Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 188453 dokumen yang sesuai dengan query
cover
Hanifah Khairunnisa
"ABSTRAK
Dalam penelitian ini, Sistem Penilaian Esai Ototmatis (Simple-O) dirancang menggunakan algoritma Latents Semantic Analysis (LSA), Term Frequency-Inverse Document Frequency, dan algoritma Support Vector Machine (SVM). Algoritma LSA digunakan untuk mengolah kata-kata yang merepresentasikan kata-kata dalam teks menjadi matriks. Algoritme SVM digunakan untuk mengklasifikasikan esai jawaban siswa berdasarkan topiknya. TF-IDF digunakan untuk menimbang setiap kata dalam teks yang akan menjadi input SVM. Dari penelitian ini ketepatan penggunaan jawaban dosen sebagai jawaban referensi adalah 72,01% dan ketepatan penggunaan kata kunci sebagai jawaban referensi adalah 69,5%.

ABSTRACT
In this study, the Automatic Essay Assessment System (Simple-O) was designed using the Latents Semantic Analysis (LSA) algorithm, Term Frequency-Inverse Document Frequency, and the Support Vector Machine (SVM) algorithm. The LSA algorithm is used to process words that represent words in the text into a matrix. The SVM algorithm is used to classify student essays based on their topic. TF-IDF is used to weigh each word in the text that will become SVM input. From this research, the accuracy of using lecturers' answers as reference answers was 72.01% and the accuracy of using keywords as reference answers was 69.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aaliyah Kaltsum
"ABSTRAK
Pada penelitian ini dilakukan penerapan Support Vector Machine dan LSA
Metode tersebut dibahas dan dipelajari lebih lanjut untuk merancang Sistem Penilaian Esai Otomatis (Simple-O). Simple-O merupakan sistem yang saat ini dikembangkan oleh UI Jurusan Teknik Elektro yang bertujuan untuk menilai esai secara otomatis. Support Vector Machine, yang merupakan algoritma pembelajaran yang diawasi, dipelajari selanjutnya untuk meningkatkan tingkat akurasi dalam Simple-O bersama dengan metode LSA yang digunakan Bahasa pemrograman Python. Dari hasil tes rata-rata tertinggi skor akurasi yang diperoleh sistem sebesar 88.06% dengan masukan kalimat kanji, katakana, hiragana dan nilai TDM siswa jawaban yang mencerminkan frekuensi kemunculan kata kunci dalam dokumen.

ABSTRACT
In this study, the implementation of Support Vector Machine and LSA was carried out These methods are discussed and studied further to design an Essay Assessment System Automatic (Simple-O). Simple-O is a system currently being developed by the UI Department of Electrical Engineering which aims to assess essays automatically. Support Vector Machine, which is a supervised learning algorithm, is learned furthermore to increase the level of accuracy in Simple-O along with the LSA method used Python programming language. From the highest average test results the accuracy score obtained by the system is 88.06% with input the kanji, katakana, hiragana and TDM scores of the students answers that reflect the frequency with which keywords appear in the document."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dealitha Winata
"Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan Sistem Penilaian Esai Otomatis Simple-O berbasis Latent Semantic Analysis LSA sejak tahun 2007. Pada awalnya, Simple-O hanya dikembangkan untuk mengoreksi ujian esai berbahasa Indonesia, namun kali ini dikembangkan untuk mengoreksi ujian esai berbahasa Jepang. Simple-O hanya menggunakan algoritma LSA saat pertama kali dikembangkan. Beberapa tahun setelahnya, Simple-O mulai dikembangkan menggunakan algoritma LSA dilengkapi dengan algoritma klasifikasi seperti Learning Vector Quantization LVQ dan Support Vector Machine SVM. Simple-O juga mulai dikembangkan menggunakan algoritma lain seperti Winnowing.
Pada skripsi ini akan dijelaskan tentang pengembangan sistem penilaian esai otomatis Simple-O untuk ujian esai berbahasa Jepang menggunakan algoritma LSA untuk pemrosesan kata, serta menggunakan algoritma Support Vector Machine SVM untuk klasifikasinya. Algoritma SVM merupakan suatu algoritma pembelajaran yang berfungsi untuk menentukan bidang pemisah hyperplane dari sekumpulan data baik yang linearly separable, maupun yang non-linearly separable. SVM akan memisahkan data nilai hasil proses LSA ke dalam dua kelas untuk variasi kelas pertama, dan akan memisahkan data nilai hasil proses LSA ke dalam sembilan kelas untuk variasi kelas kedua. Jenis kernel dan parameter juga divariasikan untuk menemukan jenis kernel, parameter, dan jumlah kelas yang tepat. Hasil dari analisis dan pengujian yang telah dilakukan, apabila menggunakan jenis kernel, parameter, dan variasi kelas yang tepat, SVM mampu menghasilkan akurasi sebesar 100.

