Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159927 dokumen yang sesuai dengan query
cover
Rima Yunita
"Kitosan diketahui memiliki sifat yang keras dan ketahanan termal yang tinggi. Pemanfaatan kitosan sebagai material insulasi digunakan dengan menggunakan metode coating pada busa poliuretan dengan densitas 16’4 kg/m3 . Pelapisan kitosan pada busa poliuretan diawali dengan pelarutan kitosan dalam larutan asam. Jenis asam berpengaruh terhadap kualitas lapisan yang dihasilkan. Jenis asam yang digunakan yaitu asam asetat (CH3COOH) dan asam format (CH2O­2). Kualitas yang dihasilkan dari produk busa poliuretan dengan jenis asam tersebut menunjukkan hasil yang berbeda. Produk jenis asam asetat memiliki sifat mekanis yang lebih baik dibandingkan produk jenis asam format di mana nilai UTS pada produk dengan konsentrasi asam 1% v/v yaitu 3,05 kg/cm2 (produk asam asetat) dan 5,53 kg/cm2 (produk asam format). Konsentrasi asam yang digunakan memiliki pengaruh terhadap sifat mekanis dan termal yang berhubungan dengan banyaknya ikatan hidrogen yang dihasilkan. Dari produk busa poliuretan yang diperoleh, kemudian dibandingkan antara PU-Virgin (busa poliuretan tanpa perlakuan), PU-Kitosan (produk busa poliuretan terbaik), dan PU-Headliner (produk headliner densitas 45 kg/m3)
Chitosan is known to have hard properties and high thermal resistance. The use of chitosan as an insulation material is used by using a coating method on polyurethane foam with a density of 16.4 kg / m3. Coating of chitosan in polyurethane foam begins with the dissolution of chitosan in an acid solution. The type of acid affects the quality of the coating produced. The types of acids used are acetic acid (CH3COOH) and formic acid (CH2O2). The quality produced from polyurethane foam products with this type of acid shows different results. Acetate acid products have better mechanical properties than form acid products where UTS values ​​in products with an acid concentration of 1% v / v are 3.05 kg / cm2 (acetic acid product) and 5.53 kg / cm2 (product formic acid). The acid concentration used has an influence on the mechanical and thermal properties associated with the number of hydrogen bonds produced. From polyurethane foam products obtained, then compared between Virgin PU (untreated polyurethane foam), PU-Chitosan (the best polyurethane foam product), and PU-Headliner (headliner product density of 45 kg / m3."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wafa Nur Syahidah
"Sifat busa poliuretan yang ringan, fleksibel, serta memiliki perambatan suara dan panas yang rendah membuatnya menjadi salah satu material yang digunakan dalam berbagai industri, salah satunya adalah otomotif. Dalam pembuatan salah satu bagian mobil, yaitu headliner, diperlukan busa poliuretan dengan kekuatan mekanis yang baik. Hal tersebut dapat dicapai melalui modifikasi yang dilakukan dalam penelitian ini, yaitu pelapisan dengan larutan kitosan. Penelitian yang dilakukan berfokus pada pengaruh konsentrasi kitosan terhadap sifat mekanis dan termal busa poliuretan. Pelapisan dilakukan dengan cara mencelupkan busa poliuretan ke dalam larutan kitosan dengan konsentrasi 1-6% (b/v). Kemudian busa dikeringkan dalam oven vakum pada temperatur 60 oC selama 30 menit yang dilanjutkan dengan curing pada 120 oC selama 90 menit. Karakterisasi sampel yang dilakukan adalah uji mekanis, uji termal, FTIR, dan FE-SEM. Hasil yang diperoleh menunjukkan bahwa konsentrasi larutan kitosan pelapis yang optimal adalah 4%.

