Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 98902 dokumen yang sesuai dengan query
cover
Panjaitan, Abyan Abdillah Saoloan
"Optimalisasi kinerja untuk anoda baterai lithium-ion (LIBs) dapat dilakukan dengan menambahkan ZnO melalui reaksi sol-gel solid-state. Dalam penelitian ini, Li4Ti5O12 (LTO) yang digunakan disintesis melalui proses sol-gel solid-state dan ditambahkan dengan ZnO-nanorods yang diperoleh dari proses sintesis ZnO- nanorods setelah sintesis LTO selesai. LTO-ZnO yang diperoleh ditandai untuk menentukan fase utama dan komposisi kimia oleh XRD dan SEM-EDS masing-masing. Kinerja elektrokimia dari LTO-ZnO diuji oleh EIS, CV, dan CD. Karakterisasi ZnO-nanorods dengan hasil SEM-EDS menunjukkan bahwa ZnO di dalam LTO terdispersi secara homogen.
Karakterisasi menggunakan XRD mengungkapkan bahwa ZnO berhasil memasuki LTO dengan variasi jumlah 4, 7, dan 10% berat ZnO. Uji konduktivitas listrik menunjukkan peningkatan pada penambahan jumlah ZnO optimum pada 4% berat, meskipun hasil BET menunjukkan pada jumlah optimum luas permukaan dengan 75.545 m2/g. Hasil kinerja elektrokimia menunjukkan kinerja yang optimal dalam ZnO pada 4% berat karena kemampuannya untuk menahan tes EIS pada 20C dibandingkan dengan 7% berat dan 10% berat. Juga kapasitas 4% berat yang ditambahkan adalah 110,2 mAh/g dibandingkan dengan 7% berat dengan 109,1 mAh/g dan 10% berat dengan 96,7 mAh/g.

Performance optimization for anode of lithium-ion batteries (LIBs) can be conducted by adding ZnO through sol-gel solid-state reaction. In this research, the Li4Ti5O12 (LTO) used was synthesized through sol-gel solid-state process and added with ZnO-nanorods obtained ZnO synthesis after LTO synthesis done. LTO-ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM-EDS respectively. Electrochemical performance of LTO-ZnO was tested by EIS, CV, and CD. ZnO-nanorods characterization with SEM-EDS results shows that the ZnO inside the LTO dispersed homogenously.
Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt % of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt%, although BET result shows at the optimum amount of surface area with 75.545 m 2 /g. Electrochemical performance result shows optimum performance in ZnO at 4 wt% for its ability to withstand EIS test at 20C compared to 7 wt% and 10 wt%. Also, capacity of 4 wt% added is 110,2mAh/g compared to 7 wt% with 109.1 mAh/g and 10 wt% with 96,7 mAh/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Narayana Yuliandono Radiawan
"Optimalisasi kinerja untuk anoda baterai lithium-ion LIBs dapat dilakukan dengan menambahkan ZnO melalui reaksi sol-gel solid-state. Dalam penelitian ini, Li4Ti5O12 LTO yang digunakan disintesis melalui proses sol-gel solid-state dan langsung ditambahkan dengan ZnO-nanorods yang diperoleh dari proses penuaan dan annealing. LTO-ZnO yang diperoleh ditandai untuk menentukan fase utama dan komposisi kimia oleh XRD dan SEM-EDS masing-masing. Kinerja elektrokimia dari LTO-ZnO diuji oleh EIS, CV, dan CD.
Karakterisasi ZnO-nanorods dengan hasil SEM-EDS menunjukkan bahwa ZnO di dalam LTO terdispersi secara homogen. Karakterisasi menggunakan XRD mengungkapkan bahwa ZnO berhasil memasuki LTO dengan variasi jumlah 4, 7, dan 10 berat ZnO. Uji konduktivitas listrik menunjukkan peningkatan pada penambahan jumlah ZnO optimum pada 4 berat, meskipun hasil BET menunjukkan pada jumlah optimum luas permukaan dengan 96,459 m2/g. Hasil kinerja elektrokimia menunjukkan kinerja yang optimal dalam ZnO pada 4 berat karena kemampuannya untuk menahan tes EIS pada 20C dibandingkan dengan 7 berat dan 10 berat. Juga kapasitas 4 berat yang ditambahkan adalah 150,8 mAh/g dibandingkan dengan 7 berat dengan 134,1 mAh/g dan 10 berat dengan 118,3 mAh/g.

