Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 149764 dokumen yang sesuai dengan query
cover
Amanda Nydia Augustizhafira
"Analisis sentimen merupakan bagian dari data mining text mining , yaitu proses memahami, mengekstrak, dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada salah satu media sosial, yaitu Twitter. Analisis sentimen tergolong sebagai masalah klasifikasi yang dapat diselesaikan menggunakan salah satu metode machine learning, yaitu Neural Network. Pada machine learning, data dibagi menjadi data pelatihan dan data pengujian yang berasal dari domain yang sama.
Permasalahan utama pada penelitian ini adalah data pelatihan dan data pengujian berasal dari dua domain yang berbeda, sehingga perlu diterapkan pembelajaran lain selain machine learning. Masalah tersebut dapat diselesaikan dengan menggunakan transfer learning. Transfer learning merupakan suatu pembelajaran model yang dibangun oleh suatu data pelatihan dari suatu domain dan diuji oleh suatu data pengujian dari domain yang berbeda dari domain data pelatihan. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode Neural Network yang nantinya akan diuji dengan fitur n-gram bi-gram dan tri-gram serta satu metode seleksi fitur, yaitu Extra-Trees Classifier.
Dalam penelitian ini, nilai akurasi transfer learning tertinggi didapat saat hidden layer berjumlah satu. Sebagian besar nilai akurasi tertinggi didapat saat penggunaan 250 neuron pada hidden layer. Fungsi aktivasi ReLU dan tanh menghasilkan nilai akurasi yang lebih tinggi dibandingkan fungsi aktivasi logistic sigmoid. Penggunakan metode seleksi fitur dapat meningkatkan kinerja transfer learning sehingga nilai akurasinya lebih tinggi dibandingkan simulasi tanpa penggunaan metode seleksi fitur.

Sentiment analysis is a part of data mining text mining , which is the process of understanding, extracting, and processing textual data automatically to obtain information. In this research, sentiment analysis is applied to one social media called Twitter. Sentiment analysis is categorized as a classification problem that can be solved using one of machine learning methods, namely Neural Network. In machine learning, data is divided into training data and test data from the same domain.
The main problem in this research is training data and test data come from two different domains, so it is necessary to apply other learning beside machine learning. The problem can be solved by using transfer learning. Transfer learning is a model learning constructed by a training data from a domain and tested by a test data from a different domain from the training data domain. The simulation in this research resulted in an accuracy of learning transfer with Neural Network method which will be tested using n grams bi grams and tri grams and one feature selection method called Extra Trees Classifier.
In this research, the highest value of transfer learning accuracy is obtained when one hidden layer is used. Most of the highest accuracy values are obtained from the use of 250 neurons on the hidden layer. The activation function of ReLU and tanh yield a higher accuracy value than the logical activation function sigmoid . The use of feature selection method can improve the transfer learning performance so that the accuracy value is higher than simulation without the use of feature selection method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chris Solontio
"Analisis sentimen merupakan permasalahan klasifikasi data mining dengan proses memahami, mengekstrak dan mengolah data teks secara otomatis untuk mendapatkan informasi. Dalam menganalisis pendapat di media sosial digunakan machine learning untuk mendapatkan hasil klasifikasi. Banyak metode machine learning untuk melakukan klasifikasi, dalam penelitian ini akan digunakan convolutional neural network. Dalam machine learning, data dibagi menjadi data training dan data test dengan domain data yang sama.
Permasalahan utama skripsi ini adalah data yang digunakan memiliki dua domain berbeda, sehingga metode machine learning tradisional tidak dapat diterapkan. Sehingga agar dapat menerapkan convolutional neural network untuk dua data berbeda diperkenalkan suatu cara yaitu transfer learning. Transfer learning merupakan suatu proses pembelajaran model yang didapatkan dari training data A oleh data B dengan domain berbeda. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode convolutional neural network.

