Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 202415 dokumen yang sesuai dengan query
cover
Abdullah Barii Redhanta
"Tingginya kebutuhan gas bumi yang di sertai menurunnya pasokan dari sumur migas sekitarnya diperkirakan akan membuat terjadinya defisit neraca gas sebesar 1.322 MMSCFD untuk wilayah Jawa Bagian Barat di tahun 2020. Oleh karena itu, Jawa Barat membutuhkan Fasilitas Regasifikasi LNG untuk menerima gas bumi dari luar daerah untuk dapat masuk ke jaringan pipa. Dalam penelitian dilakukan perbandingan efisiensi pemanfaatan energi dingin LNG untuk gudang pendingin dengan kapasitas 200 ton ikan dan pembangkit listrik dengan kapasitas 70% pemanfaatan energi dingin dari terminal apabila diterapkan di wilayah Jawa Bagian Barat. Regasifikasi dengan pemanfaatan energi dingin LNG menggunakan siklus rankine dan brayton untuk pembangkit listrik combined cycle dan sebagai media pendingin gudang pendingin. Selain dari itu dilakukan perbandingan nilai ekonomi untuk aplikasi dari masing-masing fasilitas yang terintegrasi.
Perhitungan teknis dilakukan menggunakan perangkat lunak proses simulasi dengan hasil dari analisa simulasi terminal regasifikasi efisiensi thermal didapatkan sebesar 58,44% dengan 70,05% gudang pendingin, 67,67% pembangkit listrik dan 97,61% regasifikasi. Sedangkan efisiensi energi listrik yang didapatkan adalah sebesar 58,21% dengan energi listrik yang dihasilkan 186 MW. Pada nilai ekonomi dilakukan perhitungan levelized cost untuk biaya produksi regasifikasi pada gudang pendingin yaitu sebesar 0,73 $/MMBtu, pada pembangkit listrik sebesar 0,75 $/MMBtu dan regasifikasi sebesar 1,20 $/MMBtu. Biaya pembangkitan listrik didapatkan sebesar 0,08$/kWh dan biaya penyimpanan gudang pendingin sebesar 0,67 $/pallet hari.

The high demand of natural gas which is accompanied by a declining supply of oil and gas wells surrounding areas is expected to create a deficit gas balance by 1.322 MMSCFD for the region of Western Java in 2020. Therefore, West Java requires LNG Regasification facilities to receive natural gas from outside of the region to be able to get into the pipeline network in this study, a comparison of efficiency cold energy LNG utilization for refrigeration warehouse with capacity of 200 tons fish and power plant with 70% capacity of cold energy utilization from terminal when applied in Western Java area. Regasification with LNG cold energy utilization using rankine and brayton cycles for combined cycle power plants and as cooling cooler medium for cold storage. In addition, economic value comparisons for applications of each integrated facility are performed.
Technical Calculations are performed using process simulation software with the result of regasification terminal simulation analysis of thermal efficiency which are 58,44% with 70,05% for cold storage, 67,67% for power plant and 97,61% for regasification. While the electrical energy efficiency obtained is 58.21% with electric energy generated 186 MW. The economic value of regasification are calculated by using levelized cost to obtain production cost in for cold storage that is equal to 0.73 $ / MMBtu, for power plant equal to 0,75 $ / MMBtu and regasification equal to 1,20 $ / MMBtu. Electricity generation costs were obtained at 0.08 $ / kWh and cooling storage cost of 0.67 $ / pallet days.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50372
UI - Tesis Membership  Universitas Indonesia Library
cover
Deju Kevin Paulus
"Gas alam merupakan campuran gas yang mudah terbakar dari senyawa hidrokarbon sederhana. Gas alam sudah menjadi sumber energi alternatif yang banyak digunakan banyak kalangan. LNG merupakan salah satu contoh gas alam. Tahapan pendistribusian LNG diawali dengan mengeksplor gas alam, lalu menyaring hingga sesuai dengan spesifikasi yang dikehendaki, setelah itu ada proses liquefaction yang bertujuan untuk mengubah fase gas menjadi fase cair. Setelah gas sudah menjadi cair, LNG akan ditransportasikan dengan kapal tanker khusus. Ketika sampai tujuan, LNG akan dimasukan kedalam tangka penyimpanan (storage). Sebelum didistribusikan, LNG akan diubah lagi fasenya menjadi gas kembali dengan proses regasifikasi. Proses regasifikasi ini melibatkan air laut atau fluida lain dalam proses peningkatan suhu LNG. Dalam prosesnya banyak sekali energi dingin dari proses regasifikasi yang terbuang. Energi dingin yang terbuang ini dapat dimanfaatkan sebagai alat penukar kalor yang ada pada organic rankine cycle. Organic rankine cycle menggunakan fluida propane sebagai fluida kerjanya dikarenakan titik didih lebih rendah daripada air. Perancangan ORC ini dilakukan dengan cara mendesain alat penukar kalor yang ada pada rancangan tersebut. Hasil rancangan alat penukar kalor memiliki batas agar tidak over design dan minimnya pressure drop. Hasil rancangan alat penukar kalor dari siklus ORC ini memiliki effisiensi 75% hingga 99%.

