Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 69767 dokumen yang sesuai dengan query
cover
Jessica Nawawi
"ABSTRAK
Pada skripsi ini dibahas mengenai model SIR-UV penyebaran Demam Berdarah Dengue (DBD) dengan mempertimbangkan faktor bias intervensi rawat inap yang melibatkan kompartemen manusia dan nyamuk, kemudian model disederhanakan dengan menggunakan Quasi-Steady State Approximation (QSSA). Pada model ini didapatkan dua jenis titik keseimbangan, yaitu titik keseimbangan bebas penyakit (Disease-Free Equilibrium) dan titik keseimbangan endemik (Endemic Equilibrium). Dari model matematika ini, dapat diperoleh juga nilai bilangan reproduksi dasar atau basic reproduction number (R0) yang merupakan ambang batas dimana penyakit dikatakan endemik atau tidak dalam populasi. Selain itu, dilakukan juga analisis sensitivitas basic reproduction number (R0), serta simulasi atas model untuk setiap kasus yang menggambarkan perilaku dan kestabilan disekitar titik kesetimbangan. Melalui simulasi, diperoleh hasil bahwa untuk mengurangi penyebaran penyakit DBD tidak dapat hanya dengan menggalakkan program rawat inap terhadap individu manusia terinfeksi, akan tetapi harus juga memperhatikan tingkat higienitas rumah sakit.

ABSTRACT
This undergraduate thesis discussed SIR-UV model of dengue spread considering bias effect caused by hospitalization which involves human and mosquito compartments, and then this model will be simplified by using Quasi-Steady State Approximation (QSSA). In this model, there will be two types of equilibrium points, they are Disease-Free Equilibrium and Endemic Equilibrium. Basic reproduction number (R0) will also be obtained from this model, which is the threshold whether the disease is said to be endemic or not in the population. In addition, sensitivity analysis of the basic reproduction number (R0) is also carried out, as well as simulation of the model for each case that describes the behavior and stability around the equilibrium point. Through the simulation, the results are, to reduce the transmission of dengue disease can not only by promoting inpatient programs for infected human individuals, but we also must pay attention to the level of hospital hygiene."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erlina Nita Sumadya
"Demam Berdarah Dengue merupakan penyakit yang ditularkan oleh nyamuk betina Aedes aegepty. Penyakit ini disebabkan oleh 4 serotipe virus yang berbeda, yaitu DENV 1, DENV 2, DENV 3, dan DENV 4. Salah satu penanggulangan penyebaran demam berdarah adalah dengan melakukan vaksinasi. Vaksin Dengvaxia merupakan vaksin penanggulangan demam berdarah terbaru yang diperuntukkan untuk seseorang yang pernah terinfeksi DBD dari suatu serotipe virus sedemikian sehingga vaksin tersebut dapat mencegah seseorang terinfeksi DBD untuk kedua kalinya dengan serotipe virus yang berbeda. Oleh karena itu, penelitian ini mengkonstruksi model penyebaran penyakit demam berdarah dengan menggunakan dua serotipe virus dan intervensi vaksin Dengvaxia. Dari analisis model didapat empat titik keseimbangan, salah satu di antaranya merupakan titik keseimbangan bebas penyakit, sedangkan tiga titik keseimbangan lainnya menampilkan kondisi endemik dari serotipe tunggal masing-masing virus dan koeksistensi kedua serotipe. Bilangan reproduksi dasar (R0) dan eksistensi titik keseimbangan disajikan secara analitik, sedangkan kestabilan titik endemik ditampilkan secara numerik. Berdasarkan hasil simulasi numerik, dapat diketahui bahwa intervensi vaksin Dengvaxia berperan dalam mengurangi jumlah infeksi kedua dari penyakit Demam Berdarah Dengue.

