Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160647 dokumen yang sesuai dengan query
cover
Dijan Supramono
"Previous research of thermal co-pyrolysis of biomass-plastics where plastics function as hydrogen donor to induce synergistic effect on non-oxygenated fraction of bio-oil has reached a condition that there was a difficulty of separating non-oxygenated compounds from oxygenated compounds either at low heating rate. It was suspected that the content of high molecular weight of compounds especially polyaromatic hydrocarbons (PAH) in bio-oil retarded this separation. At low heating rate, most of co-pyrolysis until recently have been conducted in fixed bed and auger reactors. The present work proposed a stirred tank reactor as the reactor alternative to avoid formation of PAH in bio-oil. A series of experiments of co-pyrolysis of corn cobs and polypropylene at low heating rate (5oC/min) with maximum temperature of 500oC has been conducted with the ultimate goal of producing non-oxygenated fraction of bio-oil similar to diesel fuel. The qualities of the fraction targeted were its viscosity, double bond content and branching number of carbon chains. The values of these properties in diesel fuel are 2.7 cStokes, 0%, 0.4, respectively. The experiments involved 3 different reactors, i.e. the first, a stirred tank reactor with its aspect ratio (the ratio of the height to the diameter) of 2.0, the second, a stirred tank reactor with aspect ratio of 1.35 and the third, a dispecement reactor. Nitrogen gas as a sweeping gas was predicted to generate local turbulence favouring convective heat transfer. The work has resulted in some important results, i.e. the first, there was phase separation between oxygenated and non-oxygenated fractions, the second, synergistic effects in copyrolysis have been achieved both in bio-oil and non-oxygenated fraction yields, the third, non-oxygenated fraction had viscosity of 2.03 + 6.47% cStokes, the fourth, nonoxygenated fraction contained only 6-7% double bonds, which eases the hydrogenation reaction in further processing for double bond saturation, the fifth, non-oxygenated fraction had average branching number of 0.57, slightly above that of diesel fuel, which is unfavourable to reach short ignition delay time in the combustion, the sixth, the aspect ratio of the reactor significantly affected the extent of biomass pyrolysis, but not polypropylene pyrolysis."
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2582
UI - Disertasi Membership  Universitas Indonesia Library
cover
Julianto
"ABSTRAK
Pada penggunaan stirred tank reaktor dengan rasio Length/Diameter yang rendah, terjadi beberapa masalah dalam transfer panas, karena itu, fasa polar pada hasil pirolisis masih memiliki panjang rantai karbon yang panjang. Dengan mengubah cara feeding dari twice feeding, menjadi gradual feeding, diharapkan dapat meningkatkan jumlah fasa polar pada panjang rantai karbon rendah. Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Polipropilena adalah jenis plastik yang cukup banyak dihasilkan di Indonesia dan selain itu memiliki ratio Hydrogen/Carbon yang tinggi. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,75 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Dari eksperimen ini terlihat bahwa proses slow co pyrolysis memiliki 2 regime yang dapat terlihat dari jumlah peningkatan yield bio-oil dan peningkatan signifikan pada volume polar. Hasil FTIR dan GC-MS menunjukan adanya fasa polar yang dominan oleh karboksilat dan fenol, pada fasa polar dominan oleh alkena. Untuk digunakan sebagai bio-fuel, bio-oil memiliki nilai TAN total acid number yang rendah pada fasa polar, dan viskositas yang mendekati dengan bahan bakar komersial.

ABSTRACT
In the use of stirred tank reactors with low Length Diameter ratios, there are some problems in heat transfer, therefore, the polar phase on the pyrolysis results still has long carbon chain length. By changing the way feeding of the two step feeds, to gradual feeding, is expected to increase the number of polar phases at low carbon chain lengths. Corncobs are selected as biomass because of their high total cellulose content and abundant availability in Indonesia. Polypropylene is a type of plastic that is widely produced in Indonesia and other than it has a high Hydrogen Carbon ratio. By mixing the two, a synergetic effect will be created to improve the quantity and quality of the resulting bio oil. Operating conditions with a maximum temperature of 500oC, N2 flow rate of 0.75 L min, holding time of 10 min and a heating rate of 5oC min were used during the experiment. From this experiment we can see that the slow co pyrolysis process has 2 regimes that can be seen from the increasing amount of bio oil yield and the significant increase in polar volume. FTIR and GC MS results show the dominant polar phase by carboxylic and phenol, in the polar phase dominant by alkene. For use as bio fuel, bio oil has a low TAN value total acid number in polar phase, and viscosity is close to commercial fuel."