The properties of polyurethane foam which are lightweight, flexible, and have low propagation of sound and heat, make it possible to be used in various industries, one of which is automotive. In making one part of a car, the headliner, polyurethane foam with good mechanical strength is needed. This can be achieved through modifications made in this study, which is coating with chitosan solution. The research conducted focuses on the effect of chitosan concentration on the mechanical and thermal properties of polyurethane foam. Coating is done by dipping polyurethane foam into chitosan solution with a concentration of 1-6% (b/v). Then the foam was dried in a vacuum oven at a temperature of 60 oC for 30 minutes followed by curing at 120 oC for 90 minutes. The sample characterization carried out was mechanical testing, thermal test, FTIR, and FE-SEM. The results obtained showed that the optimal concentration of chitosan coating solution was 4%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Majid Amrullah
"Luasnya aplikasi dan rentang sifat yang dimiliki poliuretan, memicu berbagai modifikasi dari material poliuretan.Tidak menutup kemungkinan modifikasi menggunakan biomassa yang banyak tersedia di alam untuk menghemat biaya produksi sekaligus memperoleh sifat material yang berstabilitas tinggi. Penelitian berfokus pada pembuatan poliuretan rigid untuk aplikasi otomotif dengan metode pelapisan menggunakan biomassa kitosan yang diperkuat dengan kalsium karbonat. Metode pelapisan yang digunakan adalah dip coating dengan cara mencelupkan busa poliuretan fleksibel berdensitas 16 kg/m3 ke dalam larutan kitosan yang berisi 4 gram kitosan dalam 5% CH3COOH berpelarut air sampai 100 ml, ditambah kalsium karbonat dengan rasio bervariasi dari 0,1% s.d. 0,5% sebagai variabel bebas. Busa di-drying selama 30 menit pada temperatur 60oC dan dilakukan pemanasan (curing) selama 90 menit pada suhu 120oC. Sampel kemudian diuji Tarik, Densitas, ILD, FTIR, STA, dan SEM. Diperoleh hasil yang mendekati hipotesis pada Densitas dan Kekuatan Tarik Maksimum yang mengalami peningkatan dengan penambahan kalsium karbonat dibandingkan busa virgin dan busa perlakuan tanpa kalsium karbonat. Pada morfologi ditemukan pembentukan lapisan di permukaan busa fleksibel sesuai yang diperkirakan. Hasil optimum ditemukan pada sampel dengan kalsium karbonat 0,2% yang memiliki densitas 31 kg/m3 dan kekuatan tarik maksimum 4.05 kg/cm2. Penelitian masih dalam tahap pengembangan disarankan untuk dapat dilakukan peneletian dan analisis lanjutan.

The massive application and range of properties that polyurethane possess, triggered countless modification of polyurethane. It is not impossible to use biomass, which is happen to be abundant in nature, as a modification of polyurethane in order to save production cost while obtaining relatively high-stable material properties. This research focused on creating rigid polyurethane foam for automotive application with coating method using chitosan that reinforced by calcium carbonate. The coating method used in this research is dip coating by immersing 16 kg/m3 polyurethane flexible foam into chitosan solution containing 4 grams of chitosan that dissolved into 100 ml of 5% CH3COOH electrolyte with aquades solvent, with various ratio of calcium carbonate ranging from 0,1% until 0,5% weight/volume. The foam was dried for 30 minutes at 60oC and cured for 90 minutes at 120oC. The material samples then tested for tensile, density, ILD, FTIR, STA and SEM. The results obtained close to the hypothesis on Maximum Tensile Strength and Density which increased with the addition ratio of calcium carbonate compared to virgin foam and treated foam without calcium carbonate. In the morphology the formation of layers on flexible foam surfaces is obtained as expected. The optimum results were found in samples with 0.2% ratio of calcium carbonate which had a density of 31 kg/m3 and a maximum tensile strength of 4.05 kg/cm2. This research is still under development and further research and analysis is expected."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deril Clinton
