Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 175858 dokumen yang sesuai dengan query
cover
Wafa Nur Syahidah
"Sifat busa poliuretan yang ringan, fleksibel, serta memiliki perambatan suara dan panas yang rendah membuatnya menjadi salah satu material yang digunakan dalam berbagai industri, salah satunya adalah otomotif. Dalam pembuatan salah satu bagian mobil, yaitu headliner, diperlukan busa poliuretan dengan kekuatan mekanis yang baik. Hal tersebut dapat dicapai melalui modifikasi yang dilakukan dalam penelitian ini, yaitu pelapisan dengan larutan kitosan. Penelitian yang dilakukan berfokus pada pengaruh konsentrasi kitosan terhadap sifat mekanis dan termal busa poliuretan. Pelapisan dilakukan dengan cara mencelupkan busa poliuretan ke dalam larutan kitosan dengan konsentrasi 1-6% (b/v). Kemudian busa dikeringkan dalam oven vakum pada temperatur 60 oC selama 30 menit yang dilanjutkan dengan curing pada 120 oC selama 90 menit. Karakterisasi sampel yang dilakukan adalah uji mekanis, uji termal, FTIR, dan FE-SEM. Hasil yang diperoleh menunjukkan bahwa konsentrasi larutan kitosan pelapis yang optimal adalah 4%.

The properties of polyurethane foam which are lightweight, flexible, and have low propagation of sound and heat, make it possible to be used in various industries, one of which is automotive. In making one part of a car, the headliner, polyurethane foam with good mechanical strength is needed. This can be achieved through modifications made in this study, which is coating with chitosan solution. The research conducted focuses on the effect of chitosan concentration on the mechanical and thermal properties of polyurethane foam. Coating is done by dipping polyurethane foam into chitosan solution with a concentration of 1-6% (b/v). Then the foam was dried in a vacuum oven at a temperature of 60 oC for 30 minutes followed by curing at 120 oC for 90 minutes. The sample characterization carried out was mechanical testing, thermal test, FTIR, and FE-SEM. The results obtained showed that the optimal concentration of chitosan coating solution was 4%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rima Yunita
"Kitosan diketahui memiliki sifat yang keras dan ketahanan termal yang tinggi. Pemanfaatan kitosan sebagai material insulasi digunakan dengan menggunakan metode coating pada busa poliuretan dengan densitas 16’4 kg/m3 . Pelapisan kitosan pada busa poliuretan diawali dengan pelarutan kitosan dalam larutan asam. Jenis asam berpengaruh terhadap kualitas lapisan yang dihasilkan. Jenis asam yang digunakan yaitu asam asetat (CH3COOH) dan asam format (CH2O­2). Kualitas yang dihasilkan dari produk busa poliuretan dengan jenis asam tersebut menunjukkan hasil yang berbeda. Produk jenis asam asetat memiliki sifat mekanis yang lebih baik dibandingkan produk jenis asam format di mana nilai UTS pada produk dengan konsentrasi asam 1% v/v yaitu 3,05 kg/cm2 (produk asam asetat) dan 5,53 kg/cm2 (produk asam format). Konsentrasi asam yang digunakan memiliki pengaruh terhadap sifat mekanis dan termal yang berhubungan dengan banyaknya ikatan hidrogen yang dihasilkan. Dari produk busa poliuretan yang diperoleh, kemudian dibandingkan antara PU-Virgin (busa poliuretan tanpa perlakuan), PU-Kitosan (produk busa poliuretan terbaik), dan PU-Headliner (produk headliner densitas 45 kg/m3)
Chitosan is known to have hard properties and high thermal resistance. The use of chitosan as an insulation material is used by using a coating method on polyurethane foam with a density of 16.4 kg / m3. Coating of chitosan in polyurethane foam begins with the dissolution of chitosan in an acid solution. The type of acid affects the quality of the coating produced. The types of acids used are acetic acid (CH3COOH) and formic acid (CH2O2). The quality produced from polyurethane foam products with this type of acid shows different results. Acetate acid products have better mechanical properties than form acid products where UTS values ​​in products with an acid concentration of 1% v / v are 3.05 kg / cm2 (acetic acid product) and 5.53 kg / cm2 (product formic acid). The acid concentration used has an influence on the mechanical and thermal properties associated with the number of hydrogen bonds produced. From polyurethane foam products obtained, then compared between Virgin PU (untreated polyurethane foam), PU-Chitosan (the best polyurethane foam product), and PU-Headliner (headliner product density of 45 kg / m3."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deril Clinton