2017
S67872
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fianna Utomo
"Bonggol jagung memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena banyaknya limbah pertanian jagung Indonesia. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Co-pyrolysis antara bonggol jagung-plastik polipropilena memiliki efek sinergetik yang mengubah sebagian fraksi polar dari bio-oil menjadi fraksi non-polar yang mengandung senyawa non-oksigenat sebagai bahan baku untuk sintesis biofuel. Pada percobaan ini, pirolisis dari fraksi non-polar dilakukan untuk memproduksi bio-oil yang memiliki karakteristik yang dekat dengan bensin. Pirolisis dilakukan pada dua tahapan, di mana tahap pertama adalah co-pyrolysis untuk memproduksi fraksi non-polar dan tahap kedua adalah untuk mempirolisis fraksi non-polar tersebut untuk menurunkan viskositasnya menjadi dekat dengan viskositas bensin. Kedua tahap pirolisis akan dilakukan dalam reaktor tabung berpengaduk pada suhu 100 RPM, heating rate 5°C/menit, dan laju alir nitrogen 750 mL/menit pada tekanan gas nitrogen 3 bar. Variasi yang dilakukan berupa suhu akhir pirolisis tahap kedua. Produk bio-oil dikarakterisasi menggunakan H-NMR, GC-MS, LC-MS, FTIR, dan viskometer. Yield dan viskositas bio-oil dari hasil pirolisis tahap kedua bergantung kepada suhu akhir pirolisis, di mana semakin tinggi suhu, yield akan semakin tinggi dan viskositas juga cenderung untuk semakin tinggi. Adapun bio-oil dengan suhu akhir pirolisis tahap kedua 300°C memiliki karakteristik yang paling dekat dengan bensin.

Corncobs biomass has a high potential to be developed into bio oil because of large amount of maize farm waste in Indonesia. In addition, plastic waste is also abundant in Indonesia, especially polypropylene. Co pyrolysis between corncobs and polypropylene has a synergetic effect that transforms some polar fraction of bio oil into non polar fraction containing non oxygenate compounds as precursor for synthesis of biofuel. In the present work, pyrolysis of the non polar fraction of bio oil was led to produce bio oil which had similar characteristics to that of gasoline. The pyrolysis was carried out in two stages, where the first stage was co pyrolysis to produce non polar bio oil and the second stage was pyrolysis of non polar fraction to reduce its viscosity similar to that of gasoline. The first and second stage pyrolysis was carried out in a stirred tank reactor at 100 RPM, heating rate of 5°C min and nitrogen flow rate of 750 mL min under 3 bar nitrogen gas pressure with the second stage pyrolysis final temperature varied. The resulting bio oil product was characterized by FT IR, GC MS, H NMR, viscometer and LC MS. Bio oil viscosity and yield of the second stage pyrolysis heavily depended on its final temperature, in which the higher the temperature, the higher was the viscosity, yet the higher was the bio oil yield. Bio oil with secondary pyrolysis final temperature of 300°C has the most similarities to gasoline characteristics. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anissa Clarita
"Minyak kelapa sawit memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena kandungan trigliserida. Indonesia merupakan negara produsen kelapa sawit terbesar di dunia. Selama ini minyak kelapa sawit belum dimanfaatkan secara maksimal khususnya sebagai bahan baku industri. Padahal minyak kelapa sawit dapat dimanfaatkan sebagai energi terbarukan melalui proses slow co-pyrolysis. Dalam penelitian ini, trigliserida yang digunakan dari minyak goreng kelapa sawit. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Tujuan penelitian ini adalah untuk mengetahui pengaruh laju oenambahan plastik polipropilena terhadap yield dan kualitas bio-oil hasil slow co-pyrolysis minyak kelapa sawit. Penelitian ini dilakukan dalam reactor tabung berpengaduk pada suhu 550oC, heating rate 5oC/menit, kecepatan pengaduk 65 RPM dengan laju alir gas nitrogen 550 mL/min. Variasi yang dilakukan berupa penambahan jumlah % massa plastik polipropilena yang akan mempengaruhi yield dan komposisi dari bio-oil yang dihasilkan. Bio-oil dikarakterisasi dengan menggunakan GC-MS, dan FTIR. Efek sinergetik pada pirolisis PP-trigliserida tidak terjadi, sedangkan pada pirolisis PP-bonggol jagung terjadi saat komposisi PP 50% dan 75%. Bio-oil optimum dihasilkan pada komposisi PP 75% baik pada pirolisis PP-trigliserida dan PP-bonggol jagung.

