Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19998 dokumen yang sesuai dengan query
cover
Ajeng Leudityara Fijri
"ABSTRACT
Kanker payudara adalah pertumbuhan sel-sel abnormal di jaringan pada payudara yang berkembang secara tidak terkendali. Perkembangan sel-sel abnormal secara tidak terkendali ini menyebabkan kanker menjadi salah satu penyakit paling mamatikan yang umumnya dialami oleh wanita di seluruh dunia. Salah satu cara untuk mengurangi berkembangnya sel kanker ini adalah dengan melakukan pendeteksian dini menggunakan machine learning. Beberapa metode machine learning berhasil melakukan klasifikasi kanker. Clustering merupakan salah satu metode dari machine learning yang bertujuan untuk mengelompokkan suatu dataset ke dalam subset berdasarkan ukuran jarak. Kernel Spherical K-Means (KSPKM) adalah salah satu metode clustering dengan mengganti hasil kali dalam yang ada pada Spherical K-Means (SPKM) dengan fungsi Kernel. Data kanker payudara yang digunakan pada penelitian ini adalah data kanker payudara Coimbra. Data kanker payudara Coimbra ini merupakan hasil dari pengambilan tes laboratorium yang dapat mendeteksi kanker payudara pada tubuh. Hasil klasifikasi data kanker payudara Coimbra dengan menggunakan metode SPKM memiliki hasil akurasi sebesar 81,82% dengan running time selama 0,16 detik, sensivicity sebesar 100%, dan specificity sebesar 65,62% sedangkan hasil akurasi dengan menggunakan KSPKM dengan Radial Basis Function (RBF) adalah 72,41% dengan running time 0,98 detik, sensivicity sebesar 61,54%, dan specificity sebesar 81,25% . Berdasarkan hasil akurasi pada 10% sampai 90% data yang digunakan, metode KSPKM menghasilkan akurasi yang lebih stabil dibandingkan hasil akurasi pada metode SPKM.

ABSTRACT
Breast cancer is the growth uncontrollably of abnormal cells in the tissue in the breast. The development of abnormal cells uncontrollably causes cancer to become one of the most deadly diseases commonly among women the worldwide. One way to reduce the development of cancer cells is by early detection using machine learning. Some machine learning methods successfully classify cancer. Clustering is one of the methods of machine learning that aims to grouping of a dataset into subsets based on distance measurement.. Kernel Spherical K-Means (KSPKM) is one of the clustering methods by replacing the inner products in the Spherical K-Means (SPKM) by Kernel functions. The breast cancer data used in this study were Coimbra breast cancer data. The Coimbra breast cancer data is the result of taking laboratory tests that can detect breast cancer in the body. The classification results for Coimbra breast cancer data using the SPKM method has highest accuracy 81,82% with running time for 0,16 seconds, sensivicity 100%, and specificity 65,62% while the highest accuracy results using KSPKM with Kernel radial basis function (RBF) are 72,41% with running time 0,98 seconds, sensivicity 61,54%, and specificity 81,25%. Based on the results of the accuracy of 10% to 90% of the training data used, the KSPKM method produces more stable accuracy than the accuracy results of SPKM method."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sari Gita Fitri
"Kanker adalah penyakit yang disebabkan oleh ketidakteraturan perjalanan hormon yang mengakibatkan tumbuhnya daging pada jaringan tubuh yang normal atau sering dikenal sebagai tumor ganas. Kanker terjadi saat sel-sel dalam tubuh membelah diri diluar kendali. Sel-sel abnormal ini kemudian menyerang jaringan terdekat. Salah satu kanker yang paling umum terjadi adalah kanker paru-paru. Kanker paru-paru adalah kanker yang dimulai di paru-paru dan paling sering terjadi pada orang yang merokok. Paru-paru kanan memiliki 3 bagian, yang disebut dengan lobus, sedangkan paru-paru kiri memiliki 2 lobus. Kanker paru-paru merupakan penyebab utama kematian terkait kanker di seluruh dunia dengan 30%-40% terjadi di negara berkembang. Untuk memprediksi apakah seseorang menderita kanker paru-paru atau tidak dapat dilihat dari terdapatnya tumor ganas pada paru-paru yang dapat dilakukan melalui CT scan. Namun, hasil CT scan tidak cukup dalam mendeteksi atau mendiagnosis secara dini terdapatnya tumor ganas di dalam paru-paru. Untuk itu, dapat digunakan machine learning dalam mendeteksi secara dini adanya