Sentiment analysis is classification problem in data mining with process of understanding, extracting and processing text data to obtain information. Machine learning is needed in analyzing sentiment of the people to get the result of classification. There are many methods in machine learning to do classification, this research will use convolutional neural network. In machine learning, data is divided into train and test data with the same domain.
The main problem of this research is the data has a different domain, so the traditional machine learning method can not be applied. In order to apply convolutional neural network into data with different domain, it will be introduced transfer learning method. Transfer learning is learning model process obtained from training data A then tested by data B. In this research, the simulations result is accuracy of transfer learning with convolutional neural network.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Syskya Wydya
"Analisis sentimen merupakan proses memahami, mengekstrak dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada media sosial, yaitu Twitter. Pada dasarnya analisis sentimen merupakan masalah klasifikasi. Support Vector Machine SVM adalah salah satu metode machine learning untuk menyelesaikan masalah klasifikasi. Pada pendekatan SVM model dibangun dengan data dari domain yang sama. Namun, ketika terjadi perubahan domain, maka model machine learning harus dibangun kembali dari awal dengan menggunakan data pelatihan yang baru. Data pelatihan yang baru membutuhkan proses pelabelan yang dilakukan secara manual.
Dalam kasus ini, akan lebih efektif dan efisien jika dilakukan transfer learning agar dapat menggunakan data pelatihan dari domain yang sudah tersedia untuk menangani masalah klasifikasi pada domain yang berbeda. Data pelatihan dari sebuah domain digunakan untuk melakukan klasifikasi pada domain yang berbeda. Dalam penelitian masalah analisis sentimen untuk tweets berbahasa Indonesia ini, nilai akurasi transfer learning masih lebih rendah dari pada metode SVM tanpa transfer learning. Penggunaan fitur bi-gram dapat meningkatkan kinerja transfer learning.

Sentiment analysis is the process of understanding, extracting and processing textual data automatically to obtain information. In this experiment, sentiment analysis applied to social media, Twitter. Basically, sentiment analysis is a classification problem. Support Vector Machine SVM is one of machine learning method to solve two class classification problem. In the SVM approach the model is built with data from the same domain. However, when domain changes occur, the machine learning model must be rebuilt from scratch using new training data. New training data requires manual labeling process.
In this case, it would be more effective and efficient to transfer learning to use the training data from an already available domain to deal with classification problems on different domains. Training data from a domain will be used to classify on different domains. In the research problem of sentiment analysis for tweets in Bahasa, the value of transfer learning accuracy is still lower than the SVM method without transfer learning. Use of bi gram feature can improve the performance of transfer learning.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47815
UI - Tesis Membership  Universitas Indonesia Library
cover
Hepatika Zidny Ilmadina
"Leptomeningeal metastatis merupakan indikasi keganasan yang terjadi pada pasien leukemia. Meskipun hanya memiliki porsi 30-40% yang menyebabkan kekambuhan keganasan pada pasien leukemia, hal tersebut yang dijadikan dasar dalam menentukan pengobatan terbaik yang diberikan kepada mereka. Leptomeningeal metastasis lebih baik dideteksi dengan menggunakan Magnetic Resonance Imaging (MRI) karena sensitivitasnya yang tinggi dalam citra neuraxis. Kemampuan expert yang tinggi untuk melihat dan menganalisis sangat diperlukan dalam membaca hasil Brain MRI pasien leukemia dengan suspek leptomeningeal metastasis. Oleh karena itu, klasifikasi akan memakan waktu yang lama dan memungkinkan kesalahan pembacaan hasil. Berbagai metode telah banyak diusulkan dan dikembangkan dalam klasifikasi Brain MRI untuk mendapatkan hasil terbaik namun tantangan dalam penelitian ini adalah leptomeningeal metastasis yang karakteristiknya lebih sudah dikenali dibandingkan tumor pada otak. Oleh karena itu peneliti mengusulkan pengklasifikasian leptomeningeal metastasis dengan menggunakan metode CNN via transfer learning. Dengan berbagai skenario yang dilakukan, hasil akurasi terbaik adalah implementasi metode CNN (ResNet50) via transfer learning mencapai 82,22%.