"Pada masa ini penelitian mengenai busa poliuretan dipusatkan pada usaha peningkatan karakteristik kekakuan busa dengan pemilihan bahan baku dan proses yang bersifat
terbarukan. Bio-coating kitosan adalah polisakarida linear yang merupakan produk turunan dari chitin, yaitu zat penyusun rangka terluar dari hewan antropoda seperti
udang, kepiting, dan serangga. Hubung silang antara busa poliuretan dengan kitosan dibuktikan dari hasil pengamatan SEM dimana terbentuknya lapisan pada permukan dan pori pori busa. Kemudian pengujian FTIR yang menunjukkan fenomena curing terjadi pada bilangan gelombang 1374 cm-1, yaitu ikatan hubung sialng antara kitosan-STPP pada busa poliuretan. Dari hasil penelitian ini disimpulkan bahwa pada variasi waktu curing 75 menit dan suhu 135 C merupakan kondisi yang optimum untuk proses curing. Hal ini dibuktikan dengan meningkatnya kekuatan tarik sebesar 4.2 serta nilai resiliansi sebesar 2.5, juga disertai dengan menurunya nilai elongasi sebesar 24 dan nilai kekedapan udara sebesar 26. Nilai stabilitas termalnya juga meningkat dimana dibuktikan dengan meningkatknya persen berat sampel tersisa yaitu 13 dengan suhu degradasi yang lebih rendah yaitu 360 C.

At this time research on polyurethane foam is centered on efforts to improve the characteristics of foam stiffness by selecting raw materials and renewable processes.
Chitosan bio-coating is a linear polysaccharide which is a derivative product of chitin, the outermost constituent of anthropoid animals such as shrimp, crabs, and insects. The cross linking between polyurethane foam and chitosan is proven from SEM observations where the formation of layers on the surface and pores of the foam pores. Then the FTIR test which shows the curing phenomenon occurs at wave number 1374 cm-1, namely the bonding relationship between chitosan-STPP on polyurethane foam. From the results of this study concluded that the variation of 75 minutes curing time and 135 C temperature is the optimum condition for the curing process. This is evidenced by an increase in tensile strength of 4.2 and a resilience value of 2.5, also accompanied by a decline in the elongation value of 24 and an airtight value of 26. The thermal stability value also increases which is evidenced by the increase in the remaining percent weight of the sample by 13 with a lower degradation temperature of 360.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55206
UI - Tesis Membership  Universitas Indonesia Library
cover
Erlina Virgawati
"Lapisan material hibrida Poliuretan/M dipersiapkan dengan memvariasikan konten karbon, nano-zinc oxide, dan karbon/nano-zinc oxide sebagai material pengisi dalam matriks poliuretan. Film tersebut ditempatkan di atas plat low carbon steel dengan menggunakan metode High Volume Low Pressure HVLP . Untuk mengetahui sifat ketahanan korosi dari film, sampel diuji menggunakan metode salt spray. Sifat dielektrik diuji menggunakan metode nilai resistivitas. Sifat termal dikarakterisasi menggunakan Thermogravimetric Analysis TGA dan Differential Scanning Calorimetry DSC.
Fourier Transform Infrared Spectroscopy FTIR dan X-ray Diffraction XRD digunakan untuk melihat bagaimana ikatan senyawa serta komposisi fasa karbon dan zinc oxide ZnO dalam matriks poliuretan. FTIR dan XRD menunjukkan ikatan kimia dan komposisi fasa dari karbon dan ZnO dalam poliuretan. Terjadi perubahan pada morfologi lapisan permukaan dan nilai ketahanan korosi paling baik pada lapisan komposit P/ZnO. Hasil uji dielektrik menunjukkan bahwa hanya komposit karbon terdispersi dalam matriks poliuretan memiliki nilai yang tinggi dan konstan. TGA dan DSC mengkonfirmasi bahwa perbandingan temperatur dengan dekomposisi massa komposit yang baik adalah pada lapisan komposit dengan material pengisi karbon.

Hybrid materials Polyurethane M film were prepared with different content of carbon, nano zinc oxide and carbon zinc oxide as filler components in polyurethane matrix. The film were deposit on low carbon steel plate using High Volume Low Pressure HVLP method. To observe corrosion resistance of the film, the sample were examined by salt spray method. Dielectric propeties obtained by resistivity valued method. Thermal resistance were investigated by Thermogravimetric Analysis TGA and Differential Scanning Calorimetry DSC.
