Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59648 dokumen yang sesuai dengan query
cover
Arfiani
"Stroke merupakan penyakit yang menempati urutan ketiga sebagai penyebab kematian terbesar di dunia setelah penyakit jantung dan kanker. Stroke juga menduduki posisi pertama sebagai penyakit yang dapat menyebabkan kecacatan, baik ringan maupun berat. Salah satu jenis stroke yang umum terjadi adalah infark serebri. Di Indonesia, jumlah penderita stroke, terutama infark serebri, semakin meningkat setiap tahunnya. Tidak hanya terjadi pada seseorang yang berusia lanjut, namun infark serebri juga dapat terjadi pada seseorang yang masih muda dan produktif. Oleh sebab itu, pendeteksian dini terhadap infark serebri sangatlah penting. Berbagai metode medis selalu digunakan untuk mengklasifikasi infark serebri, namun dalam penelitian ini, akan digunakan metode machine learning. Metode yang diusulkan yaitu Multiple Support Vector Machine dengan Seleksi Fitur Information Gain (MSVM-IG). MSVM-IG merupakan metode baru yang menggunakan support vector sebagai data baru untuk selanjutnya dilakukan seleksi fitur dan evaluasi performa. Data yang digunakan berupa data numerik hasil CT Scan yang diperoleh dari RSUPN dr. Cipto Mangunkusumo, Jakarta. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai nilai akurasi sebesar 88,71%. Sehingga, metode MSVM-IG ini dapat menjadi salah satu alternatif untuk membantu praktisi medis dalam mengklasifikasi infark serebri.

Stroke is a disease that ranks third as the biggest cause of death in the world after heart disease and cancer. Stroke also occupies the first position as a disease that can cause disability, both mild and severe. One type of stroke that is common is cerebral infarction. In Indonesia, the number of stroke patients, especially cerebral infarction, is increasing every year. Not only occurs in someone who is elderly, but cerebral infarction can also occur in someone who is young and productive. Therefore, early detection of cerebral infarction is very important. Various medical methods are always used to classify cerebral infarction, but in this study, machine learning methods would be used. The proposed method is Multiple Support Vector Machine with Information Gain Feature Selection (MSVM-IG). MSVM-IG is a new method that uses support vector as a new dataset, then feature selection step and performance evaluation are performed. The data used in the form of numerical data results of CT scan obtained from RSUPN Dr. Cipto Mangunkusumo, Jakarta. Based on the results, the proposed method is able to achieve an accuracy value of 88.71%. Thus, the MSVM-IG could be an alternative to assist medical practitioners in classifying cerebral infarction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Rizki Bagasta
"ABSTRAK

Infark Serebri adalah kondisi dari suatu jaringan otak yang tidak teralirkan darah sehingga sel-sel otak tersebut kekurangan oksigen dan nutrisi. Hal ini dapat mengakibatkan kerusakan bahkan kematian sel-sel otak dan perlu dengan segera mendapatkan penanganan. Keadaan ini sering dikenal sebagai Stroke, dimana pada penulisan ini akan berfokus pada data stroke nonhemoragik (stroke tidak berdarah) yang diakibatkan penyumbatan pembuluh darah di otak. Biasanya penyakit ini dapat dikenali dari gejala kelumpuhan suatu bagian tubuh atau kesulitan menggunakan suatu alat indra. Menurut para ahli, penyakit ini harus dicegah sejak dini karena dapat berakibat fatal bagi keseluruhan fungsional tubuh. Salah satu tindakan yang dapat dilakukan sejak dini adalah mendeteksi kemungkinan penyakit agar dapat dilakukan penanganan secara tepat dan cepat. Dalam penelitian ini, Infark Serebri dideteksi dengan mengklasifikasi ada atau tidaknya sel abnormal pada jaringan otak pada hasil CT Scan otak pasien menggunakan Support Vector Machine dengan Seleksi Fitur RELIEF. Data yang digunakan berupa data numerik dari pasien yang melakukan pemeriksaan di RSUPN dr. Cipto Mangunkusumo Jakarta dalam bentuk hasil CT Scan otak. Terdapat Sembilan fitur indikator yang digunakan dan diproses dengan membandingkan Support Vector Machine dengan dan tanpa seleksi fitur RELIEF. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai akurasi sebesar 95,23%. Sehingga, penggunaan seleksi fitur RELIEF pada SVM merupakan metode yang baik untuk menklasifikasi infark serebri.