tumor ganas di dalam paru-paru. Dalam penelitian ini, penulis menggunakan Kernel K-Means based Co-clustering yang merupakan pengembangan dari K-Means based Co-clustering. K-Means mengelompokkan data menggunakan jarak Euclidean. Akan tetapi, jika data yang dipisahkan adalah data nonlinear, maka konvergensi dari data yang dipisahkan tersebut akan kecil dan membutuhkan waktu yang lama, sehingga masalah ini dapat diselesaikan dengan menggunakan fungsi kernel untuk menggantikan jarak Euclidean.Co-clustering mempartisi baris dan kolom dari suatu matriks data secara simultan, sehingga blok yang diinduksi oleh partisi adalah klaster yang baik. Metode Kernel K-Means based Co-clustering memasukkan banyak titik untuk mewakili masing-masing pusat klaster, sehingga titik-titik di dalam klaster saling berdekatan, akan tetapi jauh dari titik yang mewakili klaster lain. Data yang digunakan adalah data kanker paru-paru yang diperoleh dari laboratorium radiologi RSUPN Cipto Mangunkusumo, Jakarta. Hasil akurasi yang diperoleh untuk memprediksi penyakit kanker paru-paru dengan menggunakan metode Kernel K-Means based Co-clustering adalah 94,5%.

Cancer is a disease caused by an irregular course of hormones that results in the growth of flesh in normal body tissues or often known as malignant tumors. Cancer occurs when cells in the body divide out of control. These abnormal cells then attack nearby tissues. One of the most common cancers is lung cancer. Lung cancer is cancer that starts in the lungs and most often occurs in people who smoke. The right lung has 3 parts, which are called lobes, while the left lung has 2 lobes. Lung cancer is the leading cause of cancer-related deaths worldwide with 30%-40% occurring in developing countries. To predict whether someone has lung cancer or can not be seen from the presence of malignant tumors in the lungs that can be done through a CT scan. However, CT scan results are not enough to detect or diagnose the presence of malignant tumors early in the lungs. For this reason, machine learning can be used to detect malignant tumors early in the lungs. In this research, the writer usesKernel K-Meansbased Co-clustering which is the development of K-Means-based Co-clustering. K-Means groups data using Euclidean distances. However, if the separated data is non-linear data, the convergence will be small and take a long time, so this problem can be solved by using the kernel function to replace the Euclidean distance. Co-clustering partitioned rows and columns of a data matrix simultaneously, so the blocks induced by partitions are good clusters. Kernel K-Meansbased Co-clustering method includes many points to represent each cluster center, so that the points within the cluster are close together, but far from the points representing other clusters. The data used are lung cancer data obtained from the radiology laboratory of Cipto Mangunkusumo General Hospital, Jakarta. Accuracy results obtained to predict lung cancer by using the Kernel K-Meansbased Co-clustering method are 94.5%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gabriella Kurniawan
"ABSTRACT
Hepatitis merupakan penyakit peradangan pada hati yang dapat disebabkan oleh virus hepatitis. Di antara lima jenis hepatitis, hepatitis B dan hepatitis C merupakan jenis hepatitis yang dapat berkembang menjadi kanker hati. Kanker hati merupakan jenis kanker nomor tujuh tertinggi di dunia dan nomor tiga yang menyebabkan kematian karena kanker. Seseorang yang memiliki gejala penyakit hepatitis dapat melakukan serangkaian uji laboratorium untuk melihat kondisi kesehatannya. Hasil laboratorium hepatitis dapat kita manfaatkan untuk membentuk suatu program yang dapat mengklasifikasi hepatitis B dan hepatitis C. K-Means Clustering merupakan salah satu metode clustering yang dapat dimanfaatkan untuk mengklasifikasi hepatitis B dan hepatitis C. K-Means Clustering cukup mudah untuk diimplementasikan dan waktu yang digunakan untuk mengolah data juga cukup sedikit sehingga, metode ini cukup baik untuk mengklasifikasi data hepatitis B dan hepatitis C. Sementara, Spherical K-Means merupakan metode lanjutan dari K-Means Clustering. Hasil klasifikasi dari dua buah metode akan digunakan untuk melihat akurasi dari kedua buah metode dan membandingkan kedua metode tersebut.