Palm oil has high potential to be developed into bio-oil because of the content of triglycerides. Indonesia is the largest palm oil producer in the world. So far, palm oil has not been fully utilized, especially as an industrial raw material. Even though palm oil can be used as renewable energy through the slow co-pyrolysis process. In this study, the the triglyceride is from palm oil cooking oil. In addition, plastic waste is also abundant in Indonesia, especially polypropylene plastic. The purpose of this study was to determine the effect of the rate of addition of polypropylene plastic on the yield and quality of bio-oil produced by slow co-pyrolysis of palm oil. This research was conducted in a stirred tube reactor at a temperature of 550oC, heating rate of 5oC / minute, stirrer speed of 65 RPM with a nitrogen gas flow rate of 550 mL / min. The variation is in the form of increasing the mass% of polypropylene plastic which will affect the yield and composition of the bio-oil produced. Bio-oil is characterized by using GC-MS, and FTIR. The synergetic effect on PP-triglyceride pyrolysis did not occur, whereas in the pyrolysis of PP-corn hump occurred when the composition of PP was 50% and 75%. Optimum Bio-oil was produced in the composition of PP 75% both in PP-triglyceride pyrolysis and PP-corncobs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Adythya Fernando
"ABSTRAK
Penelitian yang sudah dilakukan sebelumnya menunjukkan bahwa ada 2 regime reaksi co-pyrolysis yang memiliki perbedaan trend pada yield bio-oil-nya, yaitu regime dengan komposisi plastik dalam umpan reaktor kurang dari 40 regime 1 dan regime dengan komposisi plastik dalam umpan reaktor lebih dari 40 regime 2 .Penelitian yang dilakukan saat ini berhasil membuktikan bahwa hal tersebut merupakan pengaruh perpindahan panas bahan dalam reaktor. Perpindahan panas dipelajari dengan melihat suhu yang direkam oleh termokopel pada tujuh lokasi yang berbeda di dasar reaktor. Hasil yang didapatkan adalah pada regime 1, perpindahan panas terjadi dengan dominasi oleh radiasi ke biomassa, sedangkan pada regime 2 didominasi oleh konveksi ke plastik.Variasi komposisi pada regime 1 tidak berpengaruh kepada perubahan suhu dalam campuran sedangkan pada regime 2 menunjukkan semakin kecil komposisi biomassa maka semakin tinggi suhu campuran yang dicapai. Penelitian ini menunjukkan bahwa perpindahan panas belum terjadi dengan merata pada campuran sehingga pirolisis biomassa belum dapat mencapai pirolisis sekunder dengan baik sedangkan pirolisis plastik sudah menghasilkan distribusi produk yang merata.

ABSTRACT
The previous research shows that there are two regimes of co pyrolysis reaction which have different trend of bio oil rsquo s yield, they are the regime with plastic composition in reactor feed less than 40 regime 1 and regime with plastic composition in reactor feed more than 40 regime 2 .Current research has proved that it is the effect of heat transfer of materials in the reactor. The heat transfer was studied by looking at the temperature recorded by the thermocouple at seven different locations at the bottom of the reactor. The result is that in regime 1, heat transfer occurs dominanty by radiation to biomass, whereas in regime 2 it is dominated by convection to plastic.The variation of composition in regime 1 does not affect the temperature change in the mixture, while in regime 2 the smaller the composition of the biomass the higher the mixed temperature is achieved. This study shows that heat transfer has not occurred evenly on the mixture so that biomass pyrolysis has not been able to achieve the secondary pyrolysis well whereas plastic pyrolysis has produced an even distribution of the product."