ABSTRACT

 


The Cerebrovascular Infarction is a condition of an inflowed blood of brain tissue so that the brain cells lack oxygen and nutrients. This can cause the damage and even the death of brain cells and needed to get immediate treatment. This situation is often known as stroke, which at this writing will fokus on data on non-hemoragic strokes (non-bleeding strokes) caused by blockage of blood vessels in the brain. Usually this disease can be identified by symptoms of paralysis of some body part or difficulty using a human sensory. According to the experts, this disease must be prevented early because it can be fatal to the overall functional body. One of the actions that can be done early is to detect the possibility of a disease so that it can be handled appropriately and quickly. In this study, the cerebral infarction was detected by classifying the presence or absence of abnormal cells in brain tissue in the results of a CT brain scan of patients using Support Vector Machine with the RELIEF Selection Feature. The data used in the form of numerical data reports from patients who performed examinations at the RSUPN dr. Cipto Mangunkusumo Jakarta in the form of brain CT Scan. There are nine indicator features that are used and processed by comparing Support Vector Machine with and without RELIEF feature selection. Based on the results, the proposed method is able to achieve accuracy value of 95,23%. Thus, the use of RELIEF feature selection with SVM is a good method for classifying cerebral infarction.

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Aulia Utami
"ABSTRAK
Infark serebral merupakan salah satu penyebab terjadinya stroke iskemik di otak. Dalam mendiagnosis adanya infark serebral di otak, digunakan pembelajaran mesin karena tidak cukup hanya menggunakan CT scan untuk mendiagnosisnya. Support vector machine (SVM) merupakan salah satu metode pembelajaran mesin yang dikenal dengan nilai akurasinya yang tinggi. Namun SVM dapat memberikan hasil yang kurang optimal jika data yang digunakan tidak seimbang. Jika data yang digunakan tidak seimbang, model yang dihasilkan akan bias. Oleh karena itu, penelitian ini menggunakan metode Synthetic Minority Oversampling Technique (SMOTE) dalam menangani data infark serebral yang tidak seimbang sehingga menjadi data yang seimbang. SMOTE mensintesis sampel data baru dari kelas minoritas untuk menyeimbangkan kumpulan data. Metode ini bekerja dengan mencari nilai tetangga terdekat untuk setiap data di kelas minoritas. Data yang telah diimbangi dengan metode SMOTE akan diklasifikasikan menggunakan SVM. Hasil klasifikasi SVM pada data infark serebral imbalanced dan data infark serebral berimbang akan dibandingkan berdasarkan nilai akurasi, recall, spesifisitas, presisi dan f1-score. Data infark serebral diperoleh dari Bagian Radiologi RSUD Dr. Cipto Mangunkusumo.
ABSTRACT
Cerebral infarction is one of the causes of ischemic stroke in the brain. In diagnosing cerebral infarction in the brain, machine learning is used because it is not enough to just use a CT scan to diagnose it. Support vector machine (SVM) is a machine learning method known for its high accuracy value. However, SVM can give less than optimal results if the data used is not balanced. If the data used is not balanced, the resulting model will be biased. Therefore, this study uses the Synthetic Minority Oversampling Technique (SMOTE) method in handling unbalanced cerebral infarction data so that it becomes a balanced data. SMOTE synthesizes a new data sample from a minority class to balance the data set. This method works by finding the value of the nearest neighbor for each data in the minority class. Data that has been balanced with the SMOTE method will be classified using SVM. The SVM classification results on imbalanced cerebral infarction data and balanced cerebral infarction data will be compared based on the accuracy, recall, specificity, precision and f1-score values. Cerebral infarction data were obtained from the Radiology Department of RSUD Dr. Cipto Mangunkusumo."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifah
"Diabetes Melitus (DM) merupakan gangguan sistem metabolik akibat pankreas tidak memproduksi cukup insulin atau tubuh tidak mampu menggunakan insulin yang ada secara efektif. Menderita diabetes dalam jangka waktu panjang dapat mengakibatkan berbagai macam komplikasi salah satu di antaranya adalah Retinopati diabetik. Retinopati diabetik  adalah kelainan pada bagian mata yang disebabkan oleh adanya kerusakan dan penyumbatan pada pembuluh darah di bagian belakang mata (retina). Pada penelitian kali ini akan di gunakan data retinopati diabetik dengan menggunakan metode seleksi fitur Recursive Feature Elimination (RFE) dan Chi-Square dan akan di klasifikasi menggunakan Support Vector Machine.