Leptomeningeal metastasis is an indication of malignancy that occurs in leukemia patients. Although it only has a 30-40% portion, which causes recurrence of malignancy in leukemia patients, it is the basis for determining the best treatment given to them. Leptomeningeal metastases are better detected by using Magnetic Resonance Imaging (MRI) because of their high sensitivity in neuroaxis images. A high expert ability to see and analyze is needed in reading the brain MRI results of leukemia patients with suspected leptomeningeal metastasis. Therefore, the classification will take a long time and may an incorrect reading of the results. Various methods have been proposed and developed in the brain MRI classification to get the best results, but the challenge in this research is leptomeningeal metastasis, whose characteristics are more not recognizable than tumors in the brain. Therefore, we propose the classification of leptomeningeal metastasis using the CNN method via transfer learning. With various scenarios done, we obtained the best accuracy result is the implementation of the CNN (ResNet50) method via transfer learning, up to 82.22%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Zaid Abdurrahman
"Kemajuan teknologi memicu pertumbuhan industri teknologi dan mendorong masyarakat untuk menggunakan smartphone, terutama untuk berkomunikasi di media sosial. Media sosial merupakan tempat yang efektif untuk mencari berbagai informasi. Oleh karena itu, media sosial menyimpan banyak data, terutama data tekstual. Data tersebut muncul dari para pengguna yang jumlahnya meningkat pesat. Data tekstual bisa digunakan untuk analisis sentimen. Skripsi ini membahas analisis sentimen untuk melihat kecenderungan suatu informasi dari penulisnya. Analisis sentimen mengklasifikasikan data tekstual menjadi kelas sentimen positif dan negatif. CNN merupakan salah satu algoritma deep learning yang dapat mengklasifikasi data tekstual. Model dari algoritma CNN menunjukkan hasil yang cukup baik dalam mengkalsifikasi permasalahan analisis sentimen dengan bantuan lifelong learning. Lifelong learning merupakan machine learning yang menyerupai proses belajar pada otak manusia. Proses yang dijalankan yaitu dengan memanfaatkan hasil pembelajaran dari masa lalu untuk membantu pembelajaran pada masa depan. 4 dataset dengan domain yang berbeda, dijalankan menggunakan model CNN pada proses Lifelong learning dan menghasilkan akurasi yang meningkat, seiring dengan penambahan dataset pada proses training.

Technological advances are fueling the growth of the technology industry and encouraging people to use smartphones, especially for surfing on social media. Social media is an effective tool to find information. Therefore, social media stores a lot of data, especially textual data. The data came from users whose numbers had increased rapidly. Textual data can be used for sentiment analysis. Sentiment analysis is conducted in this study to obtain the tendency of the authors about an article. Sentiment analysis classifies textual data into a class of positive and negative sentiments. CNN is one of the deep learning algorithms that can classify textual data into positive, negative and natural classes. The model of the CNN algorithm shows good results in classifying the problem of sentiment analysis with the help of lifelong learning. Lifelong learning is a machine learning that resembles the learning process in the human brain. The process that is carried out is by utilizing learning outcomes from the past to help learning in the future. 4 datasets with different domains had ran using the CNN model in the Lifelong learning process, and produced increased accuracy along with the addition of datasets in the training process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Martin Hizkia Parasi
"

