Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 146084 dokumen yang sesuai dengan query
cover
I Gede Wahyu Surya Dharma
"ABSTRAK
Pengenalan biometrik mengacu pada penggunaan karakter fisik maupun biologis untukmengenali suatu individu. Pengenalan ini bertujuan untuk mempermudah proses identi-fikasi. Hingga saat ini, proses identifikasi yang banyak digunakan menyasar pada orangdewasa dengan memanfaatkan pola sidik jari, bentuk wajah. Akan tetapi pengenalanyang diperuntukan untuk bayi dan balita masih sangat minim, bahkan belum ada suatumetode khusus yang mampu menyelesaikan masalah pengenalan pada bayi dan balita.Bayi dan balita pun membutuhkan suatu metode pengenalan yang mampu mengenalinyasejak kecil, sehingga proses pengarsipan menjadi lebih tertata dan lebih lengkap. Denganmelakukan pencacatan yan lebih detail, maka informasi terkait riwayat imunisasi, riwayatpenyakit maupaun riwayat pendidikan dapat diperoleh dengan cepat. Pada penelitian ini diusulkan suatu metode yang mampu menyelesaikan masalahpengenalan biometrik pada bayi dan balita dengan menggunakan sidik jari. Pengenalansidik jari yang digunakan berupa penggunaan fitur level 1 yaitu garis sidik jari danfitur level 2 yaitu minutia. Kedua level fitur ini akan digabungkan dengan menambahsuatu mekanisme perbaikan fitur sidik jari bernama mekanisme feedback. Mekanismefeedback akan melakukan perbaikan pada skala fitur level 1. Hasil yang diperoleh pada penelitian ini adalah metode yang diusulkan mampu meng-atasi masalah yang dihadapi pada citra sidik jari bayi. Kombinasi fitur level 1 dan level2 diikuti dengan mekanisme feedback mampu menghasilkan akurasi yang lebih baik di-bandingkan dengan kombinasi fitur level 1 dan level 2 tanpa mekanisme feedback.

ABSTRACT
Biometric recognition refers to the use of physical and biological characteristics to rec ognize an individual. This biometrics recognition aims to facilitate the identification pro cess. Until now, the used of identification process of is widely targeting adults that usinga fingerprint patterns, face shape. However, the recognition that is intended for infantsand toddlers is still very minimal, there is not even a special method that can solve theproblem of recognition in infants and toddlers. Infants and toddlers also need a methodof recognition that is able to recognize them since childhood, so the process of filing be comes more organized. By performing more detailed defects, information regarding toimmunization history, history of illness and education history can be obtained quickly. In this study, proposed a method that is able to solve problems on infant and toddlerbiometrics recognition using fingerprint. Fingerprint recognition in this study used theLevel 1 features in form of the fingerprint ridge and feature level 2 in form of minutia.Both levels of this feature will be combined by adding a fingerprint enhancement mecha nism called feedback mechanism. The feedback mechanism will make improvements inlevel 1 scale features. The results obtained in this study is the proposed method is able to overcome the prob lems faced on baby fingerprint image. The combination of level 1 and level 2 features fol lowed by feedback mechanisms can produce better accuracy compared to a combinationof level 1 and level 2 features without feedback mechanism."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
T50694
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Ratriyani Shaniya
"Pelacakan objek dengan menggunakan metode penggabungan dari citra visual RGB dan termal inframerah (TIR) menjadi bidang yang menarik untuk dipelajari oleh para peneliti dalam beberapa tahun terakhir karena kemampuannya untuk bertahan pada situasi dan kondisi sulit yang berkaitan dengan iluminasi cahaya seperti dalam keadaan gelap dan cuaca buruk yang tidak dapat dideteksi dengan hanya menggunakan citra RGB saja. Pada kondisi normal pelacakan objek dengan menggunakan citra RGB akan memiliki akurasi yang bagus, namun pada kondisi gelap dan cuaca buruk citra termal inframerah dapat membantu untuk tetap dapat melakukan pelacakan objek. Penggabungan keunggulan dari citra RGB dan termal inframerah diharapkan akan saling membantu untuk menutupi kelemahan dari masing-masing metode. Namun pencarian metode penggabungan terbaik dari kedua masukan tersebut masih merupakan tantangan tersendiri. Pada penelitian ini metode High Level Fusion dengan arsitektur DeepSORT dan Kalman Filter Hierarchical Estimator digunakan untuk menggabungkan citra RGB dan termal inframerah yang berfokus pada penggabungan hasil estimasi pelacakan objek dari kedua masukan. Dari hasil penelitian ini didapatkan sebuah arsitektur penggabungan metode pelacakan yang dapat mengoptimalkan hasil pelacakan dari kedua masukan dan tetap dapat bekerja ketika salah satu masukan tidak berfungsi.