Natural gas is a flammable mixtured gas of simple hydrocarbon compounds. Natural gas has become an alternative energy source that is commonly used. LNG is one of natural gas. The LNG distribution stage begins with exploring natural gas, then filtering it according to the desired specifications, then there is a liquefaction process that aims to change the gas phase into a liquid phase. After the gas has become liquefied, the LNG will be transported by special tankers. When it reaches its destination, LNG will be included in the storage tank. Before being distributed, LNG will be converted into gas again by a regasification process. This regasification process involves seawater or other fluids in the process of increasing the temperature of LNG. In regasification process, a lot of cold energy is wasted. This wasted cold energy can be used as a heat exchanger in the organic rankine cycle. Organic rankine cycle uses propane as its working fluid because its boiling point is lower than water. The design of this ORC, started in heat exchanger of ORC. The results of the design of the heat exchanger have a limit so heat exchanger not to get over design and minimalize pressure drop. The design results of the heat exchanger from the ORC cycle have an efficiency of 75% up to 99%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Arif Fadhillah
"Penelitian ini mengkaji kelayakan pemanfaatan energi dingin LNG pada terminal penerima dan regasifikasi LNG di Pulau Bangka yang dapat dimanfaatkan untuk sektor perikanan sebagai cold storage. Energi dingin dengan suhu sekitar -161˚C (-260˚F) yang terkandung dalam LNG tersebut sebelum digasifikasikan ke unit vaporizer terlebih terlebih dahulu diintegrasikan kepada unit heat exchanger yang dilakukan untuk memanfaatkan energi dingin LNG untuk mencairkan karbon dioksida yang menjadi refrigerant pada sistem pendingin ikan tersebut.
Untuk mengetahui kelayakan proyek ini, dilakukan kajian tekno-ekonomi proyek dengan jangka waktu operasi selama 20 tahun yang meliputi kajian desain peralatan fasilitas regasifikasi untuk mensupport kebutuhan pembangkit listrik 100 MW load follower dan juga fasilitas cold storage, kajian biaya Capex dan Opex, kajian keekonomian, kajian sensitivitas dengan menggunakan software crystal ball serta kajian penghematan yang diperoleh dengan pemanfaatan gas hasil regasifikasi LNG ini dengan perbandingan terhadap jenis bahan bakar lain yakni HSD.
Hasil kajian keekonomian mennjukkan bahwa proyek ini layak untuk dijalankan dengan kapasitas regasifikasi LNG sebesar 11.07 MMSCFD, diperlukan biaya investasi sebesar USD 48 Juta dengan biaya operasi dan pemeliharaaan tahunan sebesar USD 9.1 Juta. Parameter yang menunjukkan kelayakan proyek ini adalah IRR sebesar 14%, NPV sebesar USD 79 Juta dan Payback Period selama 7.7 tahun.

This study examines the feasibility of LNG cold energy utilization at the receiving terminal and regasification of LNG in Bangka Island which can be utilized for the fisheries sector as a cold storage. Cold energy with temperatures around -161˚C (- 260˚F) contained in the LNG before to be gasified to vaporizer unit, firstly LNG can utilized to the heat exchanger to utilize LNG cold energy to liquefy the carbon dioxide that can used as a refrigerant in the cooling system the cold storage system.
To determine the feasibility of this project, carried out the study of techno-economic of the project with the duration of the operation for 20 years which includes the study design equipment regasification facility to support the needs of the power plant of 100 MW load follower and cold storage facilities, study costs Capex and Opex, the study of economics, sensitivity studies using software crystal ball and assessments savings gained with the use of gas LNG regasification results with comparisons against other fuel types like High Speed Diesel (HSD).
The results of the economic study shows that the project is feasible to run with LNG regasification capacity of 11:07 MMSCFD, required an investment cost of USD 48 million with an annual operating cost and maintainability of USD 9.1 million. Parameters that indicate the feasibility of this project is an IRR of 14%, NPV of USD 79 Million and Payback Period for 7.7 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T46767
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Judi Winarko
"