Performance optimization for anode of lithium ion batteries LIBs can be conducted by adding ZnO through sol gel solid state reaction. In this research, the Li4Ti5O12 LTO used was synthesized through sol gel solid state process and directly added with ZnO nanorods obtained from aging and annealing process. LTO ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM EDS respectively. Electrochemical performance of LTO ZnO was tested by EIS, CV, and CD.
ZnO nanorods characterization with SEM EDS results shows that the ZnO inside the LTO dispersed homogenously. Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt , although BET result shows at the optimum amount of surface area with 96.459 m2 g. Electrochemical performance result shows optimum performance in ZnO at 4 wt for its ability to withstand EIS test at 20C compared to 7 wt and 10 wt . Also, capacity of 4 wt added is 150.8 mAh g compared to 7 wt with 134.1 mAh g and 10 wt with 118.3 mAh g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Ridho Nugraha
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, LTO/C@ZnO disintesis dengan LTO nanorod dengan metode hidrotermal dari TiO2 xerogel yang dibuat dengan metode sol-gel, litium hidroksida (LiOH), Karbon aktif, dan Zinc Oksida (ZnO) nanorod. Tiga variasi penambahan konten ZnO dalam % berat, yaitu, 4, 7 dan 10%, diberi label sampel LTO/C@ZnO-4, LTO C@ZnO-7 dan LTO/C@ZnO-10. Karakterisasi dilakukan menggunakan XRD, SEM, FE-SEM, dan BET. Ini dilakukan untuk mengamati efek penambahan ZnO pada struktur, morfologi, dan luas permukaan sampel yang dihasilkan. Hasil penelitian menunjukkan bahwa kapasitas optimum dari masing- masing sampel adalah 32,84 mAh/g dalam LTO/C@ZnO-4 dengan ukuran kristal 11,86 nm dan luas permukaan 348,736 m2/g. Dalam pengujian cyclic voltametry, menunjukkan pergeseran dalam tegangan reaksi dan pengurangan kapasitas yang disebabkan oleh penambahan C@ZnO dan kurangnya Li4Ti5O12 yang terbentuk.

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO/C@ZnO was synthesized with LTO nanorod by hydrothermal method using TiO2 xerogel that prepared by the sol-gel method, lithium hydroxide (LiOH), Activated carbon, and Zinc Oxide (ZnO) nanorod. Three variations of ZnO content addition in weight% , i.e., 4, 7 and 10%, labelled as sample LTO/C@ZnO-4, LTO/C@ZnO-7 and LTO/C@ZnO-10, respectively. The characterizations were made using XRD, SEM, FE-SEM, and BET testing. These were performed to observe the effect of ZnO addition on astructure, morphology, and surface area of the resulting samples. Result showed that the optimum discharge capacity from each samples was 32.84 mAh/g in LTO/C@ZnO-4 with the crystallite size of 11.86 nm and the surface area of 348.736 m2/g. In cyclic voltammetry testing, it shows a shift in reaction voltage and reduction in capacity that caused by the addition of C@ZnO and the lack of Li4Ti5O12 that are formed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hugo Abraham
"Optimalisasi kinerja untuk anoda baterai lithium-ion (LIBs) dapat dilakukan dengan mencampur ZnO-nanorods dengan ketentuan Karbon Aktif. Dalam penelitian ini, ZnO-nanorods di sintesis melalui suatu proses yang menggunakan bahan dasar HMTA dan Zinc Oxide. Untuk mengatasi masalah ini karbon telah diaktifkan karena memiliki sifat konduktivitas yang baik dan dapat mempengaruhi volume yang terjadi. Variasi dalam persentase nanorods ZnO yang 4wt%, 7wt%, dan 10wt%. Karakterisasi sampel diperiksa menggunakan X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), dan Brunauer-Emmett-Teller (BET). Kinerja baterai sampel diperoleh dengan Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), dan Charge-Discharge (CD) pengujian setelah dirangkai menjadi baterai sel berbentuk koin.
Penelitian ini membahas tentang pengaruh penambahan karbon aktif terhadap komposit nanorod ZnO. Hasil penelitian menunjukkan bahwa nanorod AC-10%/ZnO-7% memiliki kapasitas spesifik tertinggi 270,9 mAh/g. Menurut tes Brunner-Emmet-Teller (BET), luas permukaan terbesar adalah 631.685 m2/g. Kinerja elektrokimia paling baik diperoleh oleh nanorods AC-10%/ZnO-7%.