ABSTRACT
Hepatitis is an inflammatory disease of the liver caused by hepatitis virus. Among the five types of hepatitis virus, hepatitis B and hepatitis C is the types of hepatitis that can develop into liver cancer. Liver cancer is number seventh in the world for the highest cancer case and number third of the highest death because of cancer. Someone who has symptoms of hepatitis can carry out a series of laboratory tests to see his health condition. This laboratory results can be used to form a program to classify hepatitis B and hepatitis C data. K-Means Clustering is a clustering method which can be used to classify hepatitis B and hepatitis C data. K-Means Clustering was rather easy to use and less time was needed to running the program of K-Means Clustering, with the result that, K-Means Clustering method was good enough to classify hepatitis B and hepatitis C data. While, Spherical K-Means is an advanced method of K-Means Clustering. Classification results from this two methods will be used to see the accuracy of the data and compare the two methods."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardibian Krismanti
Depok: Universitas Indonesia, 2010
S27787
UI - Skripsi Open  Universitas Indonesia Library
cover
Ardibian Krismanti
"Dari pemeriksaan MRI, diperoleh gambar jaringan otak, yang akan digunakan oleh proton MRS untuk menentukan konsentrasi metabolit otak pada jaringan yang didiagnosa astrocytoma, seperti metabolit NAA, choline, creatine, Lipid, Lactate, Myoinositol, dan Glutamine-glutamate. Dari hasil MRS ini, astrocytoma dapat diklasifikasi berdasarkan derajat keganasannya (grade), yaitu high grade dan low grade. Proses klasifikasi astrocytoma, biasa dilakukan secara manual oleh ahli patologi atau secara statistik. Dalam skripsi ini, akan dibahas proses klasifikasi astrocytoma menjadi tiga kelas derajat keganasan dengan menggunakan metode Principal Component Analysis (PCA) dan Spherical K-Means terhadap data MRS. Algoritma Spherical K-Means merupakan algoritma K- Means dengan cosine similarity. Sedangkan PCA merupakan teknik yang digunakan untuk mencari vektor-vektor basis subruang tiap kelas (grade). Vektor-vektor basis ini akan membangun Principal Component yang akan digunakan dalam pengidentifikasian grade suatu data MRS. Data yang digunakan dalam skripsi ini adalah data yang berasal dari laboratorium radiologi Rumah Sakit Cipto Mangunkusumo (RSCM), Jakarta. Hasil penelitian yang dilakukan pada skripsi ini, diketahui bahwa PCA dapat mengklasifikasi astrocytoma dengan akurasi tertinggi, yaitu 85%. Selain itu, dari penelitian ini dihasilkan perangkat lunak yang dapat digunakan untuk membantu pengambilan keputusan yang terkait dengan klasifikasi astrocytoma menjadi high grade, low grade, dan normal.

MRI gives information in form of brain tissue image, which will be used by MRS proton to determine the concentration of brain metabolites on the astrocytoma diagnosed tissue, such as NAA, choline (Cho), creatine (Cr), Lipid (Lip), Lactate (Lac), Myoinositol (MI), and Glutamine-glutamate (Glx). From that result, astrocytoma could be classified to high grade and low grade. This classifying could be processed manually by pathologist, or be processed statistically. On this essay, astrocytoma would be classified into three class of astrocytoma grades with the Principal Component Analysis (PCA) and Spherical K-Means of the MRS data. Spherical K-Means algorithm is a K-Means algorithm with cosine similarity. At the same time, PCA is a technique which used to find the basis vectors of each class (grade) subspace. These basis vectors would build Principal Component which would be used in identifying a grade of a MRS data. The data used in this essay is resourced from radiology laboratory of Rumah Sakit Cipto Mangunkusumo (RSCM), Jakarta. From this research, note that PCA can classify astrocytoma with the highest accuracy, ie 85%. In addition, this research produce software that can be used to assist decision making related to the classification of astrocytoma to high grade, low grade, and normal"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teny Handhayani
"Integrasi data gene expression dan DNA copy number berbasis kernel digunakan untuk menganalisis pola gen pada penyakit kanker payudara cell line. Clustering pada data integrasi dilakukan tanpa adanya informasi jumlah k cluster, teknik ini disebut fully unsupervised clustering. Pada penelitian ini, intelligent kernel K-Means dikembangkan dengan menggabungkan teknik intelligent K-Means dan kernel K-Means. Berdasarkan hasil eksperimen, nilai pada kernel RBF mempengaruhi jumlah cluster yang ditemukan. Hasil clustering dievaluasi menggunakan nilai R, global silhouette, indeks Davies-Bouldien, akurasi LS-SVM dan visualisasi. Hasil esperimen terbaik yaitu 3 cluster yang memperoleh akurasi LS-SVM sebesar 97.3% dengan standar deviasi 0.2%.