"Pada masa ini penelitian mengenai busa poliuretan dipusatkan pada usaha peningkatan karakteristik kekakuan busa dengan pemilihan bahan baku dan proses yang bersifat
terbarukan. Bio-coating kitosan adalah polisakarida linear yang merupakan produk turunan dari chitin, yaitu zat penyusun rangka terluar dari hewan antropoda seperti
udang, kepiting, dan serangga. Hubung silang antara busa poliuretan dengan kitosan dibuktikan dari hasil pengamatan SEM dimana terbentuknya lapisan pada permukan dan pori pori busa. Kemudian pengujian FTIR yang menunjukkan fenomena curing terjadi pada bilangan gelombang 1374 cm-1, yaitu ikatan hubung sialng antara kitosan-STPP pada busa poliuretan. Dari hasil penelitian ini disimpulkan bahwa pada variasi waktu curing 75 menit dan suhu 135 C merupakan kondisi yang optimum untuk proses curing. Hal ini dibuktikan dengan meningkatnya kekuatan tarik sebesar 4.2 serta nilai resiliansi sebesar 2.5, juga disertai dengan menurunya nilai elongasi sebesar 24 dan nilai kekedapan udara sebesar 26. Nilai stabilitas termalnya juga meningkat dimana dibuktikan dengan meningkatknya persen berat sampel tersisa yaitu 13 dengan suhu degradasi yang lebih rendah yaitu 360 C.

At this time research on polyurethane foam is centered on efforts to improve the characteristics of foam stiffness by selecting raw materials and renewable processes.
Chitosan bio-coating is a linear polysaccharide which is a derivative product of chitin, the outermost constituent of anthropoid animals such as shrimp, crabs, and insects. The cross linking between polyurethane foam and chitosan is proven from SEM observations where the formation of layers on the surface and pores of the foam pores. Then the FTIR test which shows the curing phenomenon occurs at wave number 1374 cm-1, namely the bonding relationship between chitosan-STPP on polyurethane foam. From the results of this study concluded that the variation of 75 minutes curing time and 135 C temperature is the optimum condition for the curing process. This is evidenced by an increase in tensile strength of 4.2 and a resilience value of 2.5, also accompanied by a decline in the elongation value of 24 and an airtight value of 26. The thermal stability value also increases which is evidenced by the increase in the remaining percent weight of the sample by 13 with a lower degradation temperature of 360.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55206
UI - Tesis Membership  Universitas Indonesia Library
cover
Intan Anyelir Nursan
"Produk headliner mobil dapat diperoleh dari pengembangan pengolahan busa poliuretan dan limbah kulit udang yang mengandung kitosan. Busa poliuretan yang dilapisi kitosan dengan metode pencelupan memiliki tujuan untuk memodifikasi sifat elastis menjadi kaku. Pengujian tarik menunjukkan peningkatan kekakuan, sedangkan Thermogravimetric Analysis (TGA) menunjukkan peningkatan suhu degradasi menjadi 295°C untuk tahap pertama, 309°C untuk tahap kedua, dan 372°C untuk tahap ketiga. Proses curing dapat meningkatkan jumlah hubung silang fisika berupa ikatan hidrogen, kemudian peningkatan waktu curing dapat meningkatkan jumlah hubung silang kimia berupa ikatan kovalen sehingga menyebabkan struktur menjadi homogen dan halus yang ditunjukkan oleh Field Emission Scanning Electron Microscopy (FE-SEM). Namun, suhu curing yang terlalu tinggi atau waktu curing yang terlalu lama menyebabkan ikatan hidrogen bahkan ikatan pada rantai utama terputus sehingga sifat mekanik dan termalnya menurun.
Pembentukkan hubung silang fisika dibuktikan dengan Fourier Transform Infrared Spectroscopy (FTIR) yaitu peningkatan intensitas ikatan O-H, N-H, dan C=O berikatan hidrogen, sedangkan peningkatan intensitas ikatan C-N dan C-O-C mengindikasikan hubung silang kimia. Busa poliuretan yang dilapisi kitosan dengan proses curing pada 100°C selama 120 menit memiliki kekuatan tarik maksimum 5,56 kgf/cm2, elongasi 7%, dan densitas 28,9 kg/m3 yang mendekati spesifikasi sifat mekanik dan fisika produk headliner pada umumnya.