Performance optimization for lithium-ion battery anodes (LIBs) can be done by mixing ZnO-nanorods with the provisions of Active Carbon. In this study, ZnO-nanorods synthesized a process that uses basic ingredients HMTA and Zinc Oxide, in addition. To solve this problem, carbon has been activated because it has good conductivity properties and can affect the volume that occurs. Variations in the percentage of ZnO nanorods which are 4wt%, 7wt%, and 10wt%. Characterization of the samples was examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunauer-Emmett-Teller (BET). The battery performance of the samples was obtained by Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Charge-Discharge (CD) testing after being assembled into coin cell batteries.
This study discusses the effect of adding activated carbon to ZnO nanorods composites. The results showed that the AC-10%/ZnO-7% nanorods have the highest specific capacity of 270.9 mAh/g. According to Brunner-Emmet-Teller (BET) test, the largest surface area was 631.685 m2/g. Electrochemical performance is best obtained by AC-10% / ZnO-7% nanorods.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Netta Claudia
"Salah satu anoda yang dewasa ini banyak dikembangkan untuk meningkatkan kapasitas dan performa baterai ion litium adalah anoda litium titanat (Li4Ti5O12). Anoda litium titanat memiliki kelebihan dalam aspek kestabilan termal dan karakteristik zero strain. Kekurangan dari material ini, yaitu konduktivitas listrik dan kapasitas yang rendah. Pada penelitian ini akan diobservasi perubahan karakteristik dari material anoda litium titanat yang dibuat menjadi komposit dengan grafit dan doping Fe dengan variasi konsentrasi 0,1, dan 5 mol%. Sintesis dilakukan dengan metode solid state dan hasil sintesis dikarakterisasi menggunakan XRD dan SEM, kemudian difabrikasi menjadi koin sel untuk dilakukan pengujian performa dengan EIS, CV, dan CD.

One of many anodes currently being developed to increase the capacity and performance of lithium ion batteries is lithium titanate anode (Li4Ti5O12). The lithium titanate anode has advantages in its thermal stability and zero strain characteristic. The main disadvantages of this material are the low electrical conductivity and capacity. This research will be observing the characteristic changes of the lithium titanate material made into composites with graphite (5 wt%) and iron (Fe) doping with concentrations of 0,1, and 5 mol%. The synthesis was carried out by solid state method and the synthesized material was characterized using XRD and SEM, then fabricated into cell coins for performance testing with EIS, CV, and CD."
Depok: Fakultas Teknik Universitas Indonesia , 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Hafidzan Aziz Sahab
"Litium Ferro Phosphate, LiFePO4 (LFP) adalah kandidat yang menjanjikan sebagai bahan katoda baterai lithium ion. Dalam penelitian ini, LFNP/C disintesis dengan metode solid-state dari precursor LFP, Nikel menjadi variasi penambahan konten LFP dalam bentuk doping, yaitu, 6, 7,5 dan 9%, diberi label sampel LFNP/C-Ni6%, LFNP/C-Ni7.5% dan LFNP/C-Ni9%. Karakterisasi dilakukan menggunakan XRD, SEM, EDX, dan MAPPING. Ini dilakukan untuk mengamati efek penambahan Nikel pada struktur, morfologi, dan komposisi sampel. Hasil penelitian menunjukkan bahwa persentase optimum doping Nikel adalah 7.5% karena telah menunjukan hasil yang memuaskan di performa CV,CD, dan EIS dengan ukuran kristal 76.93 nm. Dalam pengujian cyclic voltametry, konduktivitas dan kapasitas sampel meningkat dan disebabkan oleh penambahan Nikel pada LFP.