In this thesis, kernel based data integration of gene expression and DNA copy number would be utilized to analyze pattern of genes in breast cancer cell line. The cluster analysis on the integrated data will be conducted with has no prior information with regards the number of k clusters which is called fully unsupervised clustering technique. In this work, intelligent kernel K-Means is proposed by combining intelligent K-Means and kernel K-Means. From the experiments, the value of of Radial Basis Function (RBF) has important role for finding the optimal of number of cluster. The clusters those to be found will be evaluated based on global silhouette, Davies-Bouldien Index, LS-SVM accuracy and visualization. The experiment result show that three clusters are successfully to be found. Those clusters produce average accuracy of LS-SVM around 97.3 % with standard deviation 0.2 %."
Depok: Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Atika Previanti Nabila
"Segmentasi dalam dunia medis sudah menjadi suatu hal yang penting untuk menentukan diagnosa awal dari suatu penyakit, misalnya timbulnya tumor pada organ-organ tubuh yang berukuran kecil dan sulit teramati oleh mata telanjang. Namun, jika segmentasi dilakukan secara manual dan tradisional akan membutuhkan waktu yang banyak serta menyebabkan hasil yang tidak konsisten. Oleh karena itu, dibutuhkannya segmentasi secara otomatis yang dapat membantu dokter tidak hanya dalam mengetahui keberadaan tumor, melainkan juga dapat mengkuantifikasi ukuran tumor. Dalam penelitian ini, segmentasi otomatis dengan machine learning diterapkan menggunakan metode clustering K-Means pada fantom ekuivalen hati berbentuk silinder. Fantom ekuivalen terbuat dari material tepung beras dan lilin, yang kemudian diinjeksikan dengan radioaktivitas 18F-FDG sebesar 1,89 µCi/mL. Pengolahan citra fantom dilakukan dengan pesawat PET/CT Siemens Biograph menggunakan metode rekonstruksi Iterative 3D dan True-X serta 2 filter (Gaussian dan Butterworth). Akurasi deteksi algoritma K-Means menunjukkan bahwa dapat optimal pada tiga tipe pemindaian dengan terdeteksinya seluruh objek pada citra fantom. Namun, hal tersebut terkecualikan pada filter Gaussian dengan metode rekonstruksi Iterative 3D karena algoritma K-Means tidak dapat mendeteksi objek terkecil (4 mm) pada kedua wilayah fantom. Indikasi tidak terdeteksinya objek terkecil, dapat disebabkan oleh kinerja algoritma yang mengelompokkan objek dengan nilai piksel yang sama. Untuk hasil kuantifikasi diameter dengan algoritma K-Means (Dp) menunjukkan bahwa, hasil ukuran diameter lebih besar ±1-3 mm dibandingkan diameter fisis fantom (Dt) pada ketiga pemindaian. Namun, hal tersebut tidak berlaku pada pemindaian filter Gaussian dengan metode rekonstruksi Iterative 3D, yang memiliki kuantifikasi lebih kecil dibandingkan . Berdasarkan hasill kuantifikasi pada keempat pemindaian, ditunjukkan bahwa algoritma K-Means optimal pada filter Butterworth dengan metode rekonstruksi True-X dengan rata-rata RD untuk seluruh objek kurang dari 10%. Sehingga, untuk memvalidasi hal tersebut metode pengukuran K-Means dibandingkan dengan metode pengukuran FWHM dan FWTM dengan merata-ratakan kuantifikasi untuk setiap objek dari semua irisan. Tervalidasi bahwa algoritma K-Means memiliki performa yang optimal, dengan anilai RD yang dihasilkan hampir mendekati 0%.

