Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 56041 dokumen yang sesuai dengan query
cover
Hamimah
"ABSTRAK
Pendeteksian topik adalah proses menemukan topik yang digunakan untuk menganalisis kata dalam suatu kumpulan dokumen. Pendeteksian topik secara manual pada data yang besar sangatlah sulit. Sehingga dibutuhkan metode otomatis yang dikenal dengan pemodelan topik. Salah satu metode pemodelan topik yang sering digunakan adalah metode clustering. Clustering adalah teknik pengelompokan data yang tujuannya adalah untuk mengelompokkan data tersebut sehingga anggota dari grup yang sama lebih homogen atau lebih mirip satu sama lain daripada dengan anggota kelompok yang berbeda. Metode clustering yang sering digunakan adalah Fuzzy C-Means FCM. FCM ini bekerja dengan baik pada data dengan dimensi yang rendah, namun gagal pada data dengan dimensi yang tinggi Winkler, dkk, 2011. Pada data dimensi yang tinggi, algoritma FCM konvergen ke satu pusat centre of gravity, sehingga topik-topik yang dihasilkan antara satu dengan yang lainnya sama. Salah satu pendekatan untuk mengatasi kegagalan metode FCM pada data dimensi tinggi adalah memproyeksikan data pada ruang Eigen dengan dimensi lebih rendah dan metode tersebut dikenal juga dengan Eigenspace-based Fuzzy C-Means EFCM. Pada algoritma EFCM umumnya dilakukan inisialisasi random yang menyebabkan topik yang dihasilkan tidak sama setiap kali algoritma tersebut dijalankan. Untuk mengatasi masalah tersebut dibutuhkan inisialisasi yang tidak random. Untuk itu, pada skripsi ini akan digunakan metode Nonnegative Double Singular Value Decomposition NNDSVD. Algoritma NNDSVD terdiri dari dua proses metode SVD. Hasil dari simulasi ini menunjukkan bahwa nilai akurasi dengan inisialisasi NNDSVD menunjukkan adanya peningkatan lebih baik dibandingkan dengan inisialisasi random dan NNDSVD dapat menyelesaikan masalah EFCM dengan data berdimensi tinggi.

ABSTRACT
Detection Topic is a process of finding the topics used to analyze words in a document that a collection of textual data. Detecting topic for a very large document hardly done manually. The topic detection problem is automatically known as topic modeling. One method of topic modeling that are commonly used is clustering method. Clustering is a data grouping technique which purposes is to group the data so members of each group are more homogeneous and more like each other than with different group members. This research will use fuzzy clustering method with Fuzzy C Means algorithm FCM . FCM works well on low data dimensions but it fails on high data dimensions. One approach to overcome the failure of FCM methods in high dimensional spaces is to project data on lower dimensional Eigen spaces and the method is also known as EigenSpace based FCM EFCM. In the EFCM, the algorithm did random initialization that causes the resulting topic was not same every time the algorithm runs. To solve this problem, it requires to implement non random initialization. In this study, we used the initial Nonnegative Double Singular Value Decomposition NNDSVD. The basis of the NNSVD algorithm is a two processes SVD method. This simulation results show that NNDSVD initialization method can solves the eigenspace based Fuzzy C Means problems in high dimension data and NNDSVD based initialization gives same resulted topic every executed algorithm. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deo Lahara
"ABSTRAK
Pendeteksian topik topic detection adalah suatu proses yang digunakan untuk menganalisis kata-kata pada suatu koleksi data tekstual untuk menentukan topik-topik yang ada pada koleksi tersebut. Pendeteksian topik pada dokumen yang sangat besar sulit dilakukan secara manual sehingga dibutuhkan metode otomatis. Masalah pendeteksian topik secara otomatis dikenal dengan istilah topic detection and tracking TDT . Suatu metode alternatif TDT untuk masalah pendeteksian topik adalah fuzzy C-means FCM. Pada metode fuzzy C-means, umumnya pusat cluster ditentukan secara acak atau inisialisasi random. Namun, terkait dengan masalah dimensi yang tinggi pada inisialisasi random akan menyebabkan algoritma konvergen ke satu pusat. Sehingga, topik-topik yang dihasilkan antara satu dengan yang lainnya sama. Untuk itu, diperlukan metode untuk membuat inisialisasi yang dapat mengatasi masalah tersebut. Salah satu metode inisialisasi yang akan dikembangkan pada penelitian ini adalah metode Singular Value Decomposition SVD . Hasil simulasi menunjukan bahwa metode inisialisasi dapat mengatasi permasalahan fuzzy C-means pada data dimensi yang tinggi sehingga topik-topik yang dihasilkan tidak sama terhadap satu sama lain.