2017
S67133
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhri Raihan Ramadhan
"Ko-pirolisis polipropilena dan minyak kelapa sawit memberikan cara pemanfaatan limbah plastik polipropilena. Penelitian ini akan meneliti reaksi ko-pirolisis di dalam reaktor tangki berpengaduk menggunakan katalis ceramic foam ZrO2/Al2O3-TiO2 untuk mengakomodasi ukuran molekul reaktan yang besar. Tujuan penelitian ini adalah untuk mendapatkan pengaruh laju pemanasan dan komposisi rasio umpan plastik polipropilena dari 0, 25, 50, 75, dan 100 % berat umpan terhadap hasil produk ko-pirolisis dan komposisi bio-oil. Produk dari ko-pirolisis akan dianalisis menggunakan metode Karl- Fischer, FTIR, GC-MS, C-NMR, dan DEPT 135 untuk menentukan kemungkinan jalur reaksi, komposisi senyawa, dan ikatan kimia yang ada di dalam bio-oil dan wax. Terdapat pengaruh laju pemanasan dan rasio umpan polipropilena terhadap jumlah produk dan senyawa kimia di dalam bio-oil. Penggunaan katalis ceramic foam ZrO2/Al2O3-TiO2 mampu meningkatkan kualitas dan yield produk akhir. Sistem pirolisis katalitik laju pemanasan tinggi tidak menunjukkan efek sinergis antara PP dan CPO dalam yield dan komponen non-oksigenat karena fraksi non-oksigenat yang rendah di bio-oil dan yield bio-oil yang rendah. Sistem pirolisis termal menunjukkan efek sinergis yang lebih tinggi antara PP dan CPO terhadap yield bio-oil yang lebih tinggi. Sistem pirolisis katalitik laju pemanasan rendah menunjukkan efek sinergis tertinggi antara PP dan CPO dalam hal jumlah fraksi non-oksigenat dan yield dari bio-oil. Analisis C-NMR dan DEPT-135 dari bio-oil menunjukkan bahwa sistem katalitik dan termal dengan laju pemanasan tinggi memiliki jumlah karbon yang terikat pada oksigen lebih tinggi dibandingkan dengan sistem katalitik laju pemanasan rendah yang menunjukkan efisiensi deoksigenasi yang lebih tinggi.

Co-pyrolysis of polypropylene and crude palm oil gives the benefit of utilizing plastic waste of polypropylene. In the present research, co-pyrolysis reaction in a stirred tank reactor will be investigated using ZrO2/Al2O3-TiO2 ceramic foam catalyst to accommodate the large molecular size of reactants. The objectives are to obtain effects of heating rate and feed composition of polypropylene plastic from 0, 25, 50, 75, and 100 wt.% of total feed weight on yields of co-pyrolysis products and composition of bio-oil. The products were analyzed using Karl-Fischer, FTIR, GC-MS, C-NMR, and DEPT 135 to determine the possible reaction pathway, compound compositions, and chemical bonds in the bio-oil and wax. There is an effect of heating rate and feed composition on the yield and chemical compound of the product. The use of ZrO2/Al2O3-TiO2 ceramic foam catalyst improve the quality and yield of the final product. Catalytic high heating rate pyrolysis showed no synergetic effects between PP and CPO on bio-oil yield and non- oxygenates components due to low non-oxygenates fractions in bio-oil and low bio-oil yield. Thermal pyrolysis showed synergetic effects between PP and CPO on bio-oil yield. Catalytic low heating rate pyrolysis showed high synergetic effects between PP and CPO in terms of the quantity of non-oxygenates fractions in bio-oil and the bio-oil yield. C- NMR and DEPT-135 of bio-oil suggested that catalytic and thermal high heating rate system contained higher amount of carbon bound to oxygen compared to the catalytic low heating rate system which indicated higher deoxygenation efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Justin Edgar
"Co-pyrolysis antara bonggol jagung dengan plastik polipropilena dilakukan di dalam reaktor tangka berpengaduk menggunakan gas CO2 sebagai gas pembawa karena ketersediaannya yang melimpah dan harganya yang murah. Percobaan dilakukan pada berbagai komposisi bonggol jagung dan plastik polipropilena untuk memperhitungkan pengaruh komposisi pada yield dan kualitas minyak nabati yang dihasilkan. Laju alir gas yang digunakan adalah 750 mL/menit dan laju pemanasan sebesar 5°C/menit hingga suhu mencapai 500°C.