Dengue Hemorrhagic Fever (DHF) is an infectious disease caused by 4 serotype of viruses, namely DENV 1, DENV 2, DENV 3, and DENV 4. One way to prevent the spread of dengue fever is by vaccination. Dengvaxia vaccine is the latest dengue fever control vaccine intended for someone who has been infected with DHF from a virus serotype so that the vaccine can prevent someone from being infected with DHF a second time with a different virus serotype. Therefore, this study constructs a model for the spread of dengue fever by using two virus serotypes and the intervention of the Dengvaxia vaccine. From the analysis of the model, four equilibrium points were obtained, one of which is a disease-free equilibrium point, while the other three equilibrium points represent the endemic conditions of a single serotype of each virus and the coexistence of the two serotypes. The basic reproduction number (R0) and the existence of the equilibrium point are presented analytically, while the stability of the endemic point is presented numerically. Based on the numerical simulation results, it can be seen that the Dengvaxia vaccine intervention plays a role in reducing the number of second infections from Dengue Hemorrhagic Fever.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alethea Yuwanda Murtiningrum
"Model penyebaran penyakit DBD akan dibahas dalam tugas akhir ini. Berbagai intervensi mulai dari vaksin terhadap manusia dewasa, vaksin terhadap bayi baru lahir, penggunaan insektisida, larvasida, dan mechanical control akan menjadi pertimbangan dalam menganalisa model DBD. Terdapat tiga jenis titik keseimbangan yang terbentuk dari model penyebaran penyakit DBD dengan berbagai intervensi ini yaitu: Mosquito-Free Equilibrium, Disease-Free Equilibrium (dengan dan tanpa kompartemen vaksin), dan Endemic Equilibrium. Dari model ini akan diperoleh nilai basic reproduction number yang menjadi faktor dimana penyakit ini dikatakan epidemik atau tidak dalam suatu populasi. Melalui kajian analitik dan numerik, diperoleh hasil bahwa penggunaan insektisida, vaksinasi terhadap manusia dewasa, dan pelaksanaan mechanical control merupakan intervensi yang paling signifikan dalam mengurangi penyebaran infeksi penyakit DBD oleh nyamuk, dibandingan dengan penggunaan larvasida, dan vaksin pada bayi baru lahir.

Mathematical model of dengue diseases transmission will be discussed in this undergraduate thesis. Various interventions such as adult and newborn vaccine, the used of insecticide and larvacide treatment, also enforcement of mechanical control will be considered when analyzing the mathematical model. There are 3 types of equilibrium points that will be built upon the dengue model. In this thesis those points are Mosquito-Free Equilibrium, Disease-Free Equilibrium (with and without vaccinated compartment), and Endemic Equilibrium. From this dengue model, basic reproduction number will be obtained as the main value factor whether the disease will become epidemic in a population or not. Based on the analytical and numerical analysis, insecticide treatment, adult vaccine, and enforcement of mechanical control are the most significant interventions when reducing the spread of dengue disease infection that caused by mosquitoes, rather than larvacide treatment and newborn vaccine."
Depok: Universitas Indonesia, 2016
S64195
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuliana Eka Putri
"Model epidemik SIR (Susceptible Infected Recovery) diaplikasikan dalam pembentukan model matematika untuk penyebaran penyakit Demam Berdarah Dengue (DBD) dengan intervensi bakteri Wolbachia pada populasi manusia dan nyamuk yang diasumsikan konstan. Model ini dibuat dengan pendekatan deterministik dengan menggunakan persamaan diferensial biasa berdimensi 9. Kajian analitik dan numerik dalam menentukan titik keseimbangan, basic reproduction number, serta kriteria terjadinya endemik yang bergantung pada beberapa parameter dibahas dalam skripsi ini. Dari kajian analitik diperoleh bahwa kestabilan titik keseimbangan endemik pada model bergantung pada basic reproduction number. Simulasi numerik untuk membandingkan dinamik jumlah manusia dan nyamuk yang terinfeksi pada model deterministik diberikan sebagai pendukung untuk interpretasi model.

The SIR (Susceptible Infected Recovery) epidemic model is applied to create a mathematical model of dengue disease transmission with Wolbachia bacteria in human and mosquitos population. This model is created by deterministic approach using a 9-dimensional ordinary differential system. Analytical and numerical analysis on deciding equilibrium points, basic reproduction number, and criteria of endemic occurrence with depend on some parameters will be discussed in this undergraduate thesis. Based on the analytical analysis, endemic equilibrium of the model is depend on basic reproduction number value. Numerical analysis for comparing the dynamic of infected human and mosquitos values of deterministic model is given to support model interpretation."