Fourier Transform Infrared Spectroscopy FTIR and X ray Diffraction XRD used to see functional groups and phase composition of carbon and zinc oxide ZnO in polyurethane matrix. The surface morphology are changes and the corrosion resistance of P ZnO composite shows the best result. Dielectrical test showed that only carbon dispersed in polyurethane matrix had higher constant value. TGA and DSC confirmed composites with carbon as filler had good result on the ration between temperature and mass decomposition.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Emirsyah Putra
"Polimer poliuretan memiliki kemampuan modifikasi yang luas, seperti kemampuan berinteraksi dengan biomassa seperti selulosa. Pada sintesis busa poliuretan hibrida berbasis pemanjang rantai (chain extender) selulosa, bahan dasar yang diperlukan adalah poliol, diiosianat, air, dan chain extender, dalam penelitian ini ingin diteliti pengaruh dari penambahan chain extender selulosa 7, 14, dan 21 gram, dengan cara membandingkan sifat mekanis dan sifat termal dengan busa poliuretan virgin yang tidak dilakukan penambahan chain extender. Hasil yang diperoleh menunjukkan kekuatan tarik dan ketahanan sobek yang meningkat dan elongasi yang menurun, seiring penambahan chain extender selulosa. Sementara pada sifat termal terlihat ada peningkatan temperatur transisi gelas dan penurunan temperatur degradasi termal.

Polyurethane is a type of polymer with wide modification capabilities, such as being able to interact with biomass such as cellulose. In the synthesis of hybrid polyurethane foam based on cellulose chain extender, the basic ingredients needed are polyol, diiocyanate, water, and chain extender. In this study, the effects of addition of 7, 14, and 21 grams of cellulose chain extenders were investigated by comparing mechanical properties and thermal properties with the virgin polyurethane foam, which is without the addition of chain extenders. The results obtained showed increased tensile strength and tear resistance and decreased elongation, along with the addition of cellulose chain extenders. While in the thermal properties, there is an increase in glass transition temperature and a decrease in the temperature of thermal degradation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Majid Amrullah
"Luasnya aplikasi dan rentang sifat yang dimiliki poliuretan, memicu berbagai modifikasi dari material poliuretan.Tidak menutup kemungkinan modifikasi menggunakan biomassa yang banyak tersedia di alam untuk menghemat biaya produksi sekaligus memperoleh sifat material yang berstabilitas tinggi. Penelitian berfokus pada pembuatan poliuretan rigid untuk aplikasi otomotif dengan metode pelapisan menggunakan biomassa kitosan yang diperkuat dengan kalsium karbonat. Metode pelapisan yang digunakan adalah dip coating dengan cara mencelupkan busa poliuretan fleksibel berdensitas 16 kg/m3 ke dalam larutan kitosan yang berisi 4 gram kitosan dalam 5% CH3COOH berpelarut air sampai 100 ml, ditambah kalsium karbonat dengan rasio bervariasi dari 0,1% s.d. 0,5% sebagai variabel bebas. Busa di-drying selama 30 menit pada temperatur 60oC dan dilakukan pemanasan (curing) selama 90 menit pada suhu 120oC. Sampel kemudian diuji Tarik, Densitas, ILD, FTIR, STA, dan SEM. Diperoleh hasil yang mendekati hipotesis pada Densitas dan Kekuatan Tarik Maksimum yang mengalami peningkatan dengan penambahan kalsium karbonat dibandingkan busa virgin dan busa perlakuan tanpa kalsium karbonat. Pada morfologi ditemukan pembentukan lapisan di permukaan busa fleksibel sesuai yang diperkirakan. Hasil optimum ditemukan pada sampel dengan kalsium karbonat 0,2% yang memiliki densitas 31 kg/m3 dan kekuatan tarik maksimum 4.05 kg/cm2. Penelitian masih dalam tahap pengembangan disarankan untuk dapat dilakukan peneletian dan analisis lanjutan.