Diabetic retinopathy is one of the complication of diabetes, which is an eye disease that can cause blindness. Its happen because of damage of retina as a result of the long illness of diabetic melitus. People usually do research using image data in diabetic patients. This paper present about diabetic retinopathy will extracting with feature selection. In this study, we use data diabetic patients who will be extracted with a feature selection method. Feature selection used in this study is Recursive Feature Elimination (RFE) and Chi-Square. For classification of diabetic retinopathy has been done by Support Vector Machine (SVM). From the experimental result with various tunning hyperparameters, the classification model can obtain the accuracy between 97%-100% for both methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melati Vidi Jannati
"Klasifikasi data kanker menggunakan microarray data menjadi salah satu cara untuk mendapatkan pengobatan yang lebih tepat. Kendala yang terdapat adalah karakteristik dari microarray yang memiliki fitur yang sangat banyak. Seringkali fitur tersebut tidak begitu informatif bagi pengklasifikasian sehingga perlu adanya suatu cara untuk memilih fitur-fitur yang mengandung informasi yang penting. Salah satu cara tersebut adalah dengan pemilihan fitur. Pada penelitian ini, metode pemilihan fitur yang digunakan berdasarkan clustering dengan fungsi kernel. Fitur-fitur yang sudah terpilih kemudian diklasifikasikan menggunakan metode Support Vector Machine.
Evaluasi dari klasifikasi pada penelitian ini melibatkan K-Fold Cross Validation, metode tersebut akan membagi data secara acak, tetapi merata sehingga akurasi yang didapat juga merata. Hasil akurasi tersebut dilakukan dengan berbagai uji terhadap parameter yang berkaitan seperti K partisi, nilai dan fitur-fitur yang digunakan. Pada proses klasifikasi tanpa pemilihan fitur tingkat akurasinya mencapai 89.68 dengan k partisi sebanyak 6 sementara dengan 5 fitur akurasinya menjadi 95.87 pada partisi sebanyak 10.

Classification of cancer using microarray data is one way to get a more precise treatment. The obstacle on classification data is the characteristics of microarray data that is having many features. These features are often not so informative for classification, so it needs a way to select the features that contain important information. One way is by selection feature. In this research, the method of selection features that are used based on clustering with kernel function. Features that are already selected then classified using Support Vector Machine.
Evaluation of classification in this research involves a K Fold Cross Validation, that methods split data randomly but uniformly so that it can reach all of accuracy. The results of accuracy data was done with different test against related parameters such as K partition, the value of and the features that are used. On the classification process without selection features rate of accuracy reached on 89.68 with k partition number 6 while with the 5 features obtained 95.87 on partition number 10.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Maghfirah
"Kematian yang disebabkan oleh kanker diperkirakan akan terus meningkat, padahal jumlah kematian ini dapat dikurangi dengan adanya deteksi dini. Salah satunya adalah dengan klasifikasi data kanker. Data kanker yang digunakan merupakan data kanker berdimensi tinggi dengan ribuan fitur, tetapi tidak semua fitur yang ada merupakan fitur yang relevan. Oleh karena itu, perlu adanya proses seleksi fitur. Untuk meningkatkan tingkat akurasi yang dihasilkan, digunakan sebuah metode seleksi fitur yang meninjau adanya korelasi antar gen, yaitu CSVM-RFE. Pada metode tersebut, data yang ada diproyeksikan dan diubah menjadi sebuah data baru dengan ekstraksi fitur, dan kemudian dilakukan proses seleksi fitur. Penggunaan dua metode tersebut pada klasifikasi tiga data kanker yang ada terbukti menghasilkan tingkat akurasi yang tinggi, pada data kanker kolon tingkat akurasi yang didapatkan adalah sebesar 96.6, pada kanker prostat sebesar 98.9, dan pada kanker lymphoma sebesar 98,6.