RGBT object tracking has become an interesting field study for many researchers because of the robustness to overcome adverse conditions related to illumination like total darkness and bad weather where RGB detection could not perform well. Object tracking with RGB images could have excellent performance in normal conditions, but in dark and difficult weather conditions thermal infrared images could help to maintain the tracking process. This integration from RGB and thermal infrared is expected to complement each other’s strengths and weaknesses. However, it is still challenging to find the best method that can combine those two different input information. In this research, high-level data fusion method and DeepSORT architecture were used as a baseline tracking with Kalman filter Hierarchical Estimator to combine RGB and Thermal estimates for object tracking. The study results presented the combination architecture to optimize the tracking result that can perform with both inputs and maintain function if one of the inputs falls through."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Leporati, Ezio
Forest Grove Oregon: Research Studies Press, 1979
624.17 LEP a
Buku Teks  Universitas Indonesia Library
cover
Liani Budi Rachman
"ABSTRAK
Kadar kolesterol yang tinggi dalam darah dapat memicu timbulnya penyakit jantung koroner. Berdasarkan data yang diperoleh dari Kementerian Kesehatan Republik Indonesia, penyakit jantung koroner merupakan penyebab kematian tertinggi kedua setelah stroke dengan persentase 12.9% pada tahun 2014. Selain kolesterol tinggi, kondisi stres yang tinggi juga dapat memicu berbagai penyakit seperti gangguan pencernaan, kecemasan, dan gangguan jantung. Sehingga pemeriksaan kesehatan sedini mungkin baik dengan metode alternatif maupun pemeriksaan secara medis perlu dilakukan.
Penelitian ini membahas mengenai deteksi kolesterol dan stres melalui pengamatan citra iris. Endapan lemak yang telah terbentuk di jaringan kornea menghasilkan keburaman di area terluar iris. Tanda ini merupakan indikasi dari ketidakseimbangan tubuh sebagai tanda kolesterol berlebih. Sedangkan tidak terbentuknya endapan lemak
mengindikasikan kondisi kolesterol tidak tinggi. Sehingga dari pengamatan karakteristik iris ini, dapat dideteksi kondisi kolesterol tinggi dan kolesterol tidak tinggi. Lingkaran-lingkaran yang terbentuk pada iris atau yang disebut dengan cincin saraf mengindikasikan adanya ketegangan saraf berlebih. Cincin saraf terbentuk karena adanya iritabilitas, insomnia, ketidakseimbangan mental dan emosi seseorang. Sehingga tanda ini dapat mengindikasikan kondisi stres seseorang berupa bergejala stres atau tidak bergejala.
Deteksi kolesterol dan stres ini dibuat menggunakan metode Morphology Reconstruction untuk mengubah karakteristik penyakit lain pada ROI yang sama, Gray Level Co-occurence Matrix (GLCM) sebagai metode ekstraksi ciri, dan Backpropagation Neural Network (BNN) sebagai metode klasifikasi. Ciri yang digunakan dalam penelitian ini adalah entropy, contrast, correlation, energy, homogeneity, variance, dan difference variance. Dari hasil perancangan dengan jumlah citra pelatihan masing-masing sebesar 59 untuk deteksi kolesterol dan 53 untuk deteksi stres, diperoleh tingkat akurasi pengujian mencapai 96.49% untuk deteksi kolesterol dan 85.96% untuk deteksi stres dengan jumlah citra uji sebesar 57 citra.

ABSTRACT
High cholesterol levels in the blood can trigger coronary heart disease. Based on data obtained from the Ministry of Health of the Republic of Indonesia, coronary heart disease is the second highest cause of death with a percentage of 12.9% in 2014. Besides high cholesterol, high stress conditions can also trigger various diseases such as digestive disorders, anxiety, and heart problems. So people need to do health
examinations as early as possible.
This study discusses the detection of cholesterol and stress through observation of iris images. Fat deposits that have formed in the corneal tissue produce blur in the outer area of the iris. This sign is an indication of body imbalance as a sign of excess cholesterol. While the formation of fat deposits does not indicate the condition of cholesterol, it is identified as not high cholesterol. So from observing the characteristics of this iris, high cholesterol and not high cholesterol conditions can be detected. The circles that form on the iris or called as nerve ring indicate excessive nervous tension. The nerve ring is formed due to irritability, insomnia, mental and emotional imbalance in a person. So this sign can indicate a person's stress condition in the form of symptomatic stress or asymptomatic.