The massive application and range of properties that polyurethane possess, triggered countless modification of polyurethane. It is not impossible to use biomass, which is happen to be abundant in nature, as a modification of polyurethane in order to save production cost while obtaining relatively high-stable material properties. This research focused on creating rigid polyurethane foam for automotive application with coating method using chitosan that reinforced by calcium carbonate. The coating method used in this research is dip coating by immersing 16 kg/m3 polyurethane flexible foam into chitosan solution containing 4 grams of chitosan that dissolved into 100 ml of 5% CH3COOH electrolyte with aquades solvent, with various ratio of calcium carbonate ranging from 0,1% until 0,5% weight/volume. The foam was dried for 30 minutes at 60oC and cured for 90 minutes at 120oC. The material samples then tested for tensile, density, ILD, FTIR, STA and SEM. The results obtained close to the hypothesis on Maximum Tensile Strength and Density which increased with the addition ratio of calcium carbonate compared to virgin foam and treated foam without calcium carbonate. In the morphology the formation of layers on flexible foam surfaces is obtained as expected. The optimum results were found in samples with 0.2% ratio of calcium carbonate which had a density of 31 kg/m3 and a maximum tensile strength of 4.05 kg/cm2. This research is still under development and further research and analysis is expected."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rangga Agung Pribadi Heriawan
"Serat ijuk semakin menarik untuk diteliti sebagai bahan pengisi polimer. Dengan memodifikasi permukaan serat ijuk, didapatkan selulosa mikrofibril (MFC) yang berbasis ijuk untuk kemudian dicampurkan dengan polimer membentuk produk berbasis MFC ijuk. Namun morfologi, kompatibilitas, stabilitas termal MFC berbasis ijuk terhadap sifat produk polimer perlu dilakukan penelitian lebih lanjut dan dibandingkan karakteristiknya dengan produk berbasis bubble glass.
Dalam penelitian ini telah dilakukan proses pencampuran lelehan panas dengan menggunakan mesin rheomix yaitu antara MFC berbasis ijuk dan bubble glass dengan polipropilena jenis homopolimer. Kandungan MFC berbasis ijuk dan bubble glass dalam campuran adalah 0,3; 0,6; dan 1 wt% dalam tiap 50 gram homopolimer polipropilena dengan variasi temperatur 160, 175, dan 190°C selama 15 menit.
Dari hasil penelitian diketahui bahwa dengan penambahan MFC berbasis ijuk dan bubble glass dapat menurunkan temperatur leleh (Tm) dan menaikan temperatur dekomposisi (Td), kecuali Td produk berbasis bubble glass akibat karakteristik bubble glass yang amorf. Tm maksimum produk berbasis MFC ijuk dan bubble glass didapatkan pada komposisi yang sama yaitu 0,3 wt% masing-masing sebesar 160,68°C dan 161,29°C. Sedangkan pada Tm maksimum produk berbasis MFC ijuk dan bubble glass masing-masing didapatkan pada temperatur pencampuran 190°C sebesar 160,66°C dan 175°C sebesar 162,52°C. Untuk Td maksimum produk berbasis MFC ijuk dan bubble glass didapatkan pada komposisi 1 wt% sebesar 256,08°C dan 0,3 wt% sebesar 296,07°C. Sedangkan pada Td maksimum produk berbasis MFC ijuk dan bubble glass masing-masing didapatkan pada temperatur pencampuran 175°C sebesar 270,72°C dan 160°C sebesar 290,12°C.

Ijuk fiber more interesting to study as a filler material for polymer. By modyfiying the surface fibers, microfibrilscellulose (MFC) ijuk-based obtained and then mixed it with polymer to form MFC ijuk-based products. However morphology, compatibility, thermal stability of MFC ijuk-based towards polymer product need further research and compared its characteristic with glass bubblebased products.
In this research has been carried out the process of hot-melt mixing using a rheomix machine that is between MFC ijuk-based and glass bubble with homopolymer type of polypropylene. The content of MFC ijuk-based and glass bubble in the mixture is 0.3; 0.6; and 1%wt in each 50 grams of homopolymer polypropylene with a temperature variation of 160, 175, and 190°C for 15 minutes.