The number of death caused by cancer expected to rise over two decades, whereas the number of death can be reduced by early detection. One of them is cancer classification. Cancer dataset is a high dimensional dataset that consist of thousands of features, but not all of these features are relevant. Therefore, it is necessary to remove the redundant features using feature selection. Feature selection can also improve the accuracy of classification. Many feature selection methods do not consider the correlated genes, so we need a new feature selection method that consider the correlated genes. It is CSVM RFE, in this method the existing data is projected and converted into a new data with feature extraction. These two methods are applied to the cancer datasets, and produce the accuracy of 96.6 using colon cancer dataset, 98.9 using prostate cancer dataset, and 98.6 using lymphoma cancer dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69588
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andya Ruvita
"Pengenalan wajah merupakan teknologi yang berkembang sangat pesat. Pengenalan wajah mampu menghasilkan beragam informasi mengenai identitas seseorang dengan cepat dan akurat. Salah satunya, mampu memberikan informasi mengenai jenis kelamin dari setiap orang yaitu sebagai pria atau wanita. Proses klasifikasi pria atau wanita ini menjadi hal yang sangat penting dalam berbagai bidang, seperti bisnis berbasis online, kontrol akses, absensi kehadiran, sistem keamanan, identifikasi individu yang tidak dikenal, dan lain-lain. Dalam penelitian ini digunakan Fisher Score sebagai metode pemilihan fitur, dan Support Vector Machine SVM sebagai metode klasifikasi untuk mengukur tingkat akurasi dan running time dari klasifikasi pria atau wanita dengan data yang digunakan berasal dari Computer Science Research Projects. Hasil akurasi dari klasifikasi SVM kernel polynomial d = 4 dengan pemilihan fitur Fisher Score mencapai tingkat akurasi tertinggi yaitu 100 pada 3000 fitur dengan data training 90 . Sedangkan hasil akurasi terbaik dari klasifikasi SVM tanpa pemilihan fitur mencapai 77.5 pada data training 80.

Face recognition is a technology that is growing very rapidly. Face recognition is able to produce various information about the identity of a person quickly and accurately. One of the utility of face recognition is the ability to provide information about the gender of each person as a male or female. The process of classifying male or female is of paramount importance in many areas, such as online based businesses, access control, attendance, security systems, identification of unknown individuals, and so on. In this study Fisher Score is used as a feature selection method, and Support Vector Machine SVM as a classification method to measure the accuracy and running time of male or female classification with data used from Computer Science Research Projects. Accuracy results from SVM polynomial kernel classification d 4 with Fisher Score feature selection reaches the highest accuracy level of 100 at 3000 features with 90 training data. While the best accuracy results from SVM classification without feature selection reached 77.5 in 80 training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tommy Rachmansyah Adyalam
"Kanker otak adalah pertumbuhan sel-sel abnormal di organ otak yang bersifat ganas. Salah satu cara untuk mengurangi perkembangan penyakit ini adalah melakukan pendeteksian dini menggunakan machine learning. Metode machine learning yang digunakan adalah AdaBoost Support Vector Machines untuk klasifikasi. AdaBoost Support Vector Machines adalah metode ensemble antara AdaBoost dengan base classifier Support Vector Machines. Data kanker otak direpresentasikan dalam bentuk matriks berupa ekspresi gen yang disebut DNA microarray. Data DNA microarray yang berdimensi tinggi akan direduksi dengan pemilihan fitur Signal-to-noise Ratio.
Pemilihan fitur bekerja untuk menemukan fitur-fitur yang informatif dan membuang fitur-fitur yang tidak sesuai. Pertama, data diklasifikasi menggunakan AdaBoost Support Vector Machines tanpa pemilihan fitur, dilanjutkan klasifikasi menggunakan AdaBoost Support Vector Machines dengan pemilihan fitur. Pendekatan one vs one digunakan untuk menyelesaikan masalah multi kelas. Setelah melakukan pengujian, hasil akurasi terbaik adalah 91,111 pada data training 90 dengan menggunakan pemilihan fitur sebanyak 60 fitur. Hasil tersebut lebih baik dibandingkan klasifikasi tanpa pemilihan fitur yaitu 86,667 pada data training 90.