Berdasarkan RUPTL 2018-2027, pembangkit listrik PLN di Pulau Jawa mengalami defisit pasokan gas mencapai 731 bbtud atau 4,86 mtpa pada tahun 2027. Pasokan gas saat ini dipenuhi dengan mendatangkan LNG dari Terminal LNG Bontang dan Tangguh sehingga fasilitas terminal regasifikasi merupakan komponen utama dalam rangkaian logistik LNG untuk memenuhi pasokan gas ke pembangkit. Pemilihan tipe regasifikasi onshore ataupun offshore merupakan hal penting sebagai dasar untuk mendapatkan biaya regasifikasi terendah pada throughput yang ditetapkan. Dengan mempertimbangkan aspek teknis dan keekonomian, studi komparatif terhadap kedua tipe regasifikasi tersebut dilakukan dan didapatkan bahwa, pada rentang throughput 0,11 – 1,46 mtpa, tipe regasifikasi offshore lebih menguntungkan karena menghasilkan biaya regasifikasi yang lebih rendah dibandingkan dengan tipe regasifikasi onshore sedangkan tipe regasifikasi onshore lebih menguntungkan saat rentang throughput 1,46 – 5,03 mtpa dibandingkan dengan tipe regasifikasi offshore. Biaya regasifikasi terendah untuk tipe regasifikasi onshore adalah 0,50 usd/mmbtu (5,03 mtpa) dan 1,92 usd/mmbtu (0,11 mtpa). Sedangkan untuk tipe regasifikasi offshore adalah 0,54 usd/mmbtu (5,04 mtpa) dan 1,60 (0,11 mtpa).

 

Kata kunci: Terminal Regasifikasi LNG, throughput, onshore, offshore, biaya regasifikasi.

 


Based on 2018-2027 Electricity Supply Business Plan (RUPTL), gas-based power plants in Java will experience natural gas shortage of 731 BBTUD, equivalent to 4.86 MTPA in 2027. Nowadays, natural gas supplies for gas power plants in Java are fulfilled from Bontang LNG and Tangguh LNG plants and it requires regasification terminal as the main infrastructure in LNG supply chain. Regasification type selection becomes critical in order to obtain lowest regasification cost at certain throughput. By considering the technical and economic aspects, comparative analysis on both regasification types shows that on the throughput 0.11 - 1.46 MTPA, offshore LNG regasification terminal gives lowest regasification cost compare to onshore LNG regasification while on throughput 1.46 - 5.03 MTPA it shows the opposite. The lowest regasification cost for the onshore is 0.50 USD/mmbtu for 5.03 MTPA and 1.92 USD/mmbtu for 0.11 MTPA. For the offshore, it cost 0.56 USD/mmbtu for 5.03 MTPA and 1.60 USD/mmbtu for 0.11 MTPA.

"
2019
T53999
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Muflih Ramadhon
"Transesterifikasi adalah reaksi kimia yang digunakan untuk mengubah minyak hewani menjadi biodiesel yang dapat digunakan. Pada penelitian ini, bahan bakar biodiesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO yang disintesis dari cangkang telur bebek. Katalis CaO berbasis limbah disintesis dari cangkang telur bebek melalui proses kalsinasi pada suhu 900 OC selama 2 jam. Transesterifikasi dilakukan pada suhu 55 OC pada 6 sampel dengan variasi penggunaan jumlah katalis (1.5 wt%, 6.5 wt%, dan 10 wt%) serta variasi katalis CaO komersial dan limbah. Katalis yang disintesis dari cangkang telur itik menghasilkan kadar Kalsium Oksida (CaO) sebesar 93.2%. Hasil pengujian sampel terbaik diperoleh untuk biodiesel dengan katalis 6.5% berbahan dasar limbah dan 10% katalis komersial. Untuk biodiesel dengan katalis berbasis limbah 6.5%, rendemen 90.75%, densitas 855.1 kg/m3, viskositas 5.73 mm2/cst, keasaman 1.69 mg-KOH/g, dan bilangan yodium 30.87 g-I2/100g. Untuk biodiesel dengan katalis berbasis limbah 10%, rendemen 90.81%, densitas 860.5 kg/m3, viskositas 6.52 mm2/cst, keasaman 2.03 mg-KOH/g, dan bilangan yodium 27.51 g-I2/100g. Angka keasaman standar tidak tercapai dimana maksimumnya adalah 0.5 mg-KOH/g.