The result showed that with the addition of MFC ijuk-based and glass bubblebased can lower the melting temperature (Tm) and raise the decomposition temperature (Td), except Td of glass bubble-based products due to the amorphous characteristics of glass bubble. The maximum Tm of MFC ijuk-based and glass bubble products obtained in the same composition that is 0,3%wt at 160.68°C and 161.29°C, respectively. In other side, the maximum Tm MFC ijuk-based and glass bubble-based obtained at mixing temperature of 190°C at 160.66°C and 175°C at 162.52°C, respectively. For maximum Td of MFC ijuk-based and glass bubble-based products obtained on the composition of 1%wt at 256.08°C and 0.3%wt at 296.07°C. In other side, the maximum Td of MFC ijuk-based and glass bubble product obtained at mixing temperature of 175°C at 270.72°C and 160°C at 290.12°C, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45868
UI - Tesis Membership  Universitas Indonesia Library
cover
Lestari Cinta Zanidya
"Proses sintesis busa bio poliuretan berbasis pati dilakukan dengan menggunakan metode one shot method. Bahan dasar yang digunakan dalam sintesis busa bio poliuretan adalah poliol berupa Polipropilen Glikol (PPG) 2000 dan diisosianat berupa 'Toluene Diisocyanate' 80 (TDI 80). Persentase penambahan pati sebanyak 1, 2, dan 3 pbw, beserta penambahan Metilen Klorida sebanyak 7, 8, 9 pbw menjadi variabel bebas dari penelitian ini. Hasil yang diperoleh menunjukkan bahwa penambahan pati dan Metilen Klorida dapat membentuk struktur sel yang terbuka. Hasil percobaan DSC dan TGA menunjukan Penambahan pati sebagai 'chain extender' menambah nilai temperatur transisi gelas (Tg), dari 165ºC ke 179.38ºC. Penambahan pati menaikkan nilai 'tensile strength', sementara penambahan Metilen Klorida menurunkan nilai 'tensile strength'. Penambahan pati menurunkan nilai elongasi, sementara penambahan Metilen Klorida menaikkan nilai elongasi. Penambahan pati menurunkan nilai 'airflow', sementara penambahan Metilen Klorida menaikkan nilai.

The synthesis process of starch-based bio polyurethane foam was carried out using the one shot method. The basic materials used in the synthesis of bio-polyurethane foam are Polypropylene Glycol (PPG) 2000 as polyol and Toluene Diisocyanate 80 (TDI 80) as diisocyanate. The starch additions of 1, 2, and 3 pbw and Methylene Chloride additions of 7, 8, 9 pbw became the independent variables to study the change in mechanical properties. Bio-PU foam sample was also compared to virgin PU sample without the addition of starch to study the effects of starch as chain extender to foam morphology and thermal properties. The results obtained indicate that the addition of Methylene Chloride as physical blowing agent and starch as chain extender forms opened celled bio-PU foam. The addition of starch as chain extender increases glass transition temperature, from 165ºC (sample without starch) to 179.38ºC. The addition of starch increases tensile strength, while the addition of Methylene Chloride decreases tensile strength. The addition of starch decreases elongation, while the addition of Methylene Chloride increases elongation. The addition of starch decreases air flow, while the addition of Methylene Chloride increases air flow.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricko Setiawan
"Green composite merupakan salah satu jenis komposit dengan unsur penyusunnya merupakan bahan alam. Indonesia merupakan negara tropis yang kaya akan keragaman sumber daya alam yang menghasilkan berbagai jenis serat alam salah satunya serat daun nanas dari perkebunan Subang Jawa Barat. Penelitian ini bertujuan untuk memperoleh model konduktivitas termal komposit sandwich dengan core poliuretan/nanoselulosa berbasis serat daun nanas Subang Jawa Barat dan skin epoksi berpenguat variasi serat alam. Pemodelan konduktivitas termal komposit sandwich dibuat menggunakan komputasi Microsoft Excel sederhana. Pemodelan dilakukan berdasarkan persamaan Rule of Mixture dari core dan skin berpenguat variasi serat alam berupa pineapple leaves (PALF), serat tandan kosong kelapa sawit (STKKS), coconut husk (CH), papyrus (PPR), dan corn cob (CC) dengan susunan seri skin-core-skin. Berdasarkan kajian literatur konduktivitas termal penguat dipilih menurut komposisi berat atau volume yang menghasilkan sifat mekanik terbaik yakni 1 wt% core filler dan 40 wt% skin fiber. Hasil terbaik konduktivitas termal komposit sandwich sebesar 17,53 x 10-2 pada model komposit sandwich dengan skin epoksi berpenguat serat papyrus (PPR) dan core poliuretan berpenguat nanoselulosa (CNF) berbasis serat daun nanas Subang, Jawa Barat. Konduktivitas termal komposit sandwich meningkat 84,89 % dari poliuretan murni dan menurun 11,86 % dari epoksi murni.