Brain cancer is the growth of abnormal cells in the brain organ malignantly. One way to reduce the progression of this disease is to do early detection using machine learning. Machine learning method used is AdaBoost Support Vector Machines for classification. AdaBoost Support Vector Machines is an ensemble method between AdaBoost and base classifier Support Vector Machines. Brain cancer data is represented in the form of matrix of gene expression called DNA microarray. The high dimensional DNA microarray data will be reduced by Signal to noise Ratio feature selection.
Feature selection works to find informative features and discard irrelevant features. Firts, the data is classified using AdaBoost Support Vector Machines without feature selection, further classified using AdaBoost Support Vector Machines with feature selection. The one vs one approach is used to solve multi class problems. After testing, the best accuracy result is 91,111 in 90 training data by using feature selection of 60 features. The result is better than the classification without feature selection that is 86,667 in 90 data training.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silalahi, Desri Kristina
"[Penilaian kredit merupakan sistem atau cara yang digunakan oleh bank atau lembaga pembiayaan lainnya dalam menentukan calon debitur layak atau tidak mendapatkan pinjaman. Salah satu metode dalam penilaian kredit yang digunakan untuk mengklasifikasikan karakteristik calon debitur adalah Support Vector Machine (SVM). SVM mempunyai kemampuan generalisasi yang baik untuk menyelesaikan masalah klasifikasi dalam jumlah data yang besar dan dapat menghasilkan fungsi pemisah yang optimal untuk memisahkan dua kelompok data dari dua kelas yang berbeda. Salah satu keberhasilan menggunakan metode SVM adalah proses pemilihan fitur yang akan mempengaruhi tingkat akurasi klasifikasi. Berbagai metode dilakukan untuk pemilihan fitur, karena tidak semua fitur mampu memberikan hasil klasifikasi baik. Pemilihan fitur yang digunakan dalam penelitian ini adalah Variance Threshold, Univariate Chi – Square, Recursive Feature Elimination (RFE) dan Extra Trees Clasifier (ETC). Data dalam penelitian ini menggunakan data sekunder dari database dalam UCI machine learning responsitory. Berdasarkan simulasi untuk membandingkan nilai akurasi penggunaan metode pemilihan fitur pada SVM dalam klasifikasi penilaian risiko kredit, diperoleh bahwa metode Variance Threshold dan Univariate Chi – Square dapat mengurangi akurasi sedangkan metode RFE dan ETC dapat meningkatkan akurasi. Metode RFE memberikan akurasi yang lebih baik;Credit scoring is a system or method used by banks or other financial institutions to determine the debtor feasible or not get a loan. One of credit scoring method is
used to classify the characteristics of debtor is Support Vector Machine (SVM). SVM has an excellent generalization ability to solve classification problems in a large amount of data and can generate an optimal separator function to separate two groups of data from two different classes. One of the success using SVM method is dependent on features selection process that will affect the level of classification accuracy. Various methods have done to features selection, because not all the features are able to give best classification results. Features selection
that used this study is Variance Threshold, Univariate Chi - Square, Recursive Feature Elimination (RFE) and Extra Trees Classifier (ETC). Data in this study use secondary data from the database in UCI machine learning responsitory. Based on simulations to compare the accuracy of using feature selection method on SVM in classification of credit risk scoring, obtained that Variance Threshold and Univariate Chi – Square method can decrease accuracy while RFE and ETC method can increase accuracy. RFE method gives better accuracy., Credit scoring is a system or method used by banks or other financial institutions
to determine the debtor feasible or not get a loan. One of credit scoring method is
used to classify the characteristics of debtor is Support Vector Machine (SVM).
SVM has an excellent generalization ability to solve classification problems in a
large amount of data and can generate an optimal separator function to separate
two groups of data from two different classes. One of the success using SVM
method is dependent on features selection process that will affect the level of
classification accuracy. Various methods have done to features selection, because
not all the features are able to give best classification results. Features selection
that used this study is Variance Threshold, Univariate Chi - Square, Recursive
Feature Elimination (RFE) and Extra Trees Classifier (ETC). Data in this study
use secondary data from the database in UCI machine learning responsitory.
Based on simulations to compare the accuracy of using feature selection method
on SVM in classification of credit risk scoring, obtained that Variance Threshold
and Univariate Chi – Square method can decrease accuracy while RFE and ETC
method can increase accuracy. RFE method gives better accuracy.]"
Universitas Indonesia, 2015
T44513
UI - Tesis Membership  Universitas Indonesia Library
cover
Jihan Maharani
"Saat ini, penyusupan pada suatu sistem jaringan sering sekali terjadi. Gangguan tersebut dapat dicegah atau dideteksi salah satunya dengan menggunakan Intrusion Detection System. Intrusion Detection System sangat diperlukan untuk melindungi jaringan dan menghalangi serangan. Pada penelitian ini, dibahas pengklasifikasian data Intrusion Detection System menggunakan Multi-Class Support Vector Machine dengan pemilihan fitur Information Gain dengan data yang digunakan yaitu KDD-Cup99. Sebagai hasil, akan dibandingkan nilai akurasi model IDS menggunakan Support Vector Machine dengan dan tanpa pemilihan fitur serta percobaan pengaplikasian model untuk klasifikasi pada data unseen dengan model yang sudah didapat dengan menggunakan 8 fitur dan data training sebesar 80.

Nowadays, the intrusions often occur in a network system. One of ways that Intrusions can be prevented or detected is by using Intrusion Detection System. Intrusion Detection System indispensable to protect the network and to prevent the intrusions. In this paper, the author will discuss about the classification IDS data using Multi Class Support Vector Machine with feature selection using Information Gain and for the data used KDDCup99 Data Set. As a result, it will be compared the accuracy between IDS model using Support Vector Machine with and without feature selection and the application of model has been obtained from the experiment using eight features and 80 data training to unseen data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>