Depok: Universitas Indonesia, 2016
S64206
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gita Mega Putri
"Pneumonia merupakan salah satu penyakit infeksi saluran napas bawah akut (ISNBA) yang disebabkan oleh mikroorganisme seperti bakteri, virus, dan jamur. Pada tahun 2017, penyakit menular pneumonia menjadi penyebab kematian terbesar pada anak-anak di bawah usia lima tahun. Berdasarkan klasifikasi pengobatan pneumonia, secara garis besar pengobatan dibagi atas rawat jalan dan rawat inap. Pemodelan matematika merupakan salah satu cara dalam merepresentasikan suatu masalah di dunia nyata ke dalam bentuk sistem persamaan matematika. Pada penelitian ini, dibahas mengenai pengembangan model matematika penyakit pneumonia dengan faktor vaksinasi. Model dibentuk dengan membagi populasi berdasarkan status kesehatannya. Kemudian, dilakukan kajian analitik yang meliputi analisis eksistensi serta kestabilan dari titik-titik keseimbangannya dan hubungannya dengan bilangan reproduksi dasar (ℛ0). Setelah itu, dilakukan simulasi numerik yang mencakup analisis sensitivitas dan elastisitas ℛ0 serta simulasi autonomous dari model. Dari kajian yang dilakukan dalam skripsi ini, diharapkan dapat dipahami bagaimana pengaruh faktor vaksinasi dan pengobatan dalam pengendalian pneumonia. Lebih jauh, kajian analitis dan numerik mengenai titik keseimbangan bebas penyakit, titik keseimbangan endemik, dan basic reproduction number (ℛ0) dilakukan untuk memahami dinamika jangka panjang dari model yang telah dikonstruksi. Dari hasil kajian analitis dan numerik tersebut, dapat dikatakan bahwa intervensi vaksinasi dan pengobatan merupakan beberapa cara efektif untuk mengurangi penyebaran penyakit pneumonia.

Pneumonia is one of the acute lower airway infections (ISNBA) caused by microorganisms such as bacteria, viruses, and fungi. In 2017, infectious disease pneumonia became the leading cause of death in children under the age of five. Based on the classification of pneumonia treatment, the outline of treatment is divided over outpatient and inpatient treatment. Mathematical modeling is one way of representing a problem in the real world into the form of a system of mathematical equations. In this study, discussed the development of mathematical models of pneumonia with vaccination factors. Models are formed by dividing populations based on their health status. Then, an analytical study is conducted which includes the analysis of the existence and stability of the points of balance and their relationship with basic reproduction number (ℛ0). After that, a numerical simulation was conducted that included an analysis of sensitivity and elasticity of ℛ0 as well as an autonomous simulation of the model. From the studies conducted in this thesis, it is expected to be understood how the influence of vaccination and treatment factors in the control of pneumonia. Furthermore, analytical and numerical studies of diseasefree equilibrium points, endemic balance points, and basic reproduction number (ℛ0) is done to understand the long-term dynamics of the constructed model. From the results of these analytical and numerical studies, it can be said that vaccination and treatment interventions are some effective ways to reduce the spread of pneumonia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devi Riyanti
"Demam Berdarah Dengue (DBD) adalah penyakit yang disebabkan oleh infeksi virus dengue melalui gigitan nyamuk betina Aedes aegypti dan Aedes albocpictus (Kementerian Kesehatan RI, 2022). Hingga saat ini, belum ditemukan obat antivirus yang dapat menghilangkan virus DBD secara sempurna. Dilain pihak, penggunaaan bakteri Wolbachia telah menarik banyak perhatian sebagai alternatif solusi penanganan DBD (Li & Liu, 2021). Penelitian menemukan bahwa ketika nyamuk Aedes aegypti telah terinfeksi Wolbachia, bakteri yang ada dalam tubuh nyamuk dapat menghambat proses replikasi virus DBD pada nyamuk sehingga nyamuk memiliki kemungkinan yang kecil untuk menyebarkan virus ke manusia serta nyamuk tidak langsung terinfeksi apabila menghisap darah manusia dengan virus penyebab DBD (WMP, 2022). Pada skripsi ini, akan dibangun model penyebaran DBD dengan intervensi bakteri Wolbachia. Selanjutnya, dari model yang telah dibangun akan dilakukan kajian analitik yang meliputi analisis eksistensi serta kestabilan dari titik-titik keseimbangan dari model dan analisis nilai bilangan reproduksi dasar yang diperoleh (R0). Lalu, akan dilakukan simulasi numerik yang meliputi analisis elastisitas setiap kompartemen di titik endemik, analisis elastisitas dan sensitivitas R0, analisis sensitivitas lokal sistem dinamik, serta simulasi autonomous dari model. Penelitian yang akan dilakukan ini diharapkan memberikan pemahaman baru mengenai pengaruh efek dari bakteri Wolbachia pada populasi nyamuk dalam pengendalian penyebaran penyakit DBD.