Perkembangan teknologi pemrosesan ucapan sangat pesat akhir-akhir ini. Namun, fokus penelitian dalam Bahasa Indonesia masih terbilang sedikit, walaupun manfaat dan benefit yang dapat diperoleh sangat banyak dari pengembangan tersebut. Hal tersebut yang melatarbelakangi dilakukan penelitian ini. Pada penelitian ini digunakan model transfer learning (Inception dan ResNet) dan CNN untuk melakukan prediksi emosi terhadap suara manusia berbahasa Indonesia. Kumpulan data yang digunakan dalam penelitian ini, diperoleh dari berbagai film dalam Bahasa Indonesia. Film-film tersebut dipotong menjadi potongan yang lebih kecil dan dilakukan dua metode ekstraksi fitur dari potongan audio tersebut. Ekstraksi fitur yang digunakan adalah Mel-Spectrogram dan MelFrequency Cepstral Coefficient (MFCC). Data yang diperoleh dari kedua ekstraksi fitur tersebut dilatih pada tiga model yang digunakan (Inception, ResNet, serta CNN). Dari percobaan yang telah dilakukan, didapatkan bahwa model ResNet memiliki performa yang lebih baik dibanding Inception dan CNN, dengan rata-rata akurasi 49%. Pelatihan model menggunakan hyperparameter dengan batch size sebesar 16 dan dropout (0,2 untuk Mel-Spectrogram dan 0,4 untuk MFCC) demi mendapatkan performa terbaik.


Speech processing technology advancement has been snowballing for these several years. Nevertheless, research in the Indonesian language can be counted to be little compared to other technology research. Because of that, this research was done. In this research, the transfer learning models, focused on Inception and ResNet, were used to do the speech emotion recognition prediction based on human speech in the Indonesian language. The dataset that is used in this research was collected manually from several films and movies in Indonesian. The films were cut into several smaller parts and were extracted using the Mel-Spectrogram and Mel-frequency Cepstrum Coefficient (MFCC) feature extraction. The data, which is consist of the picture of Mel-spectrogram and MFCC, was trained on the models followed by testing. Based on the experiments done, the ResNet model has better accuracy and performance compared to the Inception and simple CNN, with 49% of accuracy. The experiments also showed that the best hyperparameter for this type of training is 16 batch size, 0.2 dropout sizes for Mel-spectrogram feature extraction, and 0.4 dropout sizes for MFCC to get the best performance out of the model used.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fernanda Hartoyo
"Bejana tekan merupakan peralatan yang sebagai penampung fluida cair maupun gas dengan temperatur yang memiliki perbedaan dengan lingkungan yang ada di sekitarnya yang memiliki kemungkinan kegagalan yang tinggi yang dapat berpengaruh pada banyak faktor. Kegagalan bejana tekan dapat disebabkan karena adanya fenomena korosi seragam yang menyebabkan keluarnya fluida berbahaya dari peralatan yang memiliki tekanan karena adanya penipisan pada dinding bejana tekan. Hal ini dapat dihindari dengan melakukan inspeksi menggunakan risk-based inspection (RBI) yang mampu meningkatkan keamanan bejana tekan berbasis risiko yang dilakukan pada suatu peralatan berdasarkan prioritas risiko yang mempermudah dalam melakukan inspeksi dengan memperhatikan Probability of Failure dan Consequence of Failure. Salah satu metode untuk menganalisis risiko pada bejana tekan adalah dengan menggunakan metode pembelajaran mesin berbasis deep learning yang akan mengembangkan model penilaian risiko kegagalan bejana tekan minyak dan gas akibat korosi seragam yang dapat mempersingkat waktu, meningkatkan akurasi, efisien dalam melakukan pengolahan data, serta lebih lebih hemat biaya dengan menawarkan akurasi perhitungan yang tinggi. Penelitian menghasilkan program prediksi risiko bejana tekan dengan menggunakan klasifikasi pembelajaran mesin berbasis deep learning untuk memprediksi kegagalan pada peralatan bejana tekan akibat korosi seragam dengan menggunakan metode Risk Based Inspection dengan beberapa parameter model seperti random state senilai 25, learning rate sebesar 0.001, dengan layer berjumlah 3 dan dense 64,32,16, test size sebesar 20% dan batch size sebesar 32, dan epoch dengan nilai 150 menghasilkan akurasi model sebesar 93% yang didapatkan dari validasi confusion matrix. Nilai akurasi 93% bersumber dari 300 data yang didapatkan dari pembuatan dataset dengan berlandaskan standard API RBI 581.