Car headliner can be obtained from the development of processing polyurethane foam and shrimp skin waste containing chitosan. Polyurethane foam coated by chitosan using immersion method has purpose of modifying elastic become stiff. Tensile testing showed the increasing of mechanical properties, while Thermogravimetric Analysis (TGA) showed the increasing of degradation temperature to 295°C for the first stage, 309°C for the second stage, and 372°C for the third stage. Curing process can add the number of physical crosslinking in form of hydrogen bonds, then the increasing of curing time can add the number of chemical crosslinking in form of covalent bonds, causing the structure become homogeneous and smooth as indicated by Field Emission Scanning Electron Microscopy (FE-SEM). However, if curing temperature is too high or curing time is too long, it will cause hydrogen bonds even main chain to be severed so that its mechanical and thermal properties decrease.
The formation of physical crosslinking is evidenced by the Fourier Transform Infrared Spectroscopy (FTIR), which is increasing the intensity of O-H, N-H, and hydrogen-bonded C=O bonds, while increasing the intensity of C-N and C-O-C bonds indicates chemical crosslinking. Polyurethane foam coated by chitosan and then cured at 100°C for 120 minutes has an ultimate tensile strength of 5.56 kgf/cm2, elongation of 7%, and density of 28.9 kg/m3 which is close to the specification of mechanical and physical properties of headliner in general.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Agung Setiaji
"Busa poliuretan mempunyai berbagai fungsi dalam dunia manufaktur, dan salah satu fungsinya ialah sebagai headliner pada mobil. Pembuatan headliner mobil membutuhkan properti busa yang rigid dan masih memiliki sedikit elongasi. Sedangkan pembuatan busa rigid membutuhkan zat aditif yang banyak dan relative mahal. Pada saat ini, dilakukan sebuah penelitian berupa pembuatan busa flexible yang dicampurkan dengan 4 gr kitosan dan 0,2 gr kalsium karbonat (CaCO3) dalam 100 ml larutan 5% asam asetat (CH3COOH dengan teknik dip coating dan menggunakan vacuum oven. Sampel yang digunakan adalah busa berdensitas 16 kg/m3 dan diberikan perlakuan dengan variable suhu dan waktu curing.
Bedasarkan hasil yang diperoleh, perlakuan sampel dengan suhu 100oC selama 120 menit adalah hasil yang terbaik. Sampel tersebut memiliki nilai ketahanan tarik maksimal dan elongasi yang tergolong baik serta kitosan dan CaCO3 yang membungkus dengan rata semua pori pada permukaan busa serta memiliki hasil penilaian komposisi kimia dan temperatur dekomposisi yang dapat dikatakan paling baik daripada sampel lainnya. Sehingga dapat disimpulkan perlakuan tersebut dapat dilakukan penelitian atau produksi lanjutan.

Polyurethane foam has a major function in the world of manufacturing, and one of its functions as a headliner in cars. Making car headliners requires rigid foam properties and still has a little elongation. While making rigid foam requires a lot of additives and is relatively expensive. At this time, research was carried out consisting of making flexible foam mixed with 4 gr chitosan and 0.2 gr Calcium Carbonate (CaCO3) in 100 ml of 5% acetic acid (CH3COOH) solution with dip coating technique and using a vacuum oven. The sample used is foam density 16 kg/m3 and given with variable temperature and curing time.