ABSTRAK
Topic detection is a process used to analyze words in a collection of textual data to determine the topics of the collection. Detecting topics on a very large document is hardly done manually so that automatic methods are needed. Automatic method to detect topics in textual documents is known as Topic Detection and Tracking TDT . An alternative method of TDT for topic detection problems is fuzzy C means FCM . In the FCM method, generally the cluster center is random initialization. However, related to the problem of high dimensional random initialization causes the algorithm to converge to one center, it means that all generated topics are similar. For that, a method is needed to create an initialization that resolves the problem. One of the initialization methods that will be developed in this research is Singular Value Decomposition SVD method. The simulation results show that the SVD initialization method can overcome the fuzzy C means problem in the high dimension data so that the resulting topics are not equal to each other. "
2017
S69378
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ichsani Mursidah
"ABSTRAK
Pendeteksian topik adalah proses untuk menemukan topik atau pokok pembahasan utama dalam suatu kumpulan dokumen. Untuk data yang besar, pendeteksian topik dengan manual sulit atau bahkan tidak mungkin dilakukan. Sehingga, dibutuhkan metode otomatis yang dikenal dengan istilah Topic Detection and Tracking (TDT). Pada penelitian ini metode TDT yang digunakan untuk masalah pendeteksian topik adalah fuzzy C-means (FCM). FCM bekerja cukup baik pada dimensi data yang rendah, tetapi gagal pada dimensi data yang tinggi. Pada metode fuzzy c-means umumnya dilakukan inisialisasi random yang menyebabkan data konvergen ke satu pusat (centre of gravity) sehingga topik-topik yang dihasilkan antara satu dengan yang lainnya sama. Untuk mengatasi masalah tersebut dibutuhkan inisialisasi yang tidak random, yaitu dengan menggunakan inisialisasi berbasis singular value decomposition (SVD). Hasil akurasi dari metode ini menunjukkan adanya peningkatan lebih baik dibandingkan dengan metode FCM dengan inisialisasi random. Dengan nilai akurasi terbaik untuk FA Cup adalah 0,923, untuk US Elections adalah 0,661 dan untuk Super Tuesday adalah 0,727.

ABSTRACT
Topic detection is the process of finding the main topic or topic in a document. For large data, manual topic detection is difficult or even impossible. Thus, it takes an automatic method known as Topic Detection and Tracking (TDT). In this research the TDT method used for topic detection problem is fuzzy C-means (FCM). FCM works reasonably well on low data dimensions, but fails on high data dimensions. In the method of fuzzy c-means is generally done random initialization that causes data convergent to one center (center of gravity) so that the topics generated from one another are equal. To solve this problem requires non-random initialization, ie by using a singular value decomposition (SVD) based initialization. The accuracy of this method shows a better improvement compared to the FCM method with random initialization. With the best accuracy value for the FA Cup is 0.923, for US Elections is 0.661 and for Super Tuesday is 0.727."
2017
T48587
UI - Tesis Membership  Universitas Indonesia Library
cover
Raden Trivan Sutrisman
"ABSTRAK
Perkembangan berita online di Indonesia saat ini sudah semakin meningkat sehingga kebutuhan dalam melakukan analisis data berita sangat diperlukan untuk mendapatkan intisari informasi yang akurat dan cepat. Topik merupakan komponen dasar yang sering digunakan untuk menganalisis data dalam bentuk teks seperti berita. Dengan menggunakan pemodelan topik, dapat dilakukan pendeteksian topik secara otomatis pada koleksi dokumen berita yang sangat besar dan sulit dilakukan secara manual oleh manusia. Salah satu pemodelan topik yang dapat digunakan adalah metode clustering menggunakan Eigenspace Based Fuzzy C-Means (EFCM). Metode EFCM pada umumnya menggunakan inisialisasi random. Pada penelitian ini akan diimplementasikan metode inisialisasi menggunakan Non-Negative Double Singular Value Decomposition (NNDSVD) dan Fuzzy C-Means++ (FCM++) sebagai alternatif metode inisialisasi pada algoritma EFCM. Hasil simulasi menggunakan inisialisasi NNDSVD dan FCM++ menunjukkan nilai akurasi yang lebih baik dalam hal tingkat interpretabilitas topik daripada metode random.