Dengue is a disease caused by a viral infection of dengue through the bite of female Aedes aegypti and Aedes albopictus mosquitoes (Kementerian Kesehatan RI, 2022). Until now, no antivirus drugs have been found to eliminate the dengue virus perfectly. On the other hand, the use of Wolbachia bacteria has attracted a lot of attention as an alternative solution to the handling of dengue spread (Li & Liu, 2021). Study results found that when the Aedes aegypti mosquito was infected with Wolbachia, the bacteria present in its host’s body can inhibit the replication process of the dengue virus in mosquitoes so that mosquitoes have a slight possibility of spreading the dengue virus to humans and mosquitoes are not directly infected when sucking human blood with the dengue virus that causes dengue (WMP, 2022). In this thesis, a model will be built on the spread of dengue with the intervention of Wolbachia bacteria. Furthermore, from that model has been built, an analytical study will be carried out which includes an analysis of the existence and stability of the equilibrium points of the model, also the analysis of the value of the basic reproduction number (R0) obtained. Then, a numerical simulation will be carried out which includes elasticity analysis of every compartment on endemic equilibrium points, elasticity and sensitivity analysis on basic reproduction number (R0), local sensitivity analysis on the dynamical system, and autonomous simulation of the model. This research that will be done is expected to provide a new understanding of the influence of the effects of the Wolbachia bacteria in mosquito populations in controlling the spread of dengue.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athaya Yumna Fathiyah
"Demam berdarah dengue (DBD) merupakan salah satu vector-borne diseases yang disebabkan oleh virus dengue dan ditularkan oleh nyamuk Aedes Aegypti dan Aedes Albopictus. Penyakit DBD dapat dibedakan menjadi dua, yaitu DBD tanpa gejala dan dengan gejala. Salah satu strategi untuk menangani DBD adalah penemuan kasus aktif, yaitu proses identifikasi terhadap orang yang diduga menderita DBD menggunakan tes diagnostik. Setelah terkonfirmasi, penderita DBD akan diberikan perawatan. Pada skripsi ini digunakan model matematika untuk melihat bagaimana peran penemuan kasus aktif dalam pengendalian DBD. Model dibentuk menggunakan sistem persamaan diferensial biasa nonlinier berdimensi sembilan dan melibatkan dua populasi yaitu manusia dan nyamuk. Populasi manusia dibagi menjadi tujuh subpopulasi, sedangkan populasi nyamuk dibagi menjadi dua subpopulasi. Dari model, dilakukan kajian analitik yang meliputi analisis nilai bilangan reproduksi dasar , analisis keberadaan dan kestabilan titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Dilakukan kajian numerik meliputi analisis sensitivitas dan elastisitas terhadap R0, analisis sensitivitas lokal sistem dinamik serta simulasi autonomous dari model. Berdasarkan kajian analitik yang dilakukan, diperoleh bahwa titik keseimbangan bebas penyakit stabil asimtotik lokal pada R0<1. Pada  R0 = 1, model dapat mengalami bifurkasi maju atau mundur. Sehingga titik endemik dapat muncul ketika  R0<1. Hasil kajian numerik yang dilakukan menunjukkan bahwa penemuan kasus aktif dapat mereduksi jumlah manusia terinfeksi dalam populasi.