Based on the results obtained, sample samples with a temperature of 100oC for 120 minutes are the best results. This sample has ultimate tensile strength (UTS) and elongation which are classified as good with chitosan and CaCO3 which wrap with all sizes on the foam surface and also the results of the chemical composition and decomposition temperature which is arguably the best of the other samples. It was agreed that discussions could be carried out for further research or production.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Emirsyah Putra
"Polimer poliuretan memiliki kemampuan modifikasi yang luas, seperti kemampuan berinteraksi dengan biomassa seperti selulosa. Pada sintesis busa poliuretan hibrida berbasis pemanjang rantai (chain extender) selulosa, bahan dasar yang diperlukan adalah poliol, diiosianat, air, dan chain extender, dalam penelitian ini ingin diteliti pengaruh dari penambahan chain extender selulosa 7, 14, dan 21 gram, dengan cara membandingkan sifat mekanis dan sifat termal dengan busa poliuretan virgin yang tidak dilakukan penambahan chain extender. Hasil yang diperoleh menunjukkan kekuatan tarik dan ketahanan sobek yang meningkat dan elongasi yang menurun, seiring penambahan chain extender selulosa. Sementara pada sifat termal terlihat ada peningkatan temperatur transisi gelas dan penurunan temperatur degradasi termal.

Polyurethane is a type of polymer with wide modification capabilities, such as being able to interact with biomass such as cellulose. In the synthesis of hybrid polyurethane foam based on cellulose chain extender, the basic ingredients needed are polyol, diiocyanate, water, and chain extender. In this study, the effects of addition of 7, 14, and 21 grams of cellulose chain extenders were investigated by comparing mechanical properties and thermal properties with the virgin polyurethane foam, which is without the addition of chain extenders. The results obtained showed increased tensile strength and tear resistance and decreased elongation, along with the addition of cellulose chain extenders. While in the thermal properties, there is an increase in glass transition temperature and a decrease in the temperature of thermal degradation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Billal Gaung Mahardika
"Dalam penelitian kali ini, digunakan material Polivinil Klorida (PVC) sebagai matriks dari komposit dengan bantuan aditif heat stabilizer Ba-Zn. Sedangkan untuk filler menggunakan dua jenis limbah serbuk termoset, yaitu poliester dan epoksi-poliester. Penelitian ini dilakukan untuk mengidentifikasi adanya pengaruh dari penambahan limbah serbuk termoset poliester dan juga epoksi-poliester sebagai filler terhadap komposit polimer PVC dalam peningkatan sifat mekanik dan sifat termalnya. Penambahan filler pada PVC dilakukan dengan melakukan pencampuran menggunakan mesin hot melt mixing dengan komposisi filler masing – masing 0 phr ; 30 phr ; 40 phr ; 50 phr ; dan 60 phr disertai penambahan zat aditif heat stabilizer Ba-Zn sebesar 3 phr disetiap variasi komposisi filler dengan kondisi temperatur pencampuran 180oC, kecepatan pencampuran 50 rpm, dan waktu pencampuran selama 5 menit. Spesimen dikarakterisasi dan dilakukan pengujian dengan menggunakan FTIR , sessile drop, SEM, TGA/DSC, dan uji tarik mikro. Kompatibilitas pencampuran terbaik didapatkan pada komposisi 30 phr untuk filler poliester dan 50 phr untuk filler epoksi-poliester. Filler poliester tidak cocok digunakan sebagai penguat karena dapat menurunkan sifat mekanis komposit PVC sedangkan filler epoksi-poliester cocok digunakan sebagai penguat sampai dengan konsentrasi 40 phr. Khusus untuk sifat termal, konsentrasi optimum agar dapat memperoleh sifat termal yang paling baik adalah sebesar 50 phr untuk kedua jenis filler.