This cholesterol and stress detection is made using the Morphology Reconstruction method to change the characteristics of other diseases on the same Region of Interest, Gray Level Co-occurrence Matrix (GLCM) as a feature extraction method, and Backpropagation Neural Network (BNN) as a classification method. The characteristics used in this study are entropy, contrast, correlation, energy, homogeneity, variance, and difference variance. From the results of the design with the number of training images respectively 59 images for cholesterol detection and 53 images for stress detection, the accuracy of the test is 96.49% for cholesterol detection and 85.96% for stress detection with the number of testing images is 57 images."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andrea Laksmirani Kristina
"Level atau tingkatan antusiasme seseorang merupakan tolak ukur yang penting bagi performa sebuah perusahaan. Level antusiasme tersebut dapat dimodelkan melalui face recognition yang nantinya digunakan sebagai sebuah acuan untuk mengetahui apakah seseorang termasuk dalam kelas antusias, sedikit antusias, atau tidak antusias. Pengklasifikasian face recognition ini berbasis supervised machine learning. Klasifikasi yang digunakan dalam penelitian ini adalah Support Vector Machine SVM dengan metode one-vs-one karena kelas pada data terdiri lebih dari dua kelas. Adapun, dalam upaya peningkatan performa classifier, perlu dilakukan pemilihan fitur. Pemilihan fitur yang digunakan pada skripsi ini adalah Fisher rsquo;s Ratio dan Information Gain. Hasil yang diberikan di akhir tulisan ini berupa perbandingan akurasi dan running time dari klasifikasi SVM tanpa pemilihan fitur dan klasifikasi SVM dengan menggunakan masing-masing pemilihan fitur Fisher rsquo;s Ratio dan Information Gain. Pada klasifikasi SVM tanpa pemilihan fitur, didapatkan akurasi dan running time masing-masing sebesar 80,95238 dan 2,125 detik; dengan pemilihan fitur Fisher rsquo;s Ratio didapatkan akurasi dan running time masing-masing sebesar 88,89 dan 5,47 detik; sedangkan dengan pemilihan fitur Information Gain didapatkan akurasi sebesar 80,95238 dengan running time 1,265625 detik.

Enthusiasm level of a person is an important measurement for a company performance. Enthusiasm level can be modeled by face recognition that in the future will be used as standard to distinguish whether someone is classified as enthusiast, tend to enthusiast, or not at all. This face recognition classification is based on supervised machine learning. This paper uses Support Vector Machine SVM as a classifier with one vsone method because the data consists of more than two classes. In order to increase classifier performance, it is necessary to do feature selection. This paper uses Fisher rsquo s Ratio and Information Gain as feature selection. The conclusion at the end of this research is in the form of comparison of running time and accuracy between SVM classification without feature selection and with Fisher rsquo s Ratio and Information Gain feature selection, respectively. In SVM classification without feature selection, the accuracy and running time are 80,95238 and 2,125 seconds, respectively with Fisher rsquo s Ratio feature selection the accuracy and running time are 88,89 and 5,47 seconds, respectively whilst with Information Gain feature selection the accuracy and running time are 80,95238 , and 1.265625 seconds, respectively.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Kustiyo
"Padi mempunyai peran penting dalam menjamin ketahanan pangan di Indonesia, sehingga penelitian terkait lahan sawah sangat penting. Identifikasi lahan sawah dari data penginderaan jauh dengan akurasi yang tinggi di wilayah tropik Indonesia merupakan tantangan penelitian. Metode yang paling akurat untuk identifikasi lahan sawah adalah dengan menggunakan pendekatan fenologi dan integrasi data multi-sumber. Namun, pendekatan ini tidak mempertimbangkan karakteristik spektral dan temporal yang rinci. Penelitian ini mengusulkan penggabungan semua fitur spektral dan fitur temporal yang rinci dengan mempertimbangkan periode musim tanam padi dari data sensor optik Sentinel-2 dan sensor SAR Sentinel-1 dengan tujuan mendapatkan klasifikasi lahan sawah dengan akurasi tinggi. Metode identifikasi lahan sawah dalam penelitian ini meliputi pengolahan awal, ekstraksi fitur temporal dengan kuantil rinci, seleksi fitur spektro-temporal dengan menggunakan Leave-One-Out (LOO), fusi fitur dan klasifikasi dengan algoritma machine learning. Hasil penelitian menunjukkan bahwa klasifikasi lahan sawah terbaik adalah dengan menggunakan periode tanam pada musim hujan. Fitur spektral dan temporal (spektro-temporal) terbaik untuk data optik adalah kuantil 30% dan 90% dari Short Wave Infra-Red-1 (SWIR1), RedEdge-4 (RE4), RedEdge-1 (RE1), dan RedEdge-2 (RE2). Fitur spektro-temporal terbaik untuk data SAR adalah kuantil 10% dan 90% dari hamburan balik polarisasi vertical transmit - horizontal receive (VH). Hasil fitur yang dipilih menggambarkan fenologi pertumbuhan padi selama penggenangan, maksimum vegetatif dan bera (pasca panen). Penggabungan fitur spektro-temporal dari data optik dan SAR meningkatkan akurasi klasifikasi menjadi 95,06±0,50%.