Segmentation in medical, has become an important thing to determine the initial diagnosis of a desease, for example the emergence of tumors in organs that are small and difficult to observe manually. However, if the segmentation in medical is done manually and traditionally it will take a lot of time and cause inconsistant results. Therefore, automatic segmentation is needed which can help doctors not only by knowing the presence of tumors, but also in quantifying tumor size. In this study, automatic segmentation with machine learning was applied using the K-Means clustering algorithm method on the cylindrical liver equivalent phantom. The equivalent phantom was made from rice flour and wax, and the euqivalent phantom was injected with 18F-FDG with radioactivity 1,89 µCi/mL. The image processing was carried put using a PET/CT Siemens Biograph with Iterative 3D and True-X as reconstuction methods and 2 filters (Gaussian and Butterworth). The detection accuracy of the K-Means algorithm shows that it can be optimal in three types of scanning by detecting all objects in the phantom image. However, this is ecluded in the Gaussian filter with Iterative 3D reconstruction method, because the K-Means algorthm cannot detect the smallest object (4 mm) in both phantom regions. Indications for that phenomenon, could be caused by the performance of the algorithm that grouping the cluster with the same pixel value. For diameter quantifications of from K-Means algorithm shows that the diameter ±1-3 mm larger than the pyhsical fantom diameter (Dt). Based on the result of Dp quantification on the for type of scans, it it shown that the optimal K-Means algorithm on the Butterworth filter with the True-X reconstruction method with an average RD for all objects in phantom is less than 10%. So, to validate this result, the K-Means measurement method is compared with the FWHM and FWTM measurements methods by averaging the quantification for each object from all slices. It is validated that, the K-Means algorthm has optimal performance by reffering to the FWTM measurement where RD value is close to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frisca
"Spectral clustering adalah salah satu algoritma clustering modern yang paling terkenal. Sebagai teknik clustering yang efektif, metode spectral clustering muncul dari konsep teori graf spektral. Metode spectral clustering membutuhkan algoritma partisi. Ada beberapa metode partisi termasuk PAM, SOM, Fuzzy c-means, dan k-means. Berdasarkan penelitian yang telah dilakukan oleh Capital dan Choudhury pada 2013, ketika menggunakan Euclidian distance, k-means memberikan akurasi yang lebih baik dibandingkan dengan algoritma PAM. sehingga, makalah ini menggunakan algoritma k-means. Keuntungan utama dari spectral clustering adalah mengurangi dimensi data, terutama dalam hal ini untuk mengurangi dimensi yang besar dari data microarray.
Microarray data adalah chip berukuran kecil yang terbuat dari slide kaca yang berisi ribuan bahkan puluhan ribu jenis gen dalam fragmen DNA yang berasal dari cDNA. Aplikasi data microarray secara luas digunakan untuk mendeteksi kanker, misalnya adalah karsinoma, di mana sel-sel kanker mengekspresikan kelainan pada gen-nya. Proses spectral clustering dimulai dengan pengumpulan data microarray gen karsinoma, preprocessing, menghitung similaritas, menghitung , menghitung nilai eigen dari , membentuk matriks , dan clustering dengan menggunakan k-means. Dari hasil pengelompokan gen karsinoma pada penelitian ini diperoleh dua kelompok dengan nilai rata-rata Silhouette maksimal adalah 0.6336247. Proses clustering pada penelitian ini menggunakan program open source R.

Spectral clustering is one of the most famous modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c means, and k means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k means algorithm provide better accuracy than PAM algorithm. So in this paper we use k means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset.
Microarray data is a small sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The spectral clustering process is started with collecting microarray data of carcinoma genes, preprocessing, compute similarity matrix, compute , compute eigen value of , compute , clustering using k means algorithm. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k means algorithm is two clusters clusters with maximum Silhouette value 0.6336247.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47117
UI - Tesis Membership  Universitas Indonesia Library
cover
Rafiqatul Khairi
"Kanker pankreas adalah penyakit di mana sel-sel tumor ganas (kanker) berkembang di jaringan pankreas, yaitu organ di belakang perut bagian bawah dan di depan tulang belakang, yang membantu tubuh menggunakan dan menyimpan energi dari makanan dengan memproduksi hormon untuk mengontrol kadar gula darah dan enzim pencernaan untuk memecah makanan. Biasanya, kanker pankreas jarang terdeteksi pada tahap awal. Salah satu tanda seseorang mengalami kanker pankreas adalah diabetes, terutama jika itu bertepatan dengan penurunan berat badan yang cepat, penyakit kuning, atau rasa sakit di perut bagian atas yang menyebar ke punggung. Di antara berbagai jenis kanker, kanker pankreas memiliki tingkat kelangsungan hidup terendah, yaitu hanya sekitar 3-6% dari mereka yang didiagnosis yang dapat bertahan hidup selama lima tahun. Jika pasien didiagnosis tepat waktu untuk perawatan, peluang mereka untuk bertahan hidup akan meningkat. Terdapat penanda tumor yang biasa digunakan untuk mengikuti perkembangan kanker pankreas, yaitu CA 19-9 yang dapat diukur dalam darah. Orang sehat dapat memiliki sejumlah kecil CA 19-9 dalam darah mereka. Kadar CA 19-9 yang tinggi seringkali merupakan tanda kanker pankreas. Tetapi kadang-kadang, kadar tinggi dapat menunjukkan jenis kanker lain atau gangguan non-kanker tertentu, seperti sirosis dan batu empedu. Karena kadar CA 19-9 yang tinggi tidak spesifik untuk kanker pankreas, CA 19-9 tidak dapat digunakan dengan sendirinya untuk skrining atau diagnosis. Ini dapat membantu memantau perkembangan kanker dan efektivitas pengobatan kanker. Dalam studi ini, metode Kernel-based Support Vector Machine digunakan untuk mengklasifikasikan hasil tes darah CA19-9 menjadi dua bagian; data pasien yang didiagnosis dengan kanker pankreas atau pasien normal (tidak terdiagnosis kanker pankreas). Metode ini memperoleh akurasi sekitar 95%.

Pancreatic cancer is a disease in which malignant (cancerous) tumor cells develop in pancreatic tissue; organ behind the lower abdomen and in front of the spine, which helps the body use and store energy from food by producing hormones to control blood sugar levels and digestive enzymes to break down food. Usually, pancreatic cancer is rarely detected at an early stage. One sign of a person with pancreatic cancer is diabetes, especially if it coincides with rapid weight loss, jaundice, or pain in the upper abdomen that spreads to the back. Among various types of cancer, pancreatic cancer has the lowest survival rate of only about 3-6% of those diagnosed who can survive for five years. If patients are diagnosed on time for treatment, their chances of survival will increase. There is a tumor marker commonly used to follow the course of pancreatic cancer, namely CA 19-9 which can be measured in the blood. Healthy people can have small amounts of CA 19-9 in their blood. High levels of CA 19-9 are often a sign of pancreatic cancer. But sometimes, high levels can indicate other types of cancer or certain noncancerous disorders, including cirrhosis and gallstones. Because a high level of CA 19-9 is not specific for pancreatic cancer, CA 19-9 cannot be used by itself for screening or diagnosis. It can help monitor the progress of your cancer and the effectiveness of cancer treatment. In this study, the Kernel-based Support Vector Machine method is used to classify CA19-9 blood test results into two sections including data on patients diagnosed with pancreatic cancer or normal patients. This method will get an accuracy of around 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Jurnal ini mengusulkan sebuah model aturan dalam memprediksi prestasi akademik jurusan teknik informatika politeknik poliprofesi medan. Hingga saat ini memprediksi praestasi akademik mahasiwa masih menjadi perdebatan yang hangat di institusi-institusi pendidikan tinggi. Untuk itu sangat penting dibuat sebuah model aturan untuk memprediksi prestasi akademik mahasiswa yang dapat digunakan pihak manajemen sebagai system pendukung dalam pengambilan keputusan. Dalam hal ini algoritma kernel k-means clustering telah digunakan untuk mendapatkan suatu model aturan prediksi prestasi akademik mahasiswa teknik informatika politeknik poliprofesi medan."
000 JEI 3:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>