Transesterification is a chemical reaction used to convert animal oils into usable biodiesel. In this study, biodiesel fuel was synthesized from beef tallow in a reactor using a CaO catalyst which also synthesized from duck eggshells. Waste-based CaO catalyst synthesized from duck eggshells through a calcination process at 900 OC for 2 hours. Transesterification carried out at a temperature of 55 OC on 6 samples with variations in the use of the amount of catalyst (1.5 wt%, 6.5 wt%, and 10 wt%) as well as variations of commercial and waste based CaO catalysts. The catalyst synthesized from duck eggshells obtained a yield of 93.2% amount of Calcium Oxide (CaO). The synthesized biodiesel also tested for its chemical and physical properties to fulfill the Indonesian National Standard (SNI). The best sample test results were obtained for biodiesel with 6.5% catalyst from waste-based and 10% catalyst from commercial. For biodiesel with 6.5% waste-based catalyst, 90.75% yield, 855.1 kg/m3 density, 5.73 mm2/cst viscosity, 1.69 mg-KOH/g acidity, and 30.87 g-I2/100g iodine number. For biodiesel with 10% waste-based catalyst, 90.81% yield, 860.5 kg/m3 density, 6.52 mm2/cst viscosity, 2.03 mg-KOH/g acidity, and 27.51 g-I2/100g iodine number. The standard acidity number is not reached where the maximum is 0.5 mg-KOH/g."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rheza Budi Aditya
"Rencana kebijakan energi nasional Indonesia hingga tahun 2050 yang berencana untuk menurunkan pemakaian bahan bakar minyak serta batubara dengan mengalihkannya ke energi yang lebih ramah lingkungan yaitu gas. Gas yang dalam proses distribusinya memerlukan penanganan serta infrastruktur khusus menjadi kendala utama dalam masih terkendalanya penyerapan bahan bakar gas. Salah satu metoda dalam pendistribusian gas adalah dengan meliquifikasi terlebih dahulu menjadi LNG.
Pada penelitian ini pendistribusian LNG akan menggunakan sistem Floating Storage Regasification Unit FSRU yang berfungsi sebagai tempat penyimpanan maupun untuk mengubah LNG menjadi gas kembali. Wilayah kajian yang digunakan adalah Jawa Tengah sedangkan LNG diperoleh dari LNG Plant Tangguh, pada penelitian ini akan dilakukan perhitungan keekonomian untuk melihat kelayakan dari penggunaan FSRU dalam pemenuhan kebutuhan energi di Jawa Tengah. Dari perhitungan keekonomian tersebut akan dilihat harga jual gas minimum kepada konsumen serta batas harga pembelian LNG untuk desain serta skenario yang digunakan pada penelitian ini.
Hasil dari perhitungan keekonomian tersebut diperoleh bahwa FSRU dapat diimplementasikan, ditunjukkan dengan nilai IRR yang melebihi 12,5 . Penyesuaian harga jual gas dilakukan ketika penyerapan gas kurang optimal maupun ketika biaya produksi LNG tersebut meningkat dengan tetap mempertimbangkan kepentingan konsumen maupun investor.