Hasil penelitian menunjukkan bahwa yield gas non-kondensibel dan char yang dihasilkan lebih banyak, sedangkan yield minyak nabati lebih sedikit dibandingkan saat gas N2 digunakan sebagai gas pembawa. Derajat percabangan molekul pada fraksi non-polar minyak nabati yang dihasilkan terbukti lebih besar dan kandungan aromatiknya lebih sedikit dibandingkan dengan bahan bakar komersial. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dijan Supramono
"Bio-oil produced by biomass pyrolysis contains high oxygenates, namely, carboxylic acids, alcohols, and ketones resulting in low calorific fuel, and therefore bio-oil requires upgrading to sequester these oxygenates. By conducting the co-pyrolysis of biomass and plastic feed blend, the donation of hydrogen by plastic free radicals to the oxygen of biomass free radicals may sufficiently reduce oxygenate compounds in the bio-oil and increase its yield. Therefore, the synergetic effects are functional. Currently, co-pyrolysis reactors have high aspect ratios (ratio of height to diameter) of 4 or more and small diameters (maximum 40 mm), in which the heat transfer from the furnace to the feed blend is immaterial even though the plastic material has low thermal conductivity. However, in large-scale reactors, such a design restricts the bio-oil’s capacity due to the heat transfer constraint. To resolve the latter and to improve bio-oil quality, in the present work, the co-pyrolysis of corn cobs and polypropylene (PP) is conducted in a stirred-tank reactor with a low aspect ratio (2). PP composition in the feed blend was varied from 0-100% weight with a 12.5% weight interval, heating rate of 5oC/min, and final temperature of 500oC. The results show that by increasing the PP composition in the feed blend from 37.5% to 87.5%, the bio-oil yield increased from 25.8% to 67.2% feed weight. An analysis of bio-oil quality shows that there was a favorably abrupt increase of non-oxygenate composition in the bio-oil from less than 5% to more than 70% as the PP composition in the feed blend was increased from 37.5% to 50% and more."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:8 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Jonathan
"Fast pyrolysis biomassa dapat menghasilkan bio-oil dengan potensi aplikasi yang luas, salah satunya dapat digunakan sebagai bio-fuel. Sayangnya, bio-oil berbasis biomassa memiliki sifat fisikokimia yang buruk dan banyak mengandung senyawa oksigenat sehingga heating value-nya rendah. Plastik diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan.
Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Bonggol jagung akan dipirolisis bersama-sama dengan plastik polipropilena dalam reaktor batch berpengaduk dengan variasi rasio plastik dalam umpan sebesar 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, dan 87,5%. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,5 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Terjadi peningkatan pH, densitas, dan warna pada bio-oil hasil slow co-pyrolysis.
Karakterisasi GC-MS menunjukkan penurunan senyawa oksigenat di dalam bio-oil berbanding lurus dengan komposisi plastik dalam umpan. Efek sinergetik teramati saat rasio plastik ≥50%. Komposisi umpan 12,5% bonggol jagung dan 87,5% plastik PP menghasilkan yield tertinggi dengan kandungan senyawa oksigenat terendah.

Fast pyrolysis of biomass produces bio-oil with many potential applications, one of them is to be bio-fuel. Unfortunately, biomass derived bio-oil has low physicochemical properties and contains lot of oxygenated compounds thus the heating value is low. Plastics are known to have higher H/C ratio and almost no oxygen content, so co-pyrolysis of biomass and plastic could be used as a simple, effective yet cheap bio-oil upgrading solution. By mixing those two as a feed, a synergetic effect will occur and improve the bio-oil both in quantity and quality.
Corn cobs are chosen as the biomass due to its high cellulose content and availability. Corn cobs will be slow co-pyrolyzed with polypropylene plastic in a two stirrer batch reactor with plastic ratio variation of 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, and 87,5%. Maximum temperature of 500oC, 0,5 L/min nitrogen flow, 10 minutes holding time and heating rate of 5oC/min was used in the experiment. pH, density, and color improvement were observed.
GC-MS results showed that lower oxygenated compounds in the bio-oil are associated with higher plastic feed composition. Synergetic effect is happened when plastic ratio is ≥50%. Composition of 12,5% corn cobs and 87,5% polypropylene plastic is found to produce the highest yield of bio-oil with the lowest oxygenates.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64373
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>