, mean, dan variansi. Penaksiran parameter dilakukan dengan metode maximum likelihood. Pada bagian aplikasi ditunjukkan data survival yang berasal dari data Aarset (1987) berdistribusi Generalized Exponential Marshall Olkin. Selanjutnya distribusi Generalized Exponential Marshall Olkin dibandingkan dengan distribusi Alpha Power Weibull untuk mencari distribusi mana yang lebih cocok dalam memodelkan data Aarset (1987). Dengan menggunakan AIC dan BIC distribusi Generalized Exponential Marshall Olkin lebih cocok dalam memodelkan data Aarset (1987).

Generalized Exponential distribution was introduced by Rameshwar D. Gupta and Debasis Kundu in 2007. Generalized Exponential distribution was generated by generalized transformation of the Exponential distribution. This thesis explained the Generalized Exponential Marshall-Olkin distribution which is the result of the expansion of the Generalized Exponential distribution using the Marshall-Olkin method. The Generalized Exponential Marshall Olkin distribution has a more flexible form than the previous distribution, especially in its hazard function which has various forms that it can represent survival data better. The flexibility characteristic is due to the addition of new parameters to the Generalized Exponential distribution. Futhermore, some characteristics of the Generalized Exponential Marshall Olkin distribution was explained such as, the probability density function (PDF), cumulative distribution function, survival function, hazard function, moment, mean, and variance. Parameter estimation was conducted by using the maximum likelihood method. In the application section was shown survival data from Aarset data (1987) which distributed Generalized Exponential Marshall-Olkin distribution. Futhermore, Generalized Exponential Marshall Olkin distribution was compared with Alpha Power Weibull distribution to decided the prominent distribution in modeling Aarset data (1987). Using AIC and BIC, Generalized Exponential Marshall Olkin distribution more suitable in modeling Aarset data (1987)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdi Ranuharja
"Pemodelan jumlah klaim mengklaim salah satu topik paspor adalah praktik lapangan. masalah ini sering ditemukan dalam model ingthataatais persebaran. Poisson dributiontion yang digunakan dalam pemodelan sumber klaim tidak dapat digunakan sebagai fakta overproperti penyebaran.Oleh karena itu, distribusi yang distandarisasi di luar negeri dapat dimanfaatkan
jumlah klaim yang mengklaim pengungkapan properti yang dibutuhkan. Dalam tulisan ini, analternatif menerima distribusi yang dihasilkan, yaitu Distribusi Umum Biomial Negatif-Negatif Distribusi adalah distribusi distribusi negatif negatif dan distribusi Membalik Gaussie dan distribusi metameterisasi pada parameter negatif Distribusi binomial yaitu p = exp (), di mana nilai variabel acak acak yang didistribusikan Inverse Gaussian. Distribusi eksternal ini adalah unimodal, hasa tebal thailand hasa positif menghasilkan kewajiban koefisien. Dalam tesis tingkat bawah, kemungkinan serangan dan komitmen faktorial dari distribusi NB-IG yang didistribusikan. Berarti, varians, skewness danurturtasthasic properties ofNB-IG distribusi disajikan dan parameter pengujian diperlakukan melalui survival maksimum maksimum metode estimasi. Kepenuhan distribusi NB-IG diilustrasikan oleh data nyata set.

One topic of passports is field practice. this problem is often found in modeling the data distribution. tion used in modeling claims sources cannot be used as a fact of overproperty distribution. Therefore, standardized distributions abroad can be used the number of claims claimed In this paper, accept the resulting distribution, namely General Negative-Negative Biomial Distribution, Distribution is negative negative distribution and Gaussie Reverse distribution and metameterization distribution on negative parameters, binomial distribution ie p = exp (), where the variable value Varies Published InverseGaussian. This external distribution is immunodal, Thailand has a positive potential to produce the coefficient obligation. In the lower-level thesis, attacks and factorial commitments from the distributed NB-IG distribution are published. Means, variants, skewness and strictness of the properties of NB-IG distribution are presented and test parameters are approved through maximum maximum survival estimation method. The fullness of the NB-IG distribution is illustrated by real data sets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Margaretha
"Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.

Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafira Chika Widiyanti
"Distribusi merupakan pendorong utama profitabilitas keseluruhan sebuah perusahaan. Tingginya biaya distribusi produk di UMKM makanan disebabkan karena tidak adanya perhitungan biaya untuk mendapatkan keputusan distribusi yang optimal. Tujuan dari penelitian ini adalah untuk menghasilkan model distribusi produk di UMKM makanan dengan biaya terendah dan waktu tercepat. Untuk menyelesaikan permasalahan distribusi produk makanan di 5 UMKM makanan, dimodelkan masalah Heterogenous Fleet Vehicle Routing Problem with Time Window (HVRPTW) dalam bentuk Mixed Integer Linear Programming dan diselesaikan menggunakan algoritma branch-and-bound pada perangkat lunak Lingo. Hasil dari penelitian ini adalah optimasi biaya distribusi produk untuk 5 UMKM makanan yang menghasilkan keputusan distribusi dengan biaya terendah dan waktu tercepat. Telah dikembangkan alat untuk perhitungan biaya distribusi yang dapat digunakan oleh UMKM makanan untuk pendukung keputusan distribusi produk harian

Distribution is the main driver of the overall profitability of a company. The high cost of product distribution in food SMEs is caused by the absence of distribution cost calculation for SMEs to make optimal distribution decisions. The purpose of this research is to provide SMEs with a product distribution model with the lowest cost and fastest time. A Heterogenous Fleet Vehicle Routing Problem (HVRP) for the food distribution problem in 5 food SMEs is modeled in the form of Mixed Integer Linear Programming and solved using branch-and-bound algorithm in Lingo software. The result of this study is the optimization of the distribution cost for 5 food SMEs distribution decisions. A tool for the calcuation of distribution cost is developed for food SMEs to support daily product distribution decisions."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Durbin, J.
"Presents a coherent body of theory for the derivation of the sampling distributions of a wide range of test statistics. Emphasis is on the development of practical techniques. A unified treatment of the theory was attempted, e.g., the author sought to relate the derivations for tests on the circle and the two-sample problem to the basic theory for the one-sample problem on the line. The Markovian nature of the sample distribution function is stressed, as it accounts for the elegance of many of the results achieved, as well as the close relation with parts of the theory of stochastic processes."
Philadelphia: Society for Industrial and Applied Mathematics, 2004
e20451143
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>