ABSTRACT
The rapid increasing of online news in Indonesia creates the need for news analysis to obtain information as fast as possible. Topics are basic components that are often used to analyze data in the textual forms, such as the news article. By using topic modeling, topics can be detected automatically on large news documents which are difficult to perform manually. One of the topic modeling that can be used is the clustering-based method, i.e., Eigenspace-based Fuzzy C-Means (EFCM). The common initialization method of EFCM is random. In this research, Non-Negative Double Singular Value Decomposition (NNDSVD) and Fuzzy C-Means++ (FCM++) will be used as initialization methods of EFCM. The simulations show that the NNDSVD and FCM++ methods gives better accuracies in term of interpretability score than the random method.
"
Depok: Universitas Indonesia, 2018
T50041
UI - Tesis Membership  Universitas Indonesia Library
cover
Christhoper Nugraha
"ABSTRAK
Deteksi topik adalah proses menganalisis kumpulan data tekstual untuk menentukan topik pengumpulan data tekstual. Salah satu metode pengelompokan yang dapat digunakan untuk deteksi topik adalah metode Fuzzy C-Means (FCM). Namun, penggunaan FCM sederhana untuk pendeteksian topik tentang big data kurang efektif, karena akan memakan waktu lama dan banyak memori. FCM sederhana juga memiliki masalah lain, ketika melakukan deteksi topik aktif data dimensi tinggi, FCM sederhana hanya akan menghasilkan satu topik. Dalam penelitian ini, suatu gabungan metode Single-Pass Fuzzy C-Means (SPFCM) dan Fuzzy C-Means Berbasis Eigenspace (EFCM) diusulkan, yaitu Single-Pass Eigenspace-Based Fuzzy C-Means (SPEFCM) metode untuk mengatasi masalah ini. Data yang digunakan untuk deteksi topik adalah
tweet yang berasal dari aplikasi Twitter. Lalu, keakuratan topik didapat menggunakan SPEFCM dan EFCM akan dibandingkan berdasarkan nilai koherensi. Itu hasil simulasi menunjukkan bahwa nilai koherensi topik yang diperoleh menggunakan SPEFCM adalah sebanding dengan EFCM. Ini menunjukkan bahwa SPEFCM adalah metode yang tepat untuk mendeteksi topik pada data besar, tanpa mengurangi kualitas topik yang dihasilkan.

ABSTRACT
Topic detection is the process of analyzing a textual data set to determine the topic of textual data collection. One of the grouping methods that can be used for topic detection is the Fuzzy C-Means (FCM) method. However, the use of simple FCM for the detection of topics about big data is less effective, because it will take a long time and a lot of memory. Simple FCM also has another problem, when detecting active topics of high dimensional data, simple FCM will only produce one topic. In this study, a combination of the Single-Pass Fuzzy C-Means (SPFCM) method and the Fuzzy C-Means Based on Eigenspace (EFCM) is proposed, namely the Single-Pass Eigenspace-Based Fuzzy C-Means (SPEFCM) method to overcome this problem. The data used for topic detection is
tweets that come from the Twitter application. Then, the accuracy of the topics obtained using SPEFCM and EFCM will be compared based on coherence values. The simulation results show that the topic coherence value obtained using SPEFCM is comparable to EFCM. This shows that SPEFCM is the right method for detecting topics in big data, without reducing the quality of the topics produced."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudho Prakoso
"Salah satu metode otomatis untuk analisis data tekstual adalah deteksi topik. Eigenspace-based Fuzzy C-Means EFCM adalah metode berbasis soft clustering untuk pendeteksian topik. Pertama, EFCM menggunakan dekomposisi nilai tunggal terpotong untuk mengubah data tekstual dimensi tinggi menjadi data berdimensi rendah. Selanjutnya, proses pengelompokan dilakukan dalam ruang dimensi yang lebih kecil. Namun, proses transformasi itu dapat menghilangkan beberapa fitur penting dari data tekstual. Karena itu, akurasi dapat berkurang.
Dalam penelitian ini digunakan kernel trick untuk mengatasi kelemahan tersebut sehingga proses clustering dapat dilakukan dalam ruang dimensi yang lebih tinggi. Simulasi menunjukkan bahwa pendekatan ini memberikan akurasi yang lebih baik dalam menemukan topik daripada EFCM untuk masalah mendeteksi topik di Twitter.