Dengue is one of the vector-borne diseases caused by the dengue virus and transmitted by Aedes Aegypti and Aedes Albopictus mosquitoes. Dengue can be divided into asymptomatic and symptomatic. One strategy to control dengue is active case finding. Active case finding aims to find dengue cases that have not been detected using diagnostic tests. Once confirmed, dengue sufferers will receive treatment. This thesis uses a mathematical model to examine the role of active case finding in dengue control. The model will use a nine-dimensional nonlinear differential equation system and involves two populations, humans and mosquitoes. The human population is divided into seven subpopulations, and the mosquito population is divided into two subpopulations. From the model, an analytical study will be carried out including analysis of the basic reproduction number (R0), existence and stability of disease-free equilibrium points and endemic equilibrium points. Next, a numerical study will be conducted in this thesis including sensitivity and elasticity analysis of R0, local sensitivity analysis of the dynamic system, and autonomous simulation of the model. Analysis of the model shows that disease-free equilibrium is globally asymptotically stable when R0<1. Furthermore, when R0=1, the model can perform forward or backward bifurcation. Numerical studies show that increasing the active case finding rate will reduce the number of infected humans in the population.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Amalia
"Malaria adalah penyakit menular yang disebabkan oleh parasit Plasmodium dan ditularkan melalui gigitan nyamuk Anopheles betina. Dalam tesis ini dikonstruksikan model matematis penyebaran malaria dengan mempertimbangkan faktor bias dalam proses infeksi dan intervensi fumigasi dalam pengendalian malaria. Model tersebut dibangun sebagai model SIRI-UV dalam bentuk sistem persamaan
perbedaan biasa enam dimensi. Analisis titik keseimbangan dan stabilitasnya dan analisis sensitivitas dari bilangan reproduksi dasar (R0) dilakukan secara analitik dan numerik. Berdasarkan studi analitik diperoleh dua jenis titik keseimbangan yaitu titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Ketika R0 @@ 1, tidak
ada titik keseimbangan endemik, atau ada dua titik keseimbangan endemik bila R0 1. Sedangkan bila R0 AA 1 terdapat titik keseimbangan endemik dan tiga titik keseimbangan jika R0 1. Melalui studi analitik dengan menggunakan aturan Descartes dan eksperimen numerik, menemukan bahwa percabangan ke belakang terjadi pada suatu saat R0 1, ​​dan saat R0 1 terjadi percabangan maju dan mundur secara bersamaan. Untuk Untuk mendukung interpretasi model, simulasi numerik dari sensitivitas R0 dan R0 juga dilakukan simulasi otonom dari parameter angka kematian nyamuk akibat fumigasi dan faktor bias. Hasil simulasi menunjukkan bahwa angka kematian nyamuk meningkat karena pengasapan akan meningkatkan kemungkinan penyakit tidak menyebar dan hilang, Adapun semakin besar faktor biasnya maka semakin besar pula jumlah nyamuk dan manusia yang terinfeksi.

Malaria is a contagious disease caused by the parasite Plasmodium and transmitted through the bite of a female Anopheles mosquito. In this thesis, a mathematical model of the spread of malaria was developed by considering bias factors in the infection process and fumigation interventions in malaria control. The model is built as a SIRI-UV model in the form of a system of equations the usual six dimensional difference. The equilibrium point analysis and stability and sensitivity analysis of the basic reproduction number (R0) were carried out analytically and numerically. Based on the analytical study, two types of balance points were obtained, namely the disease-free balance point and the endemic balance point. When R0 @@ 1, no there is an endemic equilibrium point, or there are two endemic equilibrium points if R0 1. Whereas if R0 AA 1 there is an endemic equilibrium point and three equilibrium points if R0 1. Through analytic studies using Descartes' rule and numerical experiments it is found that the reverse branching occurs at one day R0 1, ​​and when R0 1 there is simultaneous forward and backward branching. To support the interpretation of the model, numerical simulations of the sensitivity of R0 and R0 were also carried out with autonomous simulations of the mosquito mortality rate parameters due to fumigation and bias factors. The simulation results show that the increased mosquito mortality rate due to smoking will increase the likelihood that the disease will not spread and disappear. The greater the bias factor, the greater the number of infected mosquitoes and humans."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novita Olivera
"ABSTRAK
Banyak model matematika yang telah menunjukkan bahwa bilangan reproduksi dasar R0 adalah hal terpenting dalam model matematika penyakit menular. Perhitungan ini menentukan keadaan dan stabilitas lokal terkadang stabilitas global dari model. Namun, tidak selalu mudah untuk menentukan nilai bilangan reproduksi dasar dari model penyakit multi grup, terutama model matematika penyebaran penyakit demam berdarah dengue karena kompleksitas yang ada. Dalam skripsi ini, akan dijelaskan konstruksi dari bilangan reproduksi dasar menggunakan metode Matriks Generasi Selanjutnya dimana setiap populasi mengandung tiga kompartemen manusia dan dua kompartemen nyamuk.