Lithium Ferro Phosphate, LiFePO4 (LFP) is a promising candidate as a cathode material for lithium ion batteries. In this study, LFNP / C was synthesized by the solid-state method of the LFP precursors, Nickel became a variation of LFP content addition in the form of doping, namely, 6, 7.5 and 9%, labeled LFNP / C-Ni6% sample, LFNP / C-Ni7.5% and LFNP / C-Ni9%. Characterization was done using XRD, SEM, EDX, and MAPPING. This was done to observe the effect of adding Nickel to the structure, morphology, and composition of the sample. The results showed that the optimum percentage of Nickel doping was 7.5% because it had shown satisfactory results in the performance of CV, CD, and EIS with a crystal size of 76.93 nm. In cyclic voltametry testing, the conductivity and capacity of the sample increases and is caused by the addition of Nickel to LFP."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Baghaskara Surendra
"Litium Titanat, Li4Ti5O12 (LTO) adalah kandidat yang menjanjikan sebagai bahan anoda baterai lithium ion. Dalam penelitian ini, Li4Ti5O12 akan disintesis dengan menggunakan metode solid-state dengan menggunakan komersial TiO2 dan komersial litium hidroksida (LiOH). Setelah itu, komersial bubuk nikel dipanaskan pada suhu 600oC selama 4 jam untuk mendapatkan NiO sebagai logam oksida transisi. Penambahan NiO ke LTO kepada semua sampel sebesar 3%. Tiga variasi penambahan lama waktu proses sintering sebesar 4 jam, 8 jam, 10 jam, diberi label sampel LTO/NiO 3% (4 jam), LTO/NiO 3% (8 jam) and LTO/NiO 3% (10 jam). Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan NiO pada struktur dan morfologi sampel yang dibuat. Hasil karakterisasi sampel menunjukkan bahwa penambahan NiO 3% memiliki konduktivitas lebih baik. Hasil dari tes Electrochemical Impedance Spectroscopy juga menunjukkan LTO/NiO 3% (4 jam) memiliki konduktivitas terbaik dengan nilai resistansi terkecil

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, Li4Ti5O12 was synthesized with solid-state method by using TiO2 with the help of lithium hydroxide (LiOH) and nickel powder as the precursor materials, resulting in LTO. Commercial nickel powder was heated at 600oC for 4 hours to obtain NiO as transition metal oxide. NiO addition to the LTO for all samples is 3% in weight%. Three variations of different sintering holding time for 4 hours, 8 hours and 10 hours labelled as LTO/NiO 3% (4 hours), LTO/NiO 3% (8 hours) and LTO/NiO 3% (10 hours), respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of NiO addition and different holding time on structure and morphology of the resulting samples. The result showed that the addition of NiO will make the samples have better conductivity. According to Electrochemical Impedance Spectroscopy, LTO/NiO 3% (4 hours) also has the best conductivity with the lowest resistivity."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pierre Wolter Winowatan
"Konsumsi bahan bakar fosil telah dianggap sebagai salah satu kebutuhan utama kita. Penggunaan bahan bakar fosil bisa merusak lingkungan dengan menghasilkan polusi sebagai produk dari pembakaran bahan bakar fosil. Ada banyak penemuan mengenai pengembangan penyimpanan energi seperti baterai. Penggunaan baterai lithium-ion dapat menjanjikan untuk aplikasi yang membutuhkan daya tinggi dan salah satu kandidat untuk mengalihkan penggunaan bahan bakar fosil. Lithium titanat adalah bahan yang menjanjikan untuk digunakan sebagai bahan anoda. Penambahan silikon yang memiliki kapasitas teoritis 4200 mAh g-1 telah membuat lithium titanat dan silikon untuk saling melengkapi dan bersinergi satu sama lain. Lithium titanate disintesis menggunakan metode sol-gel dan metode solid state. Peracikan dengan elemen silikon dalam slurry dapat mencegah perubahan fase dari silikon menjadi SiO2. Kadar silikon dibagi menjadi tiga komposisi 10 , 20 dan 30 dengan nomenklatur LTO-Si10 sr, LTO-Si20 sr dan LTO-Si30 sr untuk setiap sampel memiliki konten yang berbeda dari silikon masing-masing. Kapasitas tertinggi terkait dengan tingkat C rate yang berbeda adalah LTO-Si20 sr dan Diikuti oleh LTO-Si10 sr yang dimana kapasitas saat C rate berbeda LTO-Si30 memiliki kapasitas yang terbilang buruk.