A pressure vessel is an equipment that acts as a container for a liquid or gas with a different temperature from the surrounding environment, a high probability of failure, which can affect many factors. Pressure vessel failure can be caused by uniform corrosion, causing the dangerous liquid to be discharged from the pressure vessel due to thinning the pressure vessel wall. Pressure vessel failure can prevent failure by performing Risk Based Inspection (RBI), improving the safety and reliability of pressure vessels based on the risk performed on the equipment are based on risk priority. RBI facilitates the execution of tests that consider the probability of failure and the consequences of failure. One risk analysis method in pressure vessels is to use deep learning based machine learning to develop a failure risk assessment of pressure vessels due to uniform corrosion. This method can shorten the time, increase accuracy, be efficient in data processing, and be more cost-effective by offering high calculation accuracy. In this study, a risk prediction program of a pressure vessel is completed using a deep learning based machine learning classification to predict failure of pressure vessel using the Risk based Inspection method. This program which obtained the following model parameters such as random state of 25, a learning rate of 0.001, with three layers and dense 64,32,16, test size of 20% and batch size of 32, and an epoch with a value of 150, resulted in a model accuracy of 93% obtained from the validation of the confusion matrix. Program with accuracy of 93% comes from 300 dataset based on the RBI 581 API standard."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Furida Lusi S.
"Salah satu media sosial yang berkembang saat ini adalah twitter, twitter menjadi salah satu tempat bagi masyarakat untuk memberikan opini atau pendapat terhadap hal-hal yang menarik bagi masyarakat, sehingga opini-opini dan pendapat yang tertuang di dalam twitter dapat menjadi acuan bagi orang yang membutuhkan. Sehingga dibutuhkan metode otomatis untuk menganalisis hal tersebut yaitu dengan analisis sentiment sentiment analysis. Secara umum, masalah sentimen analisis merupakan suatu masalah klasifikasi, yaitu bagaimana mengklasifikasikan suatu data tekstual ke dalam kelas sentimen positif atau negatif.
Salah satu metode klasifikasi yang dapat digunakan adalah Support vector machine SVM. Pada proses klasifikasi sentimen dari data tekstual, data tekstual tersebut umunya direpresentasikan dalam vektor dengan fitur atau dimensi berupa kata. Disamping fitur kata, saat ini ada metode untuk mendeteksi topik pada suatu data tekstual yaitu dengan Nonnegative Matrix Factorization NMF.
Pada penelitian yang dianalisis adalah menggunakan fitur topik untuk analisis sentimen dengan cara menggabungkan metode Nonnegative Matrix Factorization NMF dan Support vector machine SVM . Nilai akurasi dari metode penggabungan ini menunjukkan hasil yang lebih baik.

One social media developed at this time is twitter, twitter became one of the places for the public to give opinions or views on matters of interest to the public, so that the opinions and views expressed in twitter can be a reference for people in need. So it takes an automatic method for analyzing it is by analysis of sentiment sentiment analysis. In general, sentiment analysis problem is a problem of classification., Namely how to classify a class of textual data into a positive or negative sentiment.
One method of classification that can be used is Support vector machine SVM. In the process of sentiment classification of textual data, textual data are generally represented by a vector with a feature or dimension in the form of words. Besides the features of the word, at this time there is a method for detecting a topic in a textual data that is with nonnegative Matrix Factorization NMF.
In the study are analyzed using the feature topic for sentiment analysis by combining methods nonnegative Matrix Factorization NMF and Support vector machine SVM. Rated accuracy of this incorporation method showed better results.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47000
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>