Rice plays an important role in ensuring food security in Indonesia. Therefore, paddy fields related research is important. Identifying paddy fields with high accuracy using remote sensing is a challenging in Indonesia. The most accurate method for paddy fields identification is using phenological approach and multi-source data integration. However, these approaches do not consider the comprehensive spectral and temporal characteristic data in tropical regions. This research proposed the fusion of all spectral and detailed statistical temporal features considering the period of the paddy growing season from Sentinel-2 optical and Sentinel-1 SAR data to achieve a high accuracy paddy fields classification. The paddy fields identification method in this research starts with preprocessing, temporal feature extraction using detail quantile, spektro-temporal fetaure selection using Leave-One-Out (LOO), feature fusion, and then applied machine learning classification algorithm. The results show that the best paddy fields classification is using the planting period during the rainy season. The best spectral and temporal (spectro-temporal) features for optical data are the 30% and 90% quantiles of Short Wave Infra-Red 1 (SWIR1), RedEdge-4 (RE4), RedEdge-1 (RE1), and RedEdge-2 (RE2). The best spectro-temporal features for SAR data are the 10% and 90% quantiles of VH backscatter. The selected feature results describe the phenology of paddy growth during flooding, maximum vegetative and bare land (post-harvest). The spectro-temporal features fusion of optical and SAR data increased the classification accuracy to 95,06±0,50%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dewi Soerna Anggraeni
"Pelatihan Excellence Service Quality for Supervisor (ESQS) di Bank X adalah salah satu pelatihan service yang menjadi ujung tombak pelayanan nasabah di Bank X. Melalui pelatihan ini Supervisor yang menjabat sebagai Sales officer dan Service Officer atau Kiosk Manager diharapkan mampu menunjukkan perilaku pelayanan yang tnemuaskan nasabah dan mampu berperan sebagai role model bagi bawahan (frontliners), sehingga nasabah semakin puas dan posisi Bank X pada survei MRI tahun 2006 dapat meningkat menjadi peringkat 1 atau maksimal 3 besar.
Menurut teori Jack J. Phillips, evaluasi pelatihan ESQS ini baru sebatas level 1 (Reaction and Planned Action) dan level 2 (Learning). Kedua evaluasi ini masih dinilai kurang memuaskan karena belum terlihat perubahan perilaku yang diharapkan dari peserta. Oleh karena itu perlu dilakukan evaluasi pelatihan selanjutnva yakni evaluasi pelatihan level 3 (job application implementation). Evaluasi level 3 pada pelatihan-pelatihan lain di Bank X biasanya menggunakan I orang rater.
Evaluasi oleh 1 orang rater cenderung subjektif, karena memungkinkan munculnya isu-isu like and dislike. Berdasarkan masalah yang terjadi di Bank X, maka Penulis mengusulkan suatu rancangan program evaluasi pelatihan level 3 sesuai teori Jack P. Phillips (fob application implementation) ditambah dengan penerapan kuesioner menggunakan 360° Feedback, yang diharapkan mampu memberikan penilaian yang lebih komprehensif, obyektif, dan "kaya"."