The consumption of fossil fuel has been considered as one of our main necessity. The use of fossil fuel could damage our environment with the produce of pollution as the combustion product of fossil fuel. There are many inventions regarding the development of energy storage such as battery. The use of lithium ion has been promising for high power application and one of the candidates to divert the usage of fossil fuel. Lithium titanate is a promising material to be used as anode material. The addition of silicon which has theoretical capacity of 4200 mAh g 1 has made lithium titanate and silicon to compliment and synergize with one another. The lithium titanate was synthesized using sol gel and solid state methods. The compounding with silicon element was in the slurry making to prevent any phase changes of silicon to be SiO2. The silicon content was divided into three compositions of 10, 20 and 30 with the nomenclature of LTO Si10 sr, LTO Si20 sr and LTO Si30 sr for each sample having different content of silicon respectively. The highest capacity associated with different C rate is LTO Si20 sr and followed by LTO Si10 sr with LTO Si30 sr having poor overall capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69280
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Aufa
"Litium Titanat atau Li4Ti5O12 (LTO) merupakan salah satu material yang menguntungkan sebagai bahan dasar anoda baterai lithium ion. Dalam penelitian ini, LTO disintesis dengan karbon aktif (AC) yang berbahan dasar dari sampah pelastik (PET), dengan komposisi karbon aktif yang berbeda sebesar 3 wt%, 5 wt%, and 7 wt%. Karbon aktif tersebut terbuat dari campuran sampah pelastik dan bentonite (9:1) yang dikarbonisasi melalui tungku pembakaran pada suhu 400°C dalam atmosfer inert nitrogen menjadi karbon amorf hitam. Setelah karbonisasi, karbon tersebut diaktivasi melalui empat proses utama: pencampuran dengan NaOH, sintering dalam atmosfir nitrogen, pencucian, dan pengeringan. LTO/AC yang sudah disintesis lalu diubah menjadi anoda baterai lithium-ion setengah sel. Kemudian anoda tersebut dikarakterisasi melalui Uji Voltametri Siklus, Uji Pengisian Daya Muatan (CD) dan Spektroskopi Impedansi Listrik (EIS). Hasil akhir dari pengujian ini menunjukan bahwa penambahan karbon aktif dapat meningkatkan konduktifitas dari baterai lithium-setengah sel. Sesuai dengan hasil pengujian CV, penambahan karbon sebesar 7% wt% menghasilkan kapasitas spesifik sebesar 143.4 (mAh/g). Hasil pengujian pada penelitian ini menunjukan bahwa penambahan karbon aktif optimal adalah sebesar 7 wt%.

Lithium titanate or Li4Ti5O12 (LTO) is a favorable contender as lithium-ion battery anode material. In this research, LTO/AC was synthesized with activated carbon made of plastic waste, the different composition of 3 wt%, 5 wt%, and 7 wt% has been carried out. The activated carbon was made using the mixture of plastic waste and bentonite nano clay (9:1) that will go through the slow pyrolysis carbonization process, which is performed under 400°C in an inert atmosphere of N2 with the help of a furnace into black amorphous carbon. After the carbonization, the carbon is activated through four main stages: mixing with NaOH, sintering under a nitrogen atmosphere, washing, and drying. The synthesized LTO/AC materials are then formed into a half-cell lithium-ion battery anode. The half cell lithium-ion battery anodes are then examined using the Cycle Voltammetry Test, Charge Discharge (CD) Test, and Electrical Impedance Spectroscopy (EIS). The final result of this research shows that activated carbon can increase the conductivity of the half-cell lithium battery. According to the results of the CV test, the addition of 7% wt% carbon resulted in a specific capacity of 143.4 (mAh/g). The test results in this research indicate that the optimal addition of activated carbon is 7 wt%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>