One of automated methods for textual data analysis is topic detection. Eigenspace based fuzzy c means EFCM is a soft clustering based method for topic detection. Firstly, EFCM use truncated singular value decomposition to transform high dimensional textual data to low dimensional data. Next, the clustering process is conducted in the smaller dimensional space. However, that transformation process may eliminate some important features from the textual data. Therefore, the accuracy may be reduced.
In this study used kernel trick to overcome that weakness so that the clustering process is performed in a higher dimensional space. Simulations show that this approach gives better accuracies in term of topic recall than EFCM for the problem of sensing trending topic in Twitter.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Delano Novrilianto
"ABSTRAK
Pendeteksian topik merupakan proses untuk mendapatkan topik dari koleksi data tekstual. Salah satu metode otomatis untuk masalah pendeteksian topik adalah Separable Nonnegative Matrix Factorization SNMF . Terdapat tiga tahap yang dilakukan untuk menyelesaikan SNMF yakni membentuk matriks kookurensi kata-kata, menentukan kata-kata anchor, dan mencari matriks kata-topik. Metode yang umum digunakan untuk menentukan kata-kata anchor pada tahap kedua dari penyelesaian SNMF adalah dengan metode berbasis Convex Hull. Pada penelitian ini digunakan pendekatan lain untuk menentukan kata-kata anchor yaitu dengan memakai metode Singular Value Decomposition SVD . Topik-topik yang dihasilkan dengan kata-kata anchor -nya ditentukan dengan metode SVD dievaluasi tingkat intepretabilitasnya dengan memakai satuan Pointwise Mutual Information PMI dan dibandingkan dengan topik-topik dimana kata-kata anchor -nya ditentukan dengan metode berbasis Convex Hull. Waktu komputasi yang dibutuhkan untuk menentukan kata-kata anchor dengan metode SVD juga dibandingkan dengan waktu komputasi yang dibutuhkan untuk menentukan kata-kata anchor dengan metode berbasis Convex Hull.

ABSTRACT
Topic detection is the process of getting topics from a collection of textual data. One of the methods for detection problems is the Separable Nonnegative Matrix Factorization SNMF . There are three stages done to complete SNMF that is to form the word kookurensi matrix, determine the anchor words, and search for the word topic matrix. The common method used to determine the anchor words in the second stage of SNMF completion is the Convex Hull based method. In this research another approach is used to determine the anchor words, that is using Singular Value Decomposition SVD method. The resulting topics where the anchor words are determined by the SVD method will be evaluated for their interpretability level by using the Pointwise Mutual Information PMI unit and will compare with the topics where the anchor 39 s words are based on the Convex Hull based method. The computational time required to determine the anchor words by the SVD method will also be compared with the computational time required to determine the anchor words by the Convex Hull based method."
2017
S68021
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Khairil Imami
"ABSTRAK
Deteksi topik adalah proses yang digunakan untuk menganalisis kata-kata dalam kumpulan data tekstual untuk ditentukan topik dalam koleksi, bagaimana mereka saling berhubungan, dan bagaimana topik ini berubah dari waktu ke waktu. Salah satu metode yang digunakan untuk mendeteksi topik adalah Nonnegative Matrix
Metode Factorization (NMF) berdasarkan metode langsung atau disebut Separable Nonnegative Matriks Faktorisasi (SNMF). Dalam penelitian ini, tweet data diambil dari akun berita nasional pada aplikasi Twitter, dan topik terdeteksi menggunakan metode SNMF. Ada tiga tahap dalam metode SNMF, yaitu, menghasilkan kata co-kejadian
matriks, menentukan kata jangkar, dan memulihkan untuk mendapatkan matriks topik-kata. Penentuan dari kata anchor dilakukan dengan menggunakan tiga metode berbeda, yaitu Convex Metode berbasis lambung, metode SVD berdasarkan kata maksimum pada topik, dan SVD
metode berdasarkan perbedaan kata pada topik. Dalam deteksi topik, jumlah topik diproduksi bervariasi tergantung pada jumlah kata jangkar yang dihasilkan. Setelah mendapatkan topik, akurasi dihitung menggunakan unit topik word2vec. Hasil yang diperoleh menggunakan
tweet data akun berita nasional menunjukkan bahwa metode SVD berdasarkan perbedaan kata pada topik memiliki evaluasi topik yang buruk dibandingkan dengan dua topik lainnya.