Depok: Fakultas Psikologi Universitas Indonesia, 2006
T17870
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Ghazy
"Indonesia merupakan salah satu negara dengan produksi tanaman padi terbesar di dunia dengan total lebih dari 150 juta ton padi dihasilkan pada 3 tahun terakhir. Meskipun sudah menjadi makanan pokok selama bertahun-tahun, tanaman padi tidak luput dari serangan penyakit yang dapat menghambat produksi beras padi. Berbagai macam penyakit dapat menghambat produksi beras padi di Indonesia. Daun tanaman padi yang terkena serangan penyakit dapat digunakan sebagai indikator jenis penyakit dikarenakan setiap penyakit tanaman padi memiliki corak yang unik pada daun tanaman padi. Dari citra daun tanaman padi yang didapat, dilakukan transformasi format citra ke dalam format grayscale untuk dibentuk Gray Level Co-occurence Matrix (GLCM) untuk beberapa sudut. Fitur Haralick kemudian diekstraksi dari GLCM yang sudah didapatkan untuk mendapatkan fitur-fitur yang dapat menjelaskan citra daun tanaman padi tersebut. Metode ini dapat digunakan dikarenakan fitur Haralick dalam GLCM mampu menangani citra yang memiliki perbedaan tekstur dengan baik dan citra daun penyakit tanaman padi memiliki perbedaan pada tekstur daun yang cukup jelas dilihat. Sehingga dapat dikatakan bahwa metode ini cocok untuk digunakan pada kasus ini. Dengan jumlah fitur Haralick yang cukup banyak, Linear Discriminant Analyis (LDA) kemudian diaplikasikan kepada fitur-fitur Haralick sebagai metode reduksi dimensi sedemikian sehingga fitur baru yang didapatkan memiliki separasi yang lebih baik. Kemudian, Support Vector Machine (SVM) digunakan sebagai classifier dalam mengklasifikasi penyakit tanaman padi menggunakan fitur LDA yang sudah didapatkan.

Indonesia is one of the world’s leading rice producers with a total of more than 150 million tons of rice produced in the last three years . Rice plants, despite being a staple crop for many years, are susceptible to diseases that can hamper rice production.  Because each diseases of rice plants has a distinctive pattern on the leaves of rice plants, the leaves of diseased rice plants can be used as indicators of the type of disease. The picture format of the rice leaf is converted to grayscale in order to create a Gray Level Co-occurence Matrix (GLCM) at multiple angles. The Haralick feature is extracted from the GLCM to obtain features that can describe the image of the rice plant leaf. Because the Haralick feature in GLCM can handle images with diverse textures and the image of leaves of rice plant diseases has differences in leaf texture that are clearly apparent, this method can be used. With a large number of Haralick features, the Linear Discriminant Analysis (LDA) is used as a dimension reduction technique for the Haralick features, resulting in better separation of the new features. The Support Vector Machine (SVM) is used as a classifier to classify rice plant diseases based on the obtained LDA features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indah Anindita
"Kualitas ikatan dan adaptasi psikososial postpartum memiliki peranan penting dalam hubungan antara ibu dengan bayi. Perencanaan kehamilan memengaruhi ibu beradaptasi setelah kelahiran dan kualitas ikatan antara ibu dan bayi. Di Indonesia, banyak wanita usia subur tidak merencanakan kehamilannya. Hal ini terbukti dari wanita di Indonesia yang tidak konsisten menjalankan program KB. Penelitian ini bertujuan untuk mengetahui gambaran adaptasi psikososial postpartum dan kualitas ikatan antara ibu dan bayi berdasarkan perencanaan kehamilan. Penelitian ini merupakan penelitian deskriptif. Sampel penelitian ada ibu nifas berusia 3-6 minggu. Hasil penelitian menunjukan bahwa mayoritas adaptasi negatif terjadi pada ibu tanpa perencanaan kehamilan. Namun, baik ibu dengan perencanaan kehamilan dan tanpa perencanaan kehamilan pada penelitian ini memiliki kualitas ikatan yang baik dengan bayinya.

The quality of bonding and postpartum psychosocial adaptation have an important role in the relationship between mother and baby. Planning for pregnancy affects the mothers adaptation after birth and the quality of the bond between mother and baby. In Indonesia, many women in reproductive age do not plan their pregnancies. In fact, some women in Indonesia inconsistent in running family planning programs. This study aims to describe the postpartum psychosocial adaptation and the quality of the bond between mother and baby based on pregnancy planning. This research is a descriptive research. The study sample included postpartum mothers aged 3-6 weeks. The results showed that most negative adaptations occur in mothers without planning for pregnancy. However, both mothers with planning for pregnancy and without planning for pregnancy in this study had good bond quality with their babies."
Depok: Fakultas Ilmu Keperawatan Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>