Department of Electrical Engineering in Universitas Indonesia has developed an automatic essay grading system Simple O based on Latent Semantic Analysis LSA since 2007. At first, Simple O was developed for giving score to essay with Indonesian language, but now Simple O is developed for giving score to essay with Japanese language. Simple O used to be developed using LSA algorithm only. A few years later, Simple O began to be developed using LSA algorithm and some classification algorithm such as Learning Vector Quantization LVQ and Support Vector Machine SVM. Simple O began to be developed using another algorithm too such as Winnowing algorithm.
This thesis will explain about development of automatic essay grading system Simple O for essay with Japanese language using LSA as word processing algorithm, and SVM as classification algorithm. SVM is a learning algorithm for determining hyperplane from set of linearly separable data as well as non linearly separable data. SVM will separate output data of LSA into two class for the first class variation and will separate output data of LSA into nine class for the second class variation. Kernel type and parameter will be varied too to find the right kernel, parameter, and number of classes. From the results of analysis and test that have been done, SVM is able to obtain accuracy of 100 if the system uses the right kernel, parameter, and number of classes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Weldaline Zafira Winarto
"ABSTRAK
Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan sistem penilaian esai otomatis (SIMPLE-O) untuk ujian bahasa Jepang. Skripsi kali ini akan membahas pengembangan SIMPLE-O dalam
mengoreksi ujian bahasa Jepang dengan menggunakan metode N-Gram dan Latent Semantic Analysis (LSA) dan bahasa pemrograman Python dengan tujuan untuk mencapai nilai akurasi yang maksimal. N-Gram digunakan untuk mengoreksi pola kalimat data yang diuji dengan referensi, serta LSA dan Frobenius Norm untuk pemrosesan teks dan pemeriksaan kesamaan teks. Dari pengujian yang telah dilakukan, SIMPLE-O dengan N-Gram dapat mencapai rata-rata akurasi sebesar88,09%.

ABSTRACT
Department of Electrical Engineering, Faculty of Engineering, University of Indonesia has developed a system to grade Japanese examination essay automatically. This thesis will discuss about the development of SIMPLE-O in grading Japanese examination essays using N-Gram and Latent Semantic Analysis (LSA) using Python programming languageto reach the maximum accuracy level. N-Gram is used to score the answer based on the words and the pattern of the sentence of key answer. LSA and Frobenius Norm are used toprocess the text and to check the similarity of both text. From the test that has been done, SIMPLE-O using N-GramandLSAis able to obtain an average rate of accuracy of 88,09%."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adisa Larasati
"ABSTRAK
Pada awalnya, Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan sebuah sistem penilaian esai otomatis SIMPLE-O untuk ujian esai dalam bahasa Indonesia, namun kali ini dikembangkan untuk ujian esai dalam bahasa Jepang. Skripsi ini akan membahas mengenai penerapan dan pengembangan SIMPLE-O untuk ujian bahasa Jepang berbasis algoritma latent semantic analysis LSA dalam bahasa pemrograman Python. Pengujian menggunakan pendekatan text-similarity frobenius norm. Jenis input teks untuk proses LSA berpengaruh terhadap tingkat akurasi sistem, begitu pula dengan jenis nilai yang dimasukkan ke dalam matriks term-document matrix TDM . Dari hasil pengujian dan analisis yang telah dilakukan, apabila menggunakan input teks dan jenis nilai yang dimasukkan ke dalam matriks TDM yang tepat, LSA mampu menghasilkan akurasi sebesar 99.93.