ABSTRACT
Topic detection is the process used to analyze words in a textual data set to determine the topics in a collection, how they are related, and how these topics change over time. One method used to change the topic is the Nonnegative Matrix The Factorization (NMF) method is based on the direct method or called Separable Nonnegative Factor Matrix (SNMF). In this study, tweet data is taken from national news accounts on the Twitter application, and topics taken using the SNMF method. There are three methods in SNMF, namely, generating co-occurrence words matrix, determine anchor words, and recover to get a topic-word matrix. Determination of the word anchor is done using three different methods, namely Convex the stomach-based method, the SVD method based on the maximum words on the topic, and SVD method based on differences in words on the topic. In topic detection, the number of topics created varies depending on the number of anchor words produced. After getting the topic, it is calculated using the word2vec topic unit. The results obtained using National news account data tweets show the SVD method based on word differences on the topic has a worse evaluation topic compared to the other two topics."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tasya Rahmita
"ABSTRAK
Berkembangnya portal berita online di Indonesia sangat pesat sehingga menyebabkan meningkatnya arus informasi. Banyaknya informasi yang ada pada portal berita online menimbulkan kesulitan untuk mengetahui topik berita secara garis besar. Untuk itu diperlukan ekstraksi topik berita online yang dapat dilakukan secara otomatis dengan bantuan mesin. Salah satu metode yang dapat digunakan untuk mengekstraksi topik berita online secara otomatis adalah Non-Negative Matrix Factorization (NMF). Pada umumnya algoritma NMF menggunakan inisialisasi random untuk mendekomposisi matriks. Inisialisasi random pada algoritma NMF menghasilkan topik berita yang berbeda setiap kali eksekusi. Pada penelitian ini akan diimplentasikan salah satu metode inisialisasi NMF yaitu Non-Negative Double Singular Value Decomposition (NNDSVD). Metode ini berdasarkan dua proses dari Singular Value Decomposition (SVD). Proses SVD yang pertama untuk pendekatan matriks data dan yang kedua untuk pendekatan bagian positif. NNDSVD tidak mengandung unsur random, sehingga menghasilkan topik berita yang sama setiap kali eksekusi.

ABSTRACT
The rapid development of portal online news in Indonesia causes the increment of information flow. The amount of information contained in these portals makes it difficult to know the outline of news topic. So, it is necessary to extract the topic automatically by using machine. Non-Negative Matrix Factorization (NMF) is a method used to extract news topic automatically. Generally, NMF algorithm uses random initialization to decompose matrix to get different news topic in every execution. In this research, one of NMF initialization, Non-negative Double Singular Value Decomposition (NNDSVD), will be implemented. This method uses two processes from Singular Value Decomposition (SVD), one approximating the data matrix, the other approximating positive section. NNDSVD contains no randomization, so that produce same news topic in every execution."
[Universitas Indonesia, ], 2014
S55368
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budyono Saputro
"ABSTRAK
Pengenalan pembicara telah digunakan secara luas dalam kehidupan sehari-hari yang telah menjadi cabang penting dari otentifikasi secara otomatisuntuk identitas pembicara. Ekstraksi fitur suara adalah salah satu masalah yang penting dalam pengenalan pembicara dan merepresentasikan suara. Mel-frequency cepstrum coefficients (MFCC) adalah salah satu fitur penting suara dalam proses pengenalan pembicara. Hasil dari ekstraksi fitur ini selanjutnya akan diklasifikasikan untuk melakukan proses pengenalan pembicara. Dalam skripsi ini akan digunakan Perceptron dan Fuzzy C-Means sebagai metode klasifikasi untuk proses pengenalan pembicara. Tingkat akurasi yang diperoleh dari kedua metode ini menghasilkan 90.00% dengan menggunakan Perceptron dan 72.50% dengan menggunakan Fuzzy C-Means untuk masalah identifikasi pembicara texr-independent."
Universitas Indonesia, 2011
S823
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>