Indonesia national energy plan is planning to reduce oil and coal usage until 2050, and change it to a cleaner energy like gas. Distribution of gas that needs special treatments and infrastructures, become the main reasons gas consumptions is still low. One of the method for gas distributions is liquefying the gas first to become LNG.
In this experiment LNG distribution will be using a Floating Storage Regasification Unit FSRU , which can be used as a LNG storage and also to return the state of LNG into gas. The area of study in this experiment is in Central Java while LNG comes from Tangguh LNG Plant, there will be economic calculations to check the feasibility of using FSRU to comply with energy demand in Central Java.
The results from that calculations are minimum selling price of gas for consumer and also maksimum LNG buying price for design and scenario that used in this experiment. Results from economic calculations show that FSRU can be implemented in Central Java, as shown by IRR from calculations is higher than 12.5. Adjustments of gas selling price used when the usage is not optimal or when cost of LNG production increase while contemplate with consumer rsquo s and investor rsquo s interests.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49157
UI - Tesis Membership  Universitas Indonesia Library
cover
Septarro Brilliant Aji Putra
"ABSTRAK
Terminal penerima LNG Gresik akan dibangun untuk memenuhi kebutuhan pembangkit listrik tenaga gas dan uap PLTGU dengan laju regasifikasi gas alam sebesar 60,95 MMSCFD. Potensi eksergi dingin LNG akan terbuang ke air laut pada proses penguapan LNG secara konvensional dengan open rack vaporizer ORV sehingga diperlukan kajian pemanfaatan eksergi dingin LNG untuk menghasilkan energi listrik. Dalam penelitian ini dilakukan kajian teknologi penguapan LNG dengan pemanfaatan eksergi dingin LNG untuk menghasilkan energi listrik melalui skema Direct Expansion, Rankine Cycle dan kombinasi Direct Expansion Rankine Cycle yang disimulasikan dengan program komputer Unisim. Analisis energi dan eksergi juga dilakukan untuk mengetahui efisiensi penggunaan eksergi dingin LNG, dilanjutkan dengan analisis keekonomian berdasarkan data simulasi ketiga skema tersebut. Hasil simulasi menunjukkan bahwa skema kombinasi mampu menghasilkan energi listrik terbesar yaitu 39,80 kWh per ton LNG yang teregasifikasi dengan potensi pendapatan penjualan energi listrik sebesar USD 1.140.935 per tahun. Skema kombinasi juga mempunyai efisiensi termal dan efisiensi eksergi tertinggi sebesar 14,48 dan 60,71 . Berdasarkan hasil analisis keekonomian diketahui bahwa skema Direct Expansion mempunyai NPV tertinggi sebesar USD 695.032.

ABSTRACT
Gresik LNG receiving terminal will be built to meet the needs of combined cycle power plant PLTGU with natural gas regasification rate of 60.95 MMSCFD. The potential LNG cold exergy will be wasted to seawater on conventional LNG evaporation process using open rack vaporizer ORV so it is necessary to study the utilization of LNG cold exergy to generate electrical energy. In this research, the technology of LNG vaporization with the cold exergy utilization to produce electrical energy through Direct Expansion, Rankine Cycle and combination of Direct Expansion Rankine Cycle scheme simulated with Unisim computer program. Energy and exergy analysis also conducted to determine the efficiency of LNG cold exergy utilization, followed by economic analysis based on simulation data of the three schemes. The simulation results show that the combination scheme has the largest capability to produce electrical energy of 39.80 kWh per ton LNG regasified with potential revenue from electrical energy sales of USD 1,140,935 per year. Combination scheme also has the highest thermal efficiency and exergy efficiency of 14.48 and 60.71 . Based on the results of economic analysis found that Direct Expansion scheme has the highest NPV of USD 695,032."
2018
T50953
UI - Tesis Membership  Universitas Indonesia Library
cover
Fikri Eli Rosady
"Dengan permintaan hidrogen yang tinggi di masa depan, pemanfaatan energi dingin tampaknya menjadi solusi alternatif untuk meningkatkan rantai ekonomi hidrogen dengan memaksimalkan pemanfaatan limbah energi dingin selama regasifikasi. Suhu rendah hidrogen cair (-253℃ pada 1 atm) akan memberikan beragam aplikasi yang dapat diimplementasikan. Makalah ini mengusulkan pembangkit daya dan unit pemisahan udara sebagai proses integrasi dari regasifikasi hidrogen cair. Untuk mencapai desain proses terbaik, pemilihan proses dibuat dengan mempertimbangkan tingginya pembangkitan daya dan rendahnya kerusakan eksergi. Desain proses terpilih akan diintegrasikan dengan unit pemisahan udara dengan 4 skenario laju alir dan dioptimasi untuk mendapatkan kondisi ideal dengan maksimal energi listrik hasil dan kerusakan eksergi yang minimum. Solusi ideal setiap scenario akan dievaluasi keekonomiannya. Dari hasil pemilihan proses, cascade rankine cycle mampu memulihkan energi pencairan hidrogen hingga 11,46 % dan menghasilkan kerusakan eksergi yang paling minim. Cascade rankine cycle kemudian diintegrasikan dengan unit pemisahan udara dan dioptimasi. Dari hasil simulasi, semakin tinggi laju alir udara akan menghasilkan energi listrik yang semakin rendah tetapi mampu mengurangi kerusakan eksergi hingga 1700 kW. Dari hasil perhitungan, skenario D, dengan laju alir 12000 kg/jam mampu memberikan internal rate of return paling tinggi (23,96%) dan payback period tersingkat 5,14 tahun dibanding dengan skenario lainnya. 