ABSTRACT
In the beginning, Department of Electrical Engineering in Universitas Indonesia has developed an automated essay scoring system SIMPLE O for essay tests in Indonesian, but this time it is developed for essay tests in Japanese. This thesis will discuss about the development and implementation of SIMPLE O for essay tests in Japanese based on latent semantic analysis LSA Algorithm written in Python programming language. The text similarity approach used in this thesis is frobenius norm to measure similarity between texts. The type of text input for the LSA process influences the rate of accuracy of the system, the type of value inserted into the term document matrix TDM can also influence the rate of accuracy of the sysstem. From the result of test and analysis that has been done, given the appropriate type of text input and type of value inserted into the TDM, LSA is able to obtain a rate of accuracy of 99.93 "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teuku Muhammad Rikza Abdy
"Sistem persamaan kata merupakan suatu algoritma yang dapat digunakan pada sistem penilaian esai secara otomatis yang dapat berfungsi dengan untuk membandingkan kata memiliki makna yang sama (sinonim) sehingga akan diberi bobot yang sama. Hal ini telah dibuktikan dari percobaan dimana SIMPLE-O berbasis GLSA yang ditambahkan sistem persamaan kata dalam kalimat mengungguli sistem yang sama tanpa adanya penambahan persamaan kata.
Dari 6 soal yang diujicobakan dengan 5 sampel pada dua soal dummy dan 30 sampel pada sisa 4 soal percobaan dengan membandingkan nilai selish hasil penilaian sistem terhadap persamaan kata GLSA dengan persamaan kata unggul sebanyak 5 kali atau sebesar 83,33% dibandingkan dua basis algoritma lainnya yaitu LSA dan GLSA tanpa sistem persamaan kata.

Word similiarity detection system is an algorithm that can be used on automatic essay grader to compare word to another of which have similar meaning (synonim) so that can be given the equal value. With this algorithm the word with significant meaning on the text can be detected an the word which have the different terms but have the same meaning from the answer. Experiment conducted has shown that word similiarity algorithm which has embedded to SIMPLE-O based on GLSA outperform the GLSA without word similiarity in term of the accuracy.
From 6 questions data conducted, GLSA with word similiarity outperform the other algorithm which are LSA and GLSA without word similiarity process 5 times or equal to 83,33%. The result from the average delta of the value is also proven that the word similiarity algorithm is have better performance than the other. Word similiarity algorithm proven to increase the accuracy of essay grader for text in Bahasa Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45892
UI - Tesis Membership  Universitas Indonesia Library
cover
Suci Salimah Giani
"Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis LSA untuk memberikan penilaian secara objektif terhadap esai berbahasa Indonesia. Data keluaran sistem penilaian esai otomatis, Simple-O, berbasis LSA adalah nilai slice, nilai pad, dan nilai esai tersebut. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan persamaan kata pada sistem penilaian esai otomatis terhadap keakuratan penilaian. Terdapat nilai pad dan slice yang digunakan untuk melihat kemiripan antara teks jawaban mahasiswa dengan teks jawaban referensi. Selain itu, nilai pad dan slice juga akan digunakan sebagai input untuk algoritma Support Vector Machine SVM . Untuk melihat pengaruh penambahan persamaan kata pada database sistem penilaian esai otomatis, Simple-O, maka dilakukan enam skenario pengujian terhadap penggunaan persamaan kata untuk kata kunci. Dalam hal ini, kata kunci merupakan kumpulan kata-kata yang dipilih dari jawaban dimana kata-kata tersebut yang mempunyai nilai. Masing-masing skenario memiliki lima variasi jawaban dengan persentase penggunaan persamaan kata pada kata kunci yang berbeda-beda, mulai dari 100 , 80 , 60 , 40 , 20 , dan 0 . Terdapat tiga nilai yang dianalisis untuk melihat tingkat akurasi penilaian oleh sistem penilaian esai otomatis, Simple-O, yakni nilai esai, nilai pad, dan nilai slice. Hasil dari pengujian dan analisis yang telah dilaksanakan adalah: peningkatan rata-rata akurasi penilaian program Simple-O setelah mengalami penambahan persamaan kata sebesar 18 dari 72 menjadi 90 , rata-rata koefisien korelasi antara penilaian oleh human rater dan program Simple-O bernilai 0.85, serta penurunan rata-rata perolehan nilai pad senilai 1.51 dari 32.35 menjadi 30.84 dan nilai slice senilai 1.01 dari 31.85 menjadi 30.84, sehingga mengindikasikan adanya peningkatan akurasi penilaian oleh program Simple-O setelah mengalami penambahan persamaan kata pada database sistem penilaian esai otomatis, Simple-O.

Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis LSA to provide objective assessment of an essay in Bahasa Indonesia. The output data of automated essay grading system with LSA algorithm, Simple O, are pad value, slice value, and the essay rsquo s scores. This thesis will discuss and provide analysis of the influence of synonym importation in automated essay grading system over assessment accuracy. There are pad and slice values, which are used to observe the similarity between students rsquo answers in essay and the reference answers in essay as well. In addition, pad and slice values will also be used as input for Support Vector Machine SVM algorithm. To see the influence and difference of adding word equations into the database of automated essay grading system, Simple O, six testing scenarios are tested against the use of word equations for keywords. In this case, keyword is a collection of selected words from the answers which those words that has a value. Each of the scenario has five answer variations with different percentage of word equations usage on keywords, ranging from 100 , 80 , 60 , 40 , 20 , and 0 . There are three values to be analyzed to see the assessment accuracy level by automated essay grading system, Simple O, they are essay 39 s score, pad values, and slice values. The results of analysis and test that has been done is the average of assessment accuracy of Simple O program after adding word equations increases 18 , from 72 to 90 , the average of correlation coefficient between assessment by human rater and Simple O program is worth 0.85, also the average value of pad decreases 1.51, from 32.35 to 30.84, and the average value of slice decreases 1.01, from 31.85 to 30.84, thus it indicates an improvement of assessment accuracy level results by Simple O program after adding word equations to the database of automated essay grading system, Simple O."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68829
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhilah Siti Shalihah
" E-learning dalam dunia pendidikan sudah banyak diterapkan untuk meningkatkan mutu pendidikan salah satunya adalah penggunaan e-learning pada pengujian akademis baik ujian pilihan ganda, esai, dan lisan. Proses penilaian jawaban ujian mahasiswa masih secara manual maka dari itu, penilitian membahas pengembangan Sistem Penilaian Ujian Lisan atau SIPENILAI dalam bahasa Jepang dengan menerapkan API google speech recognition dan metode LSA. SIPENILAI merupakan sistem yang dikembangkan oleh Departemen Teknik Elektro yang bertujuan untuk menilai ujian lisan secara otomatis. Speech recognition yang akan diterapkan memakai API google speech recognition yang merupakan API yang digunakan untuk mendeteksi suara yang kemudian diubah menjadi teks. Algoritma LSA merupakan metode yang digunakan untuk menganalisa kemiripan antara kalimat dengan dokumen jawaban dari pengajar. Kata dalam kalimat akan disusun menjadi matriks kemudian diproses dengan SVD (Singular Value Decomposition) dan diukur kemiripan antara kalimat dengan dokumen jawaban menggunakan Frobenius Norm. Dari pengujian yang telah dilakukan SIPENILAI dapat mencapai rata-rata akurasi sebesar 83.64% untuk pengguna fasih dan 76.89% untuk pengguna tidak fasih.