In this study, Polyvinyl Chloride (PVC) material was used as a matrix of composites with the help of Ba-Zn heat stabilizer additives. As for fillers use two types of thermoset powder waste, namely polyester and epoxy-polyester. This research was conducted to identify the influence of the addition of polyester thermoset powder waste and also epoxy-polyester as a filler to PVC polymer composites in improving their mechanical properties and thermal properties. The addition of filler in PVC is done by mixing using hot melt mixing machine with filler composition of each 0 phr; 30 phr ; 40 phr ; 50 phr ; and 60 phr accompanied by the addition of Ba-Zn heat stabilizer additives of 3 phr in each variation of filler composition with mixing temperature conditions of 180oC, mixing speed of 50 rpm, and mixing time of 5 minutes. Specimens are characterized and tested using FTIR, sessile drop, SEM, TGA/DSC, and micro tensile tests. The best mixing compatibility is found in 30 phr compositions for polyester fillers and 50 phrs for epoxy-polyester fillers. Polyester fillers are not suitable for use as reinforcement because they can lower the mechanical properties of PVC composites while epoxy-polyester fillers are suitable for use as amplifiers up to a concentration of 40 phr. Especially for thermal properties, optimum concentration in order to obtain the best thermal properties is 50 phr for both types of fillers."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lestari Cinta Zanidya
"Proses sintesis busa bio poliuretan berbasis pati dilakukan dengan menggunakan metode one shot method. Bahan dasar yang digunakan dalam sintesis busa bio poliuretan adalah poliol berupa Polipropilen Glikol (PPG) 2000 dan diisosianat berupa 'Toluene Diisocyanate' 80 (TDI 80). Persentase penambahan pati sebanyak 1, 2, dan 3 pbw, beserta penambahan Metilen Klorida sebanyak 7, 8, 9 pbw menjadi variabel bebas dari penelitian ini. Hasil yang diperoleh menunjukkan bahwa penambahan pati dan Metilen Klorida dapat membentuk struktur sel yang terbuka. Hasil percobaan DSC dan TGA menunjukan Penambahan pati sebagai 'chain extender' menambah nilai temperatur transisi gelas (Tg), dari 165ºC ke 179.38ºC. Penambahan pati menaikkan nilai 'tensile strength', sementara penambahan Metilen Klorida menurunkan nilai 'tensile strength'. Penambahan pati menurunkan nilai elongasi, sementara penambahan Metilen Klorida menaikkan nilai elongasi. Penambahan pati menurunkan nilai 'airflow', sementara penambahan Metilen Klorida menaikkan nilai.

The synthesis process of starch-based bio polyurethane foam was carried out using the one shot method. The basic materials used in the synthesis of bio-polyurethane foam are Polypropylene Glycol (PPG) 2000 as polyol and Toluene Diisocyanate 80 (TDI 80) as diisocyanate. The starch additions of 1, 2, and 3 pbw and Methylene Chloride additions of 7, 8, 9 pbw became the independent variables to study the change in mechanical properties. Bio-PU foam sample was also compared to virgin PU sample without the addition of starch to study the effects of starch as chain extender to foam morphology and thermal properties. The results obtained indicate that the addition of Methylene Chloride as physical blowing agent and starch as chain extender forms opened celled bio-PU foam. The addition of starch as chain extender increases glass transition temperature, from 165ºC (sample without starch) to 179.38ºC. The addition of starch increases tensile strength, while the addition of Methylene Chloride decreases tensile strength. The addition of starch decreases elongation, while the addition of Methylene Chloride increases elongation. The addition of starch decreases air flow, while the addition of Methylene Chloride increases air flow.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siagian, Yunella Amelia