With the future's high demand for hydrogen, utilizing cold energy appears to be an alternative solution to enhance the hydrogen economic chain by maximizing the use of cold energy waste during regasification. The low temperature of liquid hydrogen (-253℃ at 1 atm) offers various applicable implementations. This paper proposes integrating a power plant and an air separation unit with the liquid hydrogen regasification process. To achieve the optimal process design, the selection process considers both high power generation and low exergy destruction. The chosen process design will be integrated with the air separation unit under four different flow rate scenarios and optimized to obtain ideal conditions, maximizing electrical energy output and minimizing exergy destruction. The economic feasibility of the ideal solution for each scenario will be evaluated. Based on the process selection results, the cascade Rankine cycle can recover up to 11.46% of the hydrogen liquefaction energy and produce the least exergy destruction. The cascade Rankine cycle is then integrated with the air separation unit and optimized. Simulation results indicate that higher air flow rates yield lower electrical energy but can reduce exergy destruction by up to 1700 kW. According to economic calculations, scenario D, with a flow rate of 12,000 kg/hour, provides the highest internal rate of return (23.96%) and the shortest payback period of 5.14 years compared to other scenarios."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ilyas Savier Alfikri
"Karya tulis ini membahas simulasi dan optimasi tujuan ganda proses regasifikasi hidrogen cair. Tujuan penulisan karay tulis ini adalah untuk mengetahui potensi pemanfaatan energi dingin hidrogen cair. Terdapat dua faktor utama yang melatarbelakangi proses pemanfaatan energi dingin hidrogen. Pertama, energi yang dikonsumsi pada proses pencairan hidrogen adalah 3,3 kWh/kg hidrogen cair (Departement of Energy U.S.A., 2009). Kedua, energi yang tergandung dalam hidrogen adalah 120 MJ/kg (Van Hoecke et al., 2021). Proses pemanfaatan energi dingin hidrogen cair yang dibahas adalah kombinasi Siklus Brayton dan ekspansi. Simulasi dilakukan pada Aspen HYSYS V.10 dengan fluid package­ Peng-Robinson. Fluida kerja yang digunakan dalam simulasi adalah fluida kerja Helium dan fluida kerja campuran Helium-Neon. Optimasi dilakukan pada aplikasi MS Excel. Algoritma yang digunakan adalah modifikasi dari I-MODE yang dibuat oleh Sharma & Rangiah, 2013. Optimasi tujuan ganda memaksimalkan energi listrik yang dibangkitkan dan meminimalkan biaya pompa dengan variabel penentu adalah laju alir dan komposisi fluida kerja, serta tekanan penguapan hidrogen cair. Dengan laju alir hidrogen cair 30 ton/hari, diperoleh kondisi operasi yang optimum 1836 kg/jam fluida kerja Helium dengan tekanan penguapan sebesar 68 atm. Energi listrik yang dibangkitkan adalah 0,934 GWh per tahun dan biaya pompa yang dibutuhkan adalah $12.305.142.

This paper discusses simulation and multi-objective optimization of regasification liquid hydrogen. This paper is written to identify the utilization of hydrogen cold energy potency. There are two main factors behind this study. The amount of energy consumed in the liquefaction process is 3.3 kWh/kg of liquid hydrogen (Departement of Energy U.S.A., 2009), and the hydrogen energy content is 120 MJ/kg (Van Hoecke et al., 2021). The process simulation is a combination of the Brayton Cycle and direct expansion. The simulation is conducted on Aspen HYSYS V.10 with Peng-Robinson fluid package. The working fluids that are used in this simulation are Helium and Helium-Neon mixture. The optimization is conducted in MS Excel. I-MODE algorithm (Sharma & Rangiah, 2013) is modified to run the optimization process. Multi-objective optimization will maximize the amount of electricity and minimize the cost of the pump by changing the flow rate and composition of the working fluid, and the regasification pressure. Liquid hydrogen flow rate set to be constant at 30 ton/h, the optimum condition is 1863 kg/h Helium as working fluid and regasification pressure at 68 atm. The amount of electricity generated is 0.934 GWh per year and the cost of the pump is $12.305.142."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>