E-learning in the world of education has been widely applied to improve the quality of education one of which is the use of e-learning in academic testing both multiple choice exams, essays, and oral. The process of evaluating student exam answers is still manual and therefore the research, discussing the development of the Oral Examination Assessment System or SIPENILAI in Japanese by implementing Google API speech recognition and LSA methods. SIPENILAI is a system developed by the Department of Electrical Engineering which aims to assess oral examinations automatically. Speech recognition that will be implemented using Google API speech recognition which is an API that is used to detect sound which is then converted into text. LSA algorithm is a method used to analyze the similarity between sentences and the document answers from the teacher. The words in the sentence will be arranged into a matrix and then processed with SVD (Singular Value Decomposition) and measured the similarity between the sentence with the answer document using Frobenius Norm. From testing that has been done, SIPENILAI can reach an average accuracy of 83.64% for fluent users and 76.89% for non-fluent users."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rico Setiawan
"Simple-O merupakan sebuah sistem penilaian esai otomatis (essay grading) yang meggunakan metode Latent Semantic Analysis (LSA). Prinsip kerja sistem ini adalah dengan melakukan konversi jawaban ke dalam bentuk matriks yang kemudian secara statistik dan matematis dihitung intensitas atau frekuensi keberadaan kata. Metode LSA mengaplikasikan teori Singular Value Decomposition (SVD), yaitu teknik yang digunakan untuk melakukan estimasi terhadap rank dan matriks. Melalui SVD akan dilakukan peleburan atau reduksi dari matriks berukuran besar menjadi matriks kecil. Kemiripian antara kalimat dihitung dengan melakukan penghitungan nilai kosinus dari sudut atau membandingkan norma sudut Frobenius antara dua vector. Pada skripsi ini, ditambahkan program pengenalan kata frasa dan negasi dari sistem Simple-O sebelumnya yang kemudian dibandingkan dengan penilaian secara manual (human raters). Untuk menghitung nilai korelasi antar sistem dan human raters, maka digunakan teknik penghitung korelasi Pearson Product Moment. Nilai korelasi yang didapatkan antara sistem baru dan manual adalah 0.53155.

Simple-O is an automated essay scoring system (essay grading) that applies Latent Semantic Analysis (LSA) method. The working principle of this system is by converting the answers into the form of a matrix which is then statistically and mathematically calculated the intensity or frequency of the existence of the word. LSA method applying Singular Value Decomposition theory (SVD), which is a technique used to estimate the rank and matrix. SVD will be done through reduction of a large matrix into smaller matrices. The similarity between the sentence is calculated by calculating the value of the cosine of the angle or comparing Frobenius angles norm between two vectors. In this paper, the program added phrases and negation words identification of Simple-O system and will be compared with Original Simple-O and human raters. To calculate the value of the correlation between the system and human raters, we used the technique Pearson Product Moment. Correlation values obtained between the new system and the manual at about 0.53155"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55163
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karisma Linda Nissa Kusumawati
"Pada skripsi ini telah dilakukan pengujian variasi kata kunci dalam jawaban mahasiswa yang mempengaruhi keakuratan nilai dari penggunaan program SIMPLE-O. Dengan adanya jawaban mahasiswa dalam berbagai variasi maka dapat dilihat pengaruh kata kunci dalam proses penilaian sistem. Kata kunci merupakan kumpulan kata-kata yang dipilih dari jawaban dimana kata-kata tersebut yang mempunyai nilai. Selain itu, terdapat kata bobot yang merupakan kumpulan dari kata kunci yang mempunyai bobot nilai lebih tinggi. Semakin banyak kata kunci yang dimasukkan, maka semakin besar keakuratan nilai pada sistem. Terdapat enam skenario yang digunakan sebagai bahan analisis.
Korelasi waktu penggunaan sistem saat program dimasukkan ke dalam cloud computing berbeda dengan penggunaan sistem saja. Waktu proses penilaian yang dihasilkan oleh sistem lebih cepat dibandingkan waktu proses penilaian saat sistem berada dimasukkan ke dalam cloud computing. Nilai korelasi yang baik adalah nilai korelasi yang mendekati satu. Waktu korelasi yang paling baik pada pengujian skenario pada sistem sebesar 0.97. Sedangkan nilai korelasi pada pengujian skenario pada sistem sebesar 0.22.

In this thesis will discuss some keyword variation affects the accuracy of the students in the program use SIMPLE-O. With the variety of answer?s student in large amounts it can be seen how keywords in the process of the assessment system. Keywords is a collection of selected words from the answers which those words that has a value. In addition, there is the word weight is a collection of keywords that have a higher weight value. Increasingly many keywords entered, the greater accuracy in the system. There are six scenarios used for analysis.
Correlation time when using system in cloud computing has different than using simply system. Time processing in system make a better value than using simply system in cloud computing. Correlation value has a good value when the correlation closed with one. Correlation time in scenario system is 0.97. Whereas correltion value in scenario system is 0.22.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65119
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>