Green composite is one type of composites in which one of the elements is natural resource. Indonesia is a tropical country that rich in diversity of natural resources which produces various types of natural fibres, one of which is pineapple leaf fibre from Subang, West Java. This study aimed to obtain the thermal conductivity of sandwich composites model with polyurethane/nanocellulose based on Subang pineapple leaf fiber in West Java as core and epoxy reinforced with natural fiber variations as skins. The thermal conductivity of sandwich composite model was calculated using a simple computation of Microsoft Excel. Modelling was done by reviewing the equation of the Rule of Mixture of core and skins with the variety of natural fibers in the form of pineapple leaves (PALF), oil palm empty fruit bunches (OPEFB), coconut husk (CH), papyrus (PPR), and corn cob (CC) with a series layer of skin-core-skin. Based on the literature study, the thermal conductivity of the reinforcement was chosen according to the composition of the weight or volume that produces the best mechanical properties i.e 1 wt% core filler and 40 wt% skin fiber. The best result of the thermal conductivity of sandwich composites was 17.53 x 10-2 W/mK on the composite sandwich model with epoxy reinforced 40 wt% papyrus (PPR) as skin and polyurethane reinforced Subang pineapple leaf nanocellulose as core. The thermal conductivity of sandwich composites increased by 84.89% compared to pristine polyurethane and decreased by 11.86% compared to pristine epoxy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roland Tamalonggehe
"Penggunaan komposit sandwich dalam berbagai aspek kehidupan semakin meningkat belakangan ini. Komposit sandwich banyak digunakan karena mempunyai rasio modulus terhadap berat yang tinggi, rasio kekuatan terhadap berat yang tinggi, ketahanan aus, hingga ketahanan terhadap korosi. Penelitian ini bertujuan untuk membandingkan pengaruh teknik fabrikasi yang digunakan terhadap sifat mekanik komposit sandwich. Komposit sandwich dibuat dari serat gelas anyam dan resin poliester tak-jenuh sebagai kulit dan busa poliuretan kaku sebagai inti menggunakan dua teknik fabrikasi yakni adhesive-cold press dan Vacuum Assisted Resin Infusion (VARI). Pada komposit sandwich kemudian dilakukan uji tarik, uji tekan, uji lentur, dan uji densitas. Untuk komposit sandwich yang difabrikasi dengan teknik adhesive-cold press, didapatkan nilai kuat tarik, kuat tekan, kuat lentur dan densitas berturut-turut sebesar (1,55 ± 0,01) MPa, (1,30 ± 0,01) MPa, (11,04 ± 0,45) MPa, dan (0,29 ± 0,01) g/cm3. Sementara itu, untuk komposit sandwich yang difabrikasi dengan teknik VARI, didapatkan nilai kuat tarik, kuat tekan, kuat lentur dan densitas berturut-turut sebesar (2,25 ± 0,42) MPa, (1,41 ± 0,01) MPa, (13,84 ± 0,42) MPa, dan (0,33 ± 0,01) g/cm3. Hasil ini menunjukkan bahwa sifat mekanik dari komposit sandwich yang difabrikasi dengan teknik VARI lebih tinggi dari pada yang difabrikasi dengan teknik adhesive-cold press. Tidak ada perbedaan mode kegagalan yang terjadi pada kedua tipe komposit sandwich. Untuk uji tarik dan tekan, mode kegagalan yang terjadi adalah kerusakan inti busa, sedangkan untuk uji lentur adalah kerusakan kulit bagian atas. Hal ini menunjukkan bahwa ikatan inti dan kulit dengan kedua teknik sangat baik.

The use of sandwich composites in various aspects of life has increased lately. Sandwich composites are widely used because of their high modulus-to-weight ratio, high strength-to-weight ratio, wear resistance, and corrosion resistance. This study aimed to compare the effect of the fabrication techniques used on the mechanical properties of sandwich composites. The sandwich composites were fabricated from woven glass fiber reinforced unsaturated polyester resin as skin and rigid polyurethane foam as core using two fabrication techniques, namely adhesive-cold press and Vacuum Assisted Resin Infusion (VARI). The sandwich composites were then tested for tensile, compressive, flexural, and density tests. For the adhesive-cold pressed sandwich composites, the values of tensile strength, compressive strength, flexural strength, and density were (1.55 ± 0.01) MPa, (1.30 ± 0.01) MPa, (11.04 ± 0.45) MPa, and (0.29 ± 0.01) g/cm3, respectively. Meanwhile, for the VARI fabricated sandwich composites, the values of tensile strength, compressive strength, flexural strength, and density were (2.25 ± 0.42) MPa, (1.41 ± 0.01) MPa, (13,84 ± 0.42) MPa, and (0.33 ± 0.01) g/cm3, respectively. These results indicated that the mechanical properties of sandwich composites fabricated with the VARI technique were higher than those fabricated with the adhesive-cold press technique. For the tensile and compressive tests, the failure mode was foam core failure, while for the flexural test was upper skin failure. These results indicated that the bonding of the core and skin with both techniques is excellent."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>