"Aplikasi serat alam terus berkembang di berbagai sektor industri. Serat kenaf merupakan serat alam yang digunakan dalam penelitian ini karena memiliki sifat mekanik yang cukup tinggi. Busa poliuretan (PU) banyak digunakan sebagai lapisan inti dalam konstruksi komposit sandwich untuk menghasilkan suatu material ringan. Penelitian ini bertujuan menganalisa hasil karakterisasi nanoselulosa dari serat kenaf, menganalisa pengaruh nanoselulosa / Cellulose Nanofiber (CNF) serat kenaf sebagai pengisi (filler) dalam komposit busa PU-CNF, serta merumuskan formulasi komposit busa PU-CNF yang memberikan sifat mekanik terbaik sebagai material kuat dan ringan dalam aplikasi struktural. Nanoselulosa merupakan nanomaterial alami yang dapat diekstrak dari dinding sel tanaman yang memiliki sifat-sifat menarik seperti kekuatan yang tinggi, kekakuan yang sangat baik, dan luas permukaan yang tinggi. Variasi berat CNF yang ditambahkan ke dalam busa PU adalah 0, 3, 5, 7, dan 10 wt%. Proses ekstraksi CNF dari serat kenaf dimulai dengan pre-treatment serat meliputi proses alkalisasi dengan natrium hidroksida dan proses bleaching dengan natrium hipoklorit lalu selanjutnya diberikan perlakuan mekanik dengan alat Ultra Fine Grinder untuk menghasilkan suspensi CNF. Fabrikasi komposit PU-CNF menggunakan metode in-situ polimerization. Karakterisasi CNF meliputi TEM, XRD, dan FT-IR. Hasil TEM pada CNF mengkonfirmasi dimensi berskala nano dari CNF yaitu memiliki diameter pada kisaran 40-70 nm. Hasil FT-IR yang menunjukkan tidak adanya puncak pada daerah panjang gelombang 1700–1740 cm-1 menyatakan pre-treatment pada serat kenaf berhasil mengurangi kandungan non-selulosa. Hasil XRD menunjukkan bahwa kritastalinitas CNF setelah perlakuan mekanik adalah menjadi 75,22%. Karakterisasi komposit busa PU-CNF meliputi uji tekan, uji lengkung-3-titik, dan SEM. Nilai kuat tekan optimal diperoleh pada komposit busa KFCNF3/PU dengan nilai kuat tekan dan modulus tekan optimal masing-masing adalah 284,434 kPa dan 7,32 MPa. Nilai kuat lengkung-3-titik optimal juga diperoleh pada komposit busa PU berpenguat 3wt% CNF yaitu 734,145 kPa. Komposit busa PU berpenguat 3 wt% CNF merupakan komposit terbaik yang memiliki nilai optimum dari hasil uji tekan dan uji lengkung-3-titik.

Natural fiber applications continue to grow in various industrial sectors. Kenaf fiber is a natural fiber that was used in this study because it has high mechanical properties. Polyurethane (PU) foam is widely used as a core layer in sandwich composite construction to produce a lightweight material. The objective of this research was to analyze the results of nanocellulose characterization from kenaf fibers, to analyze the effect of nanocellulose / Cellulose Nanofiber (CNF) kenaf fiber as a filler in PU-CNF foam composites, and to formulate a PU-CNF foam composite formulation that provided the best mechanical properties as strong and lightweight materials in structural applications. Nanocellulose is a natural nanomaterial that can be extracted from plant cell walls which has attractive properties such as high strength, excellent stiffness and high surface area. The CNF weight variations in PU foam were 0, 3, 5, 7, and 10 wt%. The CNF extraction process from kenaf fiber started with fiber pre-treatment including alkalization with sodium hydroxide and bleaching with sodium hypochlorite and then mechanical treatment with an Ultra Fine Grinder to produce CNF suspension. PU-CNF composites were fabricated using in-situ polymerization method. CNF characterization included TEM, XRD, and FT-IR. TEM results on CNF confirmed that the CNF diameter was in the range of 40-70 nm. FT-IR results showed that no peaks in the 1700-1740 cm-1 wavelength region and this confirmed that pre-treatment on kenaf fibers succeeded in reducing the non-cellulose content. XRD results showed that the crystallinity of CNF after mechanical treatment was 75.22%. The PU-CNF foam composite characterization included compressive test, 3-point bending test, and SEM. The optimal compressive strength values obtained in the PU foam reinforced 3 wt% CNF composites with the optimal compressive strength and modulus values were 284,434 kPa and 7,32 MPa, respectively. The optimal 3-point bending strength value was also obtained in the PU foam reinforced 3 wt% CNF composites, which was 734.145 kPa. PU foam reinforced 3 wt% CNF composites were the best composites that have the optimum value from the results of the compressive and 3-point-bending tests."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>