"
"
"ABSTRACT
"
Many mathematical model have been shown that the basic reproduction number R0 is the most important quantity in infectious disease mathematical models. This quantity determine the existence and local stability sometimes the global stability of those models. Unfortunately, it is not always easy to determine the basic reproduction number of a multi group disease model, especially for dengue model because of the complexity. In this talk, the construction of the basic reproduction number using Next Generation Matrix method will be discussed. The connection between population will be described as a star graph connection where each group of population is consist of 3 compartments of human and 2 compartments of mosquitoes. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wulan Hapsari Bhagyawanti
"Malaria merupakan penyakit infeksi yang disebabkan oleh parasit Plasmodium dimana penyebarannya terjadi melalui perantara nyamuk Anopheles betina. Di Indonesia, kasus malaria paling banyak ditemukan di bagian timur, seperti Papua dan Papua Barat. Salah satu cara untuk memahami penyebaran penyakit malaria yaitu menggunakan model matematika. Oleh karena itu, penelitian ini bertujuan untuk mengonstruksi model matematika penyebaran penyakit malaria dengan bentuk SIS-UV menggunakan sistem persamaaan diferensial biasa nonlinier berdimensi lima. Model matematika yang dibentuk dalam penelitian ini mempertimbangkan kepedulian manusia, faktor bias pada nyamuk, dan fumigasi pada nyamuk. Kajian analitik dilakukan untuk menganalisis eksistensi dan kestabilan titik-titik keseimbangan, serta bilangan reproduksi dasar (R0). Diperoleh bahwa titik keseimbangan bebas malaria eksis tanpa syarat dan akan bersifat stabil asimtotik lokal jika bilangan reproduksi dasar kurang dari satu (R0<1). Sementara itu, titik keseimbangan endemik malaria akan selalu muncul jika bilangan reproduksi dasar lebih dari satu (R0>1). Saat R0=1, terdapat kemungkinan muncul bifurkasi mundur yang dijelaskan menggunakan teorema Castillo-Chavez dan Song. Hal tersebut mengindikasikan bahwa tetap didapatkan titik keseimbangan endemik yang stabil asimtotik lokal meskipun R0<1. Selanjutnya, dilakukan penaksiran parameter menggunakan data akumulasi bulanan malaria tahun 2020 di Papua yang diperoleh dari Kementerian Kesehatan Republik Indonesia. Berdasarkan hasil estimasi, diperoleh nilai R0=1,35>1 yang mengindikasikan bahwa penyakit malaria menjadi endemik di Papua. Simulasi numerik diberikan untuk menggambarkan hasil dari kajian analitik. Hasil simulasi menunjukkan bahwa intervensi fumigasi dan peningkatan kepedulian manusia merupakan parameter yang efektif dalam mengubah nilai bilangan reproduksi dasar (R0). Oleh karena itu, penerapan kedua intervensi tersebut diharapkan dapat mengendalikan penyebaran penyakit malaria dalam populasi.

Malaria is an infectious disease caused by the Plasmodium parasite where it is spread through female Anopheles mosquitoes. In Indonesia, malaria cases are mostly found in the eastern part, such as Papua and West Papua. One way to understand the spread of malaria is to use a mathematical model. Therefore, this study aims to construct a mathematical model of the spread of malaria in the form of SIS-UV using a five-dimensional nonlinear ordinary differential equation system. The mathematical model formed in this study considers people awareness, factors biased by mosquito, and mosquito fumigation. Analytical studies were conducted to analyze the existence and stability of equilibrium points, as well as basic reproduction numbers (R0). It was found that the malaria-free equilibrium point exists unconditionally and will be locally asymptotically stable if the basic reproduction number is less than one (R0<1). Meanwhile, the malaria endemic equilibrium point will always appear if the basic reproduction number is more than one (R0>1). When R0=1, there is the possibility of a backward bifurcation which is explained using the Castillo-Chavez and Song theorems. This indicates that a locally asymptotically stable endemic equilibrium point is still obtained even though R0<1. Furthermore, parameter estimation is carried out using monthly malaria accumulation data in 2020 in Papua obtained from the Ministry of Health of the Republic of Indonesia. Based on the estimation results, the value of R0=1.35>1 indicates that malaria is endemic in Papua. Numerical simulations are provided to illustrate the results of the analytical study. The simulation results show that the fumigation intervention and the improvement of people awareness are effective parameters in changing the value of the basic reproduction number (R0). Therefore, the application of these two interventions is expected to control the